
Contents
1. Introduction: Why Lisp? 7

Why Lisp? . 9
Where It Began . 11
Who This Book Is For . 13

2. Lather, Rinse, Repeat: A Tour of the REPL 16
Choosing a Lisp Implementation . 16
Getting Up and Running with Lisp in a Box 17
Free Your Mind: Interactive Programming 19
Experimenting in the REPL . 19
"Hello, World," Lisp Style . 20

3. Practical: A Simple Database 20
CDs and Records . 21
Filing CDs . 22
Looking at the Database Contents . 23
Improving the User Interaction . 25
Saving and Loading the Database . 27
Querying the Database . 29
Updating Existing Records--Another Use for WHERE 33
Removing Duplication and Winning Big 34
Wrapping Up . 38

4. Syntax and Semantics 40
What’s with All the Parentheses? . 40
Breaking Open the Black Box . 41
S-expressions . 42
S-expressions As Lisp Forms . 45
Function Calls . 46
Special Operators . 46
Macros . 48
Truth, Falsehood, and Equality . 48
Formatting Lisp Code . 50

5. Functions 55
Defining New Functions . 55
Function Parameter Lists . 56
Optional Parameters . 57
Rest Parameters . 58
Keyword Parameters . 59
Mixing Different Parameter Types . 61
Function Return Values . 62
Functions As Data, a.k.a. Higher-Order Functions 63
Anonymous Functions . 65

1

6. Variables 69
Variable Basics . 69
Lexical Variables and Closures . 72
Dynamic, a.k.a. Special, Variables . 73
Constants . 77
Assignment . 78
Generalized Assignment . 79
Other Ways to Modify Places . 80

7. Macros: Standard Control Constructs 84
WHEN and UNLESS . 85
COND . 86
AND, OR, and NOT . 87
Looping . 88
DOLIST and DOTIMES . 88

8. Macros: Defining Your Own 89
The Story of Mac: A Just-So Story . 90
Macro Expansion Time vs. Runtime 91
DEFMACRO . 93
A Sample Macro: do-primes . 94
Macro Parameters . 95
Generating the Expansion . 96
Plugging the Leaks . 98
Macro-Writing Macros . 102
Beyond Simple Macros . 104

9. Practical: Building a Unit Test Framework 105
Two First Tries . 105
Refactoring . 106
Fixing the Return Value . 108
Better Result Reporting . 109
An Abstraction Emerges . 111
A Hierarchy of Tests . 112
Wrapping Up . 114

10. Numbers, Characters, and Strings 116
Numbers . 117
Numeric Literals . 117
Basic Math . 120
Numeric Comparisons . 122
Higher Math . 123
Characters . 123
Character Comparisons . 123
Strings . 124
String Comparisons . 125

2

11. Collections 128
Vectors . 128
Subtypes of Vector . 130
Vectors As Sequences . 131
Sequence Iterating Functions . 131
Higher-Order Function Variants . 133
Whole Sequence Manipulations . 134
Sorting and Merging . 135
Subsequence Manipulations . 136
Sequence Predicates . 137
Sequence Mapping Functions . 137
Hash Tables . 138
Hash Table Iteration . 140

12. They Called It LISP for a Reason: List Processing 142
"There Is No List" . 142
Functional Programming and Lists . 145
"Destructive" Operations . 146
Combining Recycling with Shared Structure 149
List-Manipulation Functions . 151
Mapping . 152
Other Structures . 153

13. Beyond Lists: Other Uses for Cons Cells 155
Trees . 155
Sets . 157
Lookup Tables: Alists and Plists . 158
DESTRUCTURING-BIND . 163

14. Files and File I/O 164
Reading File Data . 165
Reading Binary Data . 167
Bulk Reads . 167
File Output . 167
Closing Files . 168
Filenames . 169
How Pathnames Represent Filenames 171
Constructing New Pathnames . 172
Two Representations of Directory Names 174
Interacting with the File System . 175
Other Kinds of I/O . 177

15. Practical: A Portable Pathname Library 181
The API . 181
FEATURES and Read-Time Conditionalization 182
Listing a Directory . 184

3

Testing a File’s Existence . 187
Walking a Directory Tree . 189

16. Object Reorientation: Generic Functions 190
Generic Functions and Classes . 190
Generic Functions and Methods . 192
DEFGENERIC . 194
DEFMETHOD . 195
Method Combination . 197
The Standard Method Combination 198
Other Method Combinations . 200
Multimethods . 201
To Be Continued . 203

17. Object Reorientation: Classes 205
DEFCLASS . 205
Slot Specifiers . 206
Object Initialization . 207
Accessor Functions . 210
WITH-SLOTS and WITH-ACCESSORS 213
Class-Allocated Slots . 215
Slots and Inheritance . 216
Multiple Inheritance . 217
Good Object-Oriented Design . 220

18. A Few FORMAT Recipes 222

19. Beyond Exception Handling: Conditions and Restarts 223
The Lisp Way . 224
Conditions . 225
Condition Handlers . 225
Restarts . 228
Providing Multiple Restarts . 231
Other Uses for Conditions . 232

20. The Special Operators 234
Controlling Evaluation . 235
Manipulating the Lexical Environment 235
Local Flow of Control . 238
Unwinding the Stack . 241
Multiple Values . 245
EVAL-WHEN . 247
Other Special Operators . 249

21. Programming in the Large: Packages and Symbols 253
How the Reader Uses Packages . 253
A Bit of Package and Symbol Vocabulary 255

4

Three Standard Packages . 256
Defining Your Own Packages . 257
Packaging Reusable Libraries . 259
Importing Individual Names . 260
Packaging Mechanics . 261
Package Gotchas . 263

22. LOOP for Black Belts 267
The Parts of a LOOP . 267
Iteration Control . 268
Counting Loops . 268
Looping Over Collections and Packages 270
Equals-Then Iteration . 271
Local Variables . 272
Destructuring Variables . 272
Value Accumulation . 273
Unconditional Execution . 274
Conditional Execution . 275
Setting Up and Tearing Down . 276
Termination Tests . 278
Putting It All Together . 279

23. Practical: A Spam Filter 282
The Heart of a Spam Filter . 282
Training the Filter . 286
Per-Word Statistics . 287
Combining Probabilities . 289
Inverse Chi Square . 292
Training the Filter . 293
Testing the Filter . 294
A Couple of Utility Functions . 296
Analyzing the Results . 297
What’s Next . 300

24. Practical: Parsing Binary Files 302
Binary Files . 302
Binary Format Basics . 303
Strings in Binary Files . 304
Composite Structures . 307
Designing the Macros . 308
Making the Dream a Reality . 309
Reading Binary Objects . 311
Writing Binary Objects . 314
Adding Inheritance and Tagged Structures 314
Keeping Track of Inherited Slots . 317
Tagged Structures . 319

5

Primitive Binary Types . 321
The Current Object Stack . 324

25. Practical: An ID3 Parser 327
Structure of an ID3v2 Tag . 329
Defining a Package . 330
Integer Types . 331
String Types . 332
ID3 Tag Header . 336
ID3 Frames . 338
Detecting Tag Padding . 340
Supporting Multiple Versions of ID3 341
Versioned Frame Base Classes . 343
Versioned Concrete Frame Classes . 344
What Frames Do You Actually Need? 346
Text Information Frames . 348
Comment Frames . 350
Extracting Information from an ID3 Tag 351

26. Practical: Web Programming with AllegroServe 356
A 30-Second Intro to Server-Side Web Programming 356
AllegroServe . 358
Generating Dynamic Content with AllegroServe 361
Generating HTML . 363
HTML Macros . 366
Query Parameters . 367
Cookies . 370
A Small Application Framework . 372
The Implementation . 374

27. Practical: An MP3 Database 379
The Database . 379
Defining a Schema . 382
Inserting Values . 384
Querying the Database . 385
Matching Functions . 389
Getting at the Results . 391
Other Database Operations . 392

28. Practical: A Shoutcast Server 395
The Shoutcast Protocol . 395
Song Sources . 396
Implementing Shoutcast . 399

29. Practical: An MP3 Browser 405
Playlists . 405

6

Playlists As Song Sources . 407
Manipulating the Playlist . 411
Query Parameter Types . 415
Boilerplate HTML . 416
The Browse Page . 418
The Playlist . 421
Finding a Playlist . 424
Running the App . 424

30. Practical: An HTML Generation Library, the Interpreter 426
Designing a Domain-Specific Language 427
The FOO Language . 428
Character Escaping . 431
Indenting Printer . 432
HTML Processor Interface . 434
The Pretty Printer Backend . 435
The Basic Evaluation Rule . 438
What’s Next? . 442

31. Practical: An HTML Generation Library, the Compiler 443
The Compiler . 444
FOO Special Operators . 449
FOO Macros . 454
The Public API . 457
The End of the Line . 459

32. Conclusion: What’s Next? 460
Finding Lisp Libraries . 460
Interfacing with Other Languages . 462
Make It Work, Make It Right, Make It Fast 463
Delivering Applications . 470
Where to Go Next . 473

1. Introduction: Why Lisp?
If you think the greatest pleasure in programming comes from getting a lot done
with code that simply and clearly expresses your intention, then programming in
Common Lisp is likely to be about the most fun you can have with a computer.
You’ll get more done, faster, using it than you would using pretty much any
other language.

That’s a bold claim. Can I justify it? Not in a just a few pages in this chapter--
you’re going to have to learn some Lisp and see for yourself--thus the rest of this
book. For now, let me start with some anecdotal evidence, the story of my own
road to Lisp. Then, in the next section, I’ll explain the payoff I think you’ll get
from learning Common Lisp.

7

I’m one of what must be a fairly small number of second-generation Lisp hackers.
My father got his start in computers writing an operating system in assembly
for the machine he used to gather data for his doctoral dissertation in physics.
After running computer systems at various physics labs, by the 1980s he had left
physics altogether and was working at a large pharmaceutical company. That
company had a project under way to develop software to model production
processes in its chemical plants--if you increase the size of this vessel, how does it
affect annual production? The original team, writing in FORTRAN, had burned
through half the money and almost all the time allotted to the project with
nothing to show for their efforts. This being the 1980s and the middle of the
artificial intelligence (AI) boom, Lisp was in the air. So my dad--at that point
not a Lisper--went to Carnegie Mellon University (CMU) to talk to some of the
folks working on what was to become Common Lisp about whether Lisp might
be a good language for this project.

The CMU folks showed him some demos of stuff they were working on, and he
was convinced. He in turn convinced his bosses to let his team take over the
failing project and do it in Lisp. A year later, and using only what was left of
the original budget, his team delivered a working application with features that
the original team had given up any hope of delivering. My dad credits his team’s
success to their decision to use Lisp.

Now, that’s just one anecdote. And maybe my dad is wrong about why they
succeeded. Or maybe Lisp was better only in comparison to other languages of
the day. These days we have lots of fancy new languages, many of which have
incorporated features from Lisp. Am I really saying Lisp can offer you the same
benefits today as it offered my dad in the 1980s? Read on.

Despite my father’s best efforts, I didn’t learn any Lisp in high school. After
a college career that didn’t involve much programming in any language, I was
seduced by the Web and back into computers. I worked first in Perl, learning
enough to be dangerous while building an online discussion forum for Mother
Jones magazine’s Web site and then moving to a Web shop, Organic Online,
where I worked on big--for the time--Web sites such as the one Nike put up
during the 1996 Olympics. Later I moved onto Java as an early developer at
WebLogic, now part of BEA. After WebLogic, I joined another startup where I
was the lead programmer on a team building a transactional messaging system
in Java. Along the way, my general interest in programming languages led me
to explore such mainstream languages as C, C++, and Python, as well as less
well-known ones such as Smalltalk, Eiffel, and Beta.

So I knew two languages inside and out and was familiar with another half
dozen. Eventually, however, I realized my interest in programming languages
was really rooted in the idea planted by my father’s tales of Lisp--that different
languages really are different, and that, despite the formal Turing equivalence of
all programming languages, you really can get more done more quickly in some
languages than others and have more fun doing it. Yet, ironically, I had never
spent that much time with Lisp itself. So, I started doing some Lisp hacking in

8

my free time. And whenever I did, it was exhilarating how quickly I was able to
go from idea to working code.

For example, one vacation, having a week or so to hack Lisp, I decided to try
writing a version of a program--a system for breeding genetic algorithms to play
the game of Go--that I had written early in my career as a Java programmer.
Even handicapped by my then rudimentary knowledge of Common Lisp and
having to look up even basic functions, it still felt more productive than it would
have been to rewrite the same program in Java, even with several extra years of
Java experience acquired since writing the first version.

A similar experiment led to the library I’ll discuss in Chapter 24. Early in my
time at WebLogic I had written a library, in Java, for taking apart Java class
files. It worked, but the code was a bit of a mess and hard to modify or extend.
I had tried several times, over the years, to rewrite that library, thinking that
with my ever-improving Java chops I’d find some way to do it that didn’t bog
down in piles of duplicated code. I never found a way. But when I tried to do
it in Common Lisp, it took me only two days, and I ended up not only with a
Java class file parser but with a general-purpose library for taking apart any
kind of binary file. You’ll see how that library works in Chapter 24 and use it in
Chapter 25 to write a parser for the ID3 tags embedded in MP3 files.

Why Lisp?
It’s hard, in only a few pages of an introductory chapter, to explain why users
of a language like it, and it’s even harder to make the case for why you should
invest your time in learning a certain language. Personal history only gets us so
far. Perhaps I like Lisp because of some quirk in the way my brain is wired. It
could even be genetic, since my dad has it too. So before you dive into learning
Lisp, it’s reasonable to want to know what the payoff is going to be.

For some languages, the payoff is relatively obvious. For instance, if you want
to write low-level code on Unix, you should learn C. Or if you want to write
certain kinds of cross-platform applications, you should learn Java. And any of
a number companies still use a lot of C++, so if you want to get a job at one of
them, you should learn C++.

For most languages, however, the payoff isn’t so easily categorized; it has to do
with subjective criteria such as how it feels to use the language. Perl advocates
like to say that Perl "makes easy things easy and hard things possible" and revel
in the fact that, as the Perl motto has it, "There’s more than one way to do it."1
Python’s fans, on the other hand, think Python is clean and simple and think
Python code is easier to understand because, as their motto says, "There’s only
one way to do it."

So, why Common Lisp? There’s no immediately obvious payoff for adopting
Common Lisp the way there is for C, Java, and C++ (unless, of course, you
happen to own a Lisp Machine). The benefits of using Lisp have much more to

9

do with the experience of using it. I’ll spend the rest of this book showing you
the specific features of Common Lisp and how to use them so you can see for
yourself what it’s like. For now I’ll try to give you a sense of Lisp’s philosophy.

The nearest thing Common Lisp has to a motto is the koan-like description, "the
programmable programming language." While cryptic, that description gets at
the root of the biggest advantage Common Lisp still has over other languages.
More than any other language, Common Lisp follows the philosophy that what’s
good for the language’s designer is good for the language’s users. Thus, when
you’re programming in Common Lisp, you almost never find yourself wishing
the language supported some feature that would make your program easier to
write, because, as you’ll see throughout this book, you can just add the feature
yourself.

Consequently, a Common Lisp program tends to provide a much clearer mapping
between your ideas about how the program works and the code you actually
write. Your ideas aren’t obscured by boilerplate code and endlessly repeated
idioms. This makes your code easier to maintain because you don’t have to wade
through reams of code every time you need to make a change. Even systemic
changes to a program’s behavior can often be achieved with relatively small
changes to the actual code. This also means you’ll develop code more quickly;
there’s less code to write, and you don’t waste time thrashing around trying to
find a clean way to express yourself within the limitations of the language.2

Common Lisp is also an excellent language for exploratory programming--if you
don’t know exactly how your program is going to work when you first sit down
to write it, Common Lisp provides several features to help you develop your
code incrementally and interactively.

For starters, the interactive read-eval-print loop, which I’ll introduce in the next
chapter, lets you continually interact with your program as you develop it. Write
a new function. Test it. Change it. Try a different approach. You never have to
stop for a lengthy compilation cycle.3

Other features that support a flowing, interactive programming style are Lisp’s
dynamic typing and the Common Lisp condition system. Because of the former,
you spend less time convincing the compiler you should be allowed to run your
code and more time actually running it and working on it,4 and the latter lets
you develop even your error handling code interactively.

Another consequence of being "a programmable programming language" is that
Common Lisp, in addition to incorporating small changes that make particular
programs easier to write, can easily adopt big new ideas about how programming
languages should work. For instance, the original implementation of the Common
Lisp Object System (CLOS), Common Lisp’s powerful object system, was as
a library written in portable Common Lisp. This allowed Lisp programmers
to gain actual experience with the facilities it provided before it was officially
incorporated into the language.

10

Whatever new paradigm comes down the pike next, it’s extremely likely that
Common Lisp will be able to absorb it without requiring any changes to the
core language. For example, a Lisper has recently written a library, AspectL,
that adds support for aspect-oriented programming (AOP) to Common Lisp.5 If
AOP turns out to be the next big thing, Common Lisp will be able to support it
without any changes to the base language and without extra preprocessors and
extra compilers.6

Where It Began
Common Lisp is the modern descendant of the Lisp language first conceived
by John McCarthy in 1956. Lisp circa 1956 was designed for "symbolic data
processing"7 and derived its name from one of the things it was quite good at:
LISt Processing. We’ve come a long way since then: Common Lisp sports as
fine an array of modern data types as you can ask for: a condition system that,
as you’ll see in Chapter 19, provides a whole level of flexibility missing from
the exception systems of languages such as Java, Python, and C++; powerful
facilities for doing object-oriented programming; and several language facilities
that just don’t exist in other programming languages. How is this possible?
What on Earth would provoke the evolution of such a well-equipped language?

Well, McCarthy was (and still is) an artificial intelligence (AI) researcher, and
many of the features he built into his initial version of the language made it an
excellent language for AI programming. During the AI boom of the 1980s, Lisp
remained a favorite tool for programmers writing software to solve hard problems
such as automated theorem proving, planning and scheduling, and computer
vision. These were problems that required a lot of hard-to-write software; to
make a dent in them, AI programmers needed a powerful language, and they
grew Lisp into the language they needed. And the Cold War helped--as the
Pentagon poured money into the Defense Advanced Research Projects Agency
(DARPA), a lot of it went to folks working on problems such as large-scale
battlefield simulations, automated planning, and natural language interfaces.
These folks also used Lisp and continued pushing it to do what they needed.

The same forces that drove Lisp’s feature evolution also pushed the envelope
along other dimensions--big AI problems eat up a lot of computing resources
however you code them, and if you run Moore’s law in reverse for 20 years,
you can imagine how scarce computing resources were on circa-80s hardware.
The Lisp guys had to find all kinds of ways to squeeze performance out of
their implementations. Modern Common Lisp implementations are the heirs
to those early efforts and often include quite sophisticated, native machine
code-generating compilers. While today, thanks to Moore’s law, it’s possible
to get usable performance from a purely interpreted language, that’s no longer
an issue for Common Lisp. As I’ll show in Chapter 32, with proper (optional)
declarations, a good Lisp compiler can generate machine code quite similar to
what might be generated by a C compiler.

11

The 1980s were also the era of the Lisp Machines, with several companies, most
famously Symbolics, producing computers that ran Lisp natively from the chips
up. Thus, Lisp became a systems programming language, used for writing the
operating system, editors, compilers, and pretty much everything else that ran
on the Lisp Machines.

In fact, by the early 1980s, with various AI labs and the Lisp machine vendors all
providing their own Lisp implementations, there was such a proliferation of Lisp
systems and dialects that the folks at DARPA began to express concern about
the Lisp community splintering. To address this concern, a grassroots group
of Lisp hackers got together in 1981 and began the process of standardizing a
new language called Common Lisp that combined the best features from the
existing Lisp dialects. Their work was documented in the book Common Lisp
the Language by Guy Steele (Digital Press, 1984)--CLtL to the Lisp-cognoscenti.

By 1986 the first Common Lisp implementations were available, and the writing
was on the wall for the dialects it was intended to replace. In 1996, the American
National Standards Institute (ANSI) released a standard for Common Lisp that
built on and extended the language specified in CLtL, adding some major new
features such as the CLOS and the condition system. And even that wasn’t
the last word: like CLtL before it, the ANSI standard intentionally leaves room
for implementers to experiment with the best way to do things: a full Lisp
implementation provides a rich runtime environment with access to GUI widgets,
multiple threads of control, TCP/IP sockets, and more. These days Common
Lisp is evolving much like other open-source languages--the folks who use it
write the libraries they need and often make them available to others. In the
last few years, in particular, there has been a spurt of activity in open-source
Lisp libraries.

So, on one hand, Lisp is one of computer science’s "classical" languages, based on
ideas that have stood the test of time.8 On the other, it’s a thoroughly modern,
general-purpose language whose design reflects a deeply pragmatic approach to
solving real problems as efficiently and robustly as possible. The only downside
of Lisp’s "classical" heritage is that lots of folks are still walking around with
ideas about Lisp based on some particular flavor of Lisp they were exposed to at
some particular time in the nearly half century since McCarthy invented Lisp.
If someone tells you Lisp is only interpreted, that it’s slow, or that you have to
use recursion for everything, ask them what dialect of Lisp they’re talking about
and whether people were wearing bell-bottoms when they learned it.9

But I learned Lisp Once, And IT Wasn’t Like what you’re describing

If you’ve used Lisp in the past, you may have ideas about what "Lisp" is that
have little to do with Common Lisp. While Common Lisp supplanted most of
the dialects it’s descended from, it isn’t the only remaining Lisp dialect, and
depending on where and when you were exposed to Lisp, you may very well have
learned one of these other dialects.

Other than Common Lisp, the one general-purpose Lisp dialect that still has

12

an active user community is Scheme. Common Lisp borrowed a few important
features from Scheme but never intended to replace it.

Originally designed at M.I.T., where it was quickly put to use as a teaching
language for undergraduate computer science courses, Scheme has always been
aimed at a different language niche than Common Lisp. In particular, Scheme’s
designers have focused on keeping the core language as small and as simple
as possible. This has obvious benefits for a teaching language and also for
programming language researchers who like to be able to formally prove things
about languages.

It also has the benefit of making it relatively easy to understand the whole
language as specified in the standard. But, it does so at the cost of omitting
many useful features that are standardized in Common Lisp. Individual Scheme
implementations may provide these features in implementation-specific ways,
but their omission from the standard makes it harder to write portable Scheme
code than to write portable Common Lisp code.

Scheme also emphasizes a functional programming style and the use of recursion
much more than Common Lisp does. If you studied Lisp in college and came
away with the impression that it was only an academic language with no real-
world application, chances are you learned Scheme. This isn’t to say that’s
a particularly fair characterization of Scheme, but it’s even less applicable to
Common Lisp, which was expressly designed to be a real-world engineering
language rather than a theoretically "pure" language.

If you’ve learned Scheme, you should also be aware that a number of subtle
differences between Scheme and Common Lisp may trip you up. These differences
are also the basis for several perennial religious wars between the hotheads in
the Common Lisp and Scheme communities. I’ll try to point out some of the
more important differences as we go along.

Two other Lisp dialects still in widespread use are Elisp, the extension language
for the Emacs editor, and Autolisp, the extension language for Autodesk’s
AutoCAD computer-aided design tool. Although it’s possible more lines of Elisp
and Autolisp have been written than of any other dialect of Lisp, neither can
be used outside their host application, and both are quite old-fashioned Lisps
compared to either Scheme or Common Lisp. If you’ve used one of these dialects,
prepare to hop in the Lisp time machine and jump forward several decades.

Who This Book Is For
This book is for you if you’re curious about Common Lisp, regardless of whether
you’re already convinced you want to use it or if you just want to know what all
the fuss is about.

If you’ve learned some Lisp already but have had trouble making the leap from
academic exercises to real programs, this book should get you on your way. On

13

the other hand, you don’t have to be already convinced that you want to use
Lisp to get something out of this book.

If you’re a hard-nosed pragmatist who wants to know what advantages Common
Lisp has over languages such as Perl, Python, Java, C, or C#, this book should
give you some ideas. Or maybe you don’t even care about using Lisp--maybe
you’re already sure Lisp isn’t really any better than other languages you know
but are annoyed by some Lisper telling you that’s because you just don’t "get
it." If so, this book will give you a straight-to-the-point introduction to Common
Lisp. If, after reading this book, you still think Common Lisp is no better than
your current favorite languages, you’ll be in an excellent position to explain
exactly why.

I cover not only the syntax and semantics of the language but also how you
can use it to write software that does useful stuff. In the first part of the book,
I’ll cover the language itself, mixing in a few "practical" chapters, where I’ll
show you how to write real code. Then, after I’ve covered most of the language,
including several parts that other books leave for you to figure out on your own,
the remainder of the book consists of nine more practical chapters where I’ll
help you write several medium-sized programs that actually do things you might
find useful: filter spam, parse binary files, catalog MP3s, stream MP3s over a
network, and provide a Web interface for the MP3 catalog and server.

After you finish this book, you’ll be familiar with all the most important features
of the language and how they fit together, you’ll have used Common Lisp to write
several nontrivial programs, and you’ll be well prepared to continue exploring
the language on your own. While everyone’s road to Lisp is different, I hope this
book will help smooth the way for you. So, let’s begin.

1Perl is also worth learning as "the duct tape of the Internet."
2Unfortunately, there’s little actual research on the productivity of different
languages. One report that shows Lisp coming out well compared to C++ and
Java in the combination of programmer and program efficiency is discussed at
http://www.norvig.com/java-lisp.html.
3Psychologists have identified a state of mind called flow in which we’re capable
of incredible concentration and productivity. The importance of flow to pro-
gramming has been recognized for nearly two decades since it was discussed in
the classic book about human factors in programming Peopleware: Productive
Projects and Teams by Tom DeMarco and Timothy Lister (Dorset House, 1987).
The two key facts about flow are that it takes around 15 minutes to get into
a state of flow and that even brief interruptions can break you right out of it,
requiring another 15-minute immersion to reenter. DeMarco and Lister, like
most subsequent authors, concerned themselves mostly with flow-destroying
interruptions such as ringing telephones and inopportune visits from the boss.
Less frequently considered but probably just as important to programmers are

14

the interruptions caused by our tools. Languages that require, for instance, a
lengthy compilation before you can try your latest code can be just as inimical
to flow as a noisy phone or a nosy boss. So, one way to look at Lisp is as a
language designed to keep you in a state of flow.
4This point is bound to be somewhat controversial, at least with some folks.
Static versus dynamic typing is one of the classic religious wars in program-
ming. If you’re coming from C++ and Java (or from statically typed functional
languages such as Haskel and ML) and refuse to consider living without static
type checks, you might as well put this book down now. However, before you
do, you might first want to check out what self-described "statically typed
bigot" Robert Martin (author of Designing Object Oriented C++ Applications
Using the Booch Method [Prentice Hall, 1995]) and C++ and Java author
Bruce Eckel (author of Thinking in C++ [Prentice Hall, 1995] and Thinking
in Java [Prentice Hall, 1998]) have had to say about dynamic typing on their
weblogs (http://www.artima.com/weblogs/viewpost.jsp?thread=4639 and
http://www.mindview.net/WebLog/log-0025). On the other hand, folks com-
ing from Smalltalk, Python, Perl, or Ruby should feel right at home with this
aspect of Common Lisp.
5AspectL is an interesting project insofar as AspectJ, its Java-based predecessor,
was written by Gregor Kiczales, one of the designers of Common Lisp’s object
and metaobject systems. To many Lispers, AspectJ seems like Kiczales’s attempt
to backport his ideas from Common Lisp into Java. However, Pascal Costanza,
the author of AspectL, thinks there are interesting ideas in AOP that could be
useful in Common Lisp. Of course, the reason he’s able to implement AspectL
as a library is because of the incredible flexibility of the Common Lisp Meta
Object Protocol Kiczales designed. To implement AspectJ, Kiczales had to write
what was essentially a separate compiler that compiles a new language into
Java source code. The AspectL project page is at http://common-lisp.net/
project/aspectl/.
6Or to look at it another, more technically accurate, way, Common Lisp comes
with a built-in facility for integrating compilers for embedded languages.
7Lisp 1.5 Programmer’s Manual (M.I.T. Press, 1962)
8Ideas first introduced in Lisp include the if/then/else construct, recursive func-
tion calls, dynamic memory allocation, garbage collection, first-class functions,
lexical closures, interactive programming, incremental compilation, and dynamic
typing.
9One of the most commonly repeated myths about Lisp is that it’s "dead."
While it’s true that Common Lisp isn’t as widely used as, say, Visual Basic or
Java, it seems strange to describe a language that continues to be used for new
development and that continues to attract new users as "dead." Some recent Lisp
success stories include Paul Graham’s Viaweb, which became Yahoo Store when
Yahoo bought his company; ITA Software’s airfare pricing and shopping system,
QPX, used by the online ticket seller Orbitz and others; Naughty Dog’s game for

15

the PlayStation 2, Jak and Daxter, which is largely written in a domain-specific
Lisp dialect Naughty Dog invented called GOAL, whose compiler is itself written
in Common Lisp; and the Roomba, the autonomous robotic vacuum cleaner,
whose software is written in L, a downwardly compatible subset of Common
Lisp. Perhaps even more telling is the growth of the Common-Lisp.net Web site,
which hosts open-source Common Lisp projects, and the number of local Lisp
user groups that have sprung up in the past couple of years.

Copyright © 2003-2005, Peter Seibel

2. Lather, Rinse, Repeat: A Tour of the REPL
In this chapter you’ll set up your programming environment and write your first
Common Lisp programs. We’ll use the easy-to-install Lisp in a Box developed
by Matthew Danish and Mikel Evins, which packages a Common Lisp implemen-
tation with Emacs, a powerful Lisp-aware text editor, and SLIME,1 a Common
Lisp development environment built on top of Emacs.

This combo provides a state-of-the-art Common Lisp development environment
that supports the incremental, interactive development style that characterizes
Lisp programming. The SLIME environment has the added advantage of pro-
viding a fairly uniform user interface regardless of the operating system and
Common Lisp implementation you choose. I’ll use the Lisp in a Box environment
in order to have a specific development environment to talk about; folks who
want to explore other development environments such as the graphical integrated
development environments (IDEs) provided by some of the commercial Lisp
vendors or environments based on other editors shouldn’t have too much trouble
translating the basics.2

Choosing a Lisp Implementation
The first thing you have to do is to choose a Lisp implementation. This may
seem like a strange thing to have to do for folks used to languages such as Perl,
Python, Visual Basic (VB), C#, and Java. The difference between Common
Lisp and these languages is that Common Lisp is defined by its standard--there is
neither a single implementation controlled by a benevolent dictator, as with Perl
and Python, nor a canonical implementation controlled by a single company, as
with VB, C#, and Java. Anyone who wants to read the standard and implement
the language is free to do so. Furthermore, changes to the standard have to be
made in accordance with a process controlled by the standards body American
National Standards Institute (ANSI). That process is designed to keep any
one entity, such as a single vendor, from being able to arbitrarily change the
standard.3 Thus, the Common Lisp standard is a contract between any Common
Lisp vendor and Common Lisp programmers. The contract tells you that if
you write a program that uses the features of the language the way they’re
described in the standard, you can count on your program behaving the same in

16

any conforming implementation.

On the other hand, the standard may not cover everything you may want to
do in your programs--some things were intentionally left unspecified in order to
allow continuing experimentation by implementers in areas where there wasn’t
consensus about the best way for the language to support certain features. So
every implementation offers some features above and beyond what’s specified
in the standard. Depending on what kind of programming you’re going to be
doing, it may make sense to just pick one implementation that has the extra
features you need and use that. On the other hand, if we’re delivering Lisp
source to be used by others, such as libraries, you’ll want--as far as possible--to
write portable Common Lisp. For writing code that should be mostly portable
but that needs facilities not defined by the standard, Common Lisp provides
a flexible way to write code "conditionalized" on the features available in a
particular implementation. You’ll see an example of this kind of code in Chapter
15 when we develop a simple library that smoothes over some differences between
how different Lisp implementations deal with filenames.

For the moment, however, the most important characteristic of an implementation
is whether it runs on our favorite operating system. The folks at Franz, makers
of Allegro Common Lisp, are making available a trial version of their product for
use with this book that runs on Linux, Windows, and OS X. Folks looking for an
open-source implementation have several options. SBCL4 is a high-quality open-
source implementation that compiles to native code and runs on a wide variety
of Unixes, including Linux and OS X. SBCL is derived from CMUCL,5 which
is a Common Lisp developed at Carnegie Mellon University, and, like CMUCL,
is largely in the public domain, except a few sections licensed under Berkeley
Software Distribution (BSD) style licenses. CMUCL itself is another fine choice,
though SBCL tends to be easier to install and now supports 21-bit Unicode.6
For OS X users, OpenMCL is an excellent choice--it compiles to machine code,
supports threads, and has quite good integration with OS X’s Carbon and Cocoa
toolkits. Other open-source and commercial implementations are available. See
Chapter 32 for resources from which you can get more information.

All the Lisp code in this book should work in any conforming Common Lisp
implementation unless otherwise noted, and SLIME will smooth out some of the
differences between implementations by providing us with a common interface
for interacting with Lisp. The output shown in this book is from Allegro running
on GNU/Linux; in some cases, other Lisp’s may generate slightly different error
messages or debugger output.

Getting Up and Running with Lisp in a Box
Since the Lisp in a Box packaging is designed to get new Lispers up and running
in a first-rate Lisp development environment with minimum hassle, all you need
to do to get it running is to grab the appropriate package for your operating
system and the preferred Lisp from the Lisp in a Box Web site listed in Chapter

17

32 and then follow the installation instructions.

Since Lisp in a Box uses Emacs as its editor, you’ll need to know at least a
bit about how to use it. Perhaps the best way to get started with Emacs is to
work through its built-in tutorial. To start the tutorial, select the first item
of the Help menu, Emacs tutorial. Or press the Ctrl key, type h, release the
Ctrl key, and then press t. Most Emacs commands are accessible via such key
combinations; because key combinations are so common, Emacs users have a
notation for describing key combinations that avoids having to constantly write
out combinations such as "Press the Ctrl key, type h, release the Ctrl key, and
then press t." Keys to be pressed together--a so-called key chord--are written
together and separated by a hyphen. Keys, or key chords, to be pressed in
sequence are separated by spaces. In a key chord, C represents the Ctrl key and
M represents the Meta key (also known as Alt). Thus, we could write the key
combination we just described that starts the tutorial like so: C-h t.

The tutorial describes other useful commands and the key combinations that
invoke them. Emacs also comes with extensive online documentation using
its own built-in hypertext documentation browser, Info. To read the manual,
type C-h i. The Info system comes with its own tutorial, accessible simply by
pressing h while reading the manual. Finally, Emacs provides quite a few ways
to get help, all bound to key combos starting with C-h. Typing C-h ? brings up
a complete list. Two of the most useful, besides the tutorial, are C-h k, which
lets us type any key combo and tells us what command it invokes, and C-h w,
which lets us enter the name of a command and tells us what key combination
invokes it.

The other crucial bit of Emacs terminology, for folks who refuse to work through
the tutorial, is the notion of a buffer. While working in Emacs, each file you
edit will be represented by a different buffer, only one of which is "current" at
any given time. The current buffer receives all input--whatever you type and
any commands you invoke. Buffers are also used to represent interactions with
programs such as Common Lisp. Thus, one common action you’ll take is to
"switch buffers," which means to make a different buffer the current buffer so you
can edit a particular file or interact with a particular program. The command
switch-to-buffer, bound to the key combination C-x b, prompts for the name
of a buffer in the area at the bottom of the Emacs frame. When entering a buffer
name, hitting Tab will complete the name based on the characters typed so far
or will show a list of possible completions. The prompt also suggests a default
buffer, which you can accept just by hitting Return. You can also switch buffers
by selecting a buffer from the Buffers menu.

In certain contexts, other key combinations may be available for switching to
certain buffers. For instance, when editing Lisp source files, the key combo C-c
C-z switches to the buffer where you interact with Lisp.

18

Free Your Mind: Interactive Programming
When you start Lisp in a Box, you should see a buffer containing a prompt that
looks like this:

CL-USER>

This is the Lisp prompt. Like a Unix or DOS shell prompt, the Lisp prompt is a
place where you can type expressions that will cause things to happen. However,
instead of reading and interpreting a line of shell commands, Lisp reads Lisp
expressions, evaluates them according to the rules of Lisp, and prints the result.
Then it does it again with the next expression you type. That endless cycle of
reading, evaluating, and printing is why it’s called the read-eval-print loop, or
REPL for short. It’s also referred to as the top-level, the top-level listener, or
the Lisp listener.

From within the environment provided by the REPL, you can define and redefine
program elements such as variables, functions, classes, and methods; evaluate
any Lisp expression; load files containing Lisp source code or compiled code;
compile whole files or individual functions; enter the debugger; step through
code; and inspect the state of individual Lisp objects.

All those facilities are built into the language, accessible via functions defined
in the language standard. If you had to, you could build a pretty reasonable
programming environment out of just the REPL and any text editor that knows
how to properly indent Lisp code. But for the true Lisp programming experience,
you need an environment, such as SLIME, that lets you interact with Lisp both
via the REPL and while editing source files. For instance, you don’t want to have
to cut and paste a function definition from a source file to the REPL or have to
load a whole file just because you changed one function; your Lisp environment
should let us evaluate or compile both individual expressions and whole files
directly from your editor.

Experimenting in the REPL
To try the REPL, you need a Lisp expression that can be read, evaluated, and
printed. One of the simplest kinds of Lisp expressions is a number. At the Lisp
prompt, you can type 10 followed by Return and should see something like this:

CL-USER> 10
10

The first 10 is the one you typed. The Lisp reader, the R in REPL, reads the
text "10" and creates a Lisp object representing the number 10. This object is
a self-evaluating object, which means that when given to the evaluator, the E
in REPL, it evaluates to itself. This value is then given to the printer, which
prints the 10 on the line by itself. While that may seem like a lot of work just
to get back to where you started, things get a bit more interesting when you

19

give Lisp something meatier to chew on. For instance, you can type (+ 2 3) at
the Lisp prompt.

CL-USER> (+ 2 3)
5

Anything in parentheses is a list, in this case a list of three elements, the symbol
+, and the numbers 2 and 3. Lisp, in general, evaluates lists by treating the first
element as the name of a function and the rest of the elements as expressions to
be evaluated to yield the arguments to the function. In this case, the symbol +
names a function that performs addition. 2 and 3 evaluate to themselves and
are then passed to the addition function, which returns 5. The value 5 is passed
to the printer, which prints it. Lisp can evaluate a list expression in other ways,
but we needn’t get into them right away. First we have to write. . .

"Hello, World," Lisp Style
No programming book is complete without a "hello, world"7 program. As it
turns out, it’s trivially easy to get the REPL to print "hello, world."

CL-USER> "hello, world"
"hello, world"

This works because strings, like numbers, have a literal syntax that’s understood
by the Lisp reader and are self-evaluating objects: Lisp reads the double-quoted
string and instantiates a string object in memory that, when evaluated, evaluates
to itself and is then printed in the same literal syntax. The quotation marks
aren’t part of the string object in memory--they’re just the syntax that tells the
reader to read a string. The printer puts them back on when it prints the string
because it tries to print objects in the same syntax the reader understands.

However, this may not really qualify as a "hello, world" program. It’s more like
the "hello, world" value.

You can take a step toward a real program by writing some code that as a
side effect prints the string "hello, world" to standard output. Common Lisp
provides a couple ways to emit output, but the most flexible is the FORMAT
function. FORMAT takes a variable number of arguments, but the only two
required arguments are the place to send the output and a string. You’ll see in
the next chapter how the string can contain embedded directives that allow you
to interpolate subsequent arguments into the string,

Copyright © 2003-2005, Peter Seibel

3. Practical: A Simple Database
Obviously, before you can start building real software in Lisp, you’ll have to
learn the language. But let’s face it--you may be thinking, "’Practical Common
Lisp,’ isn’t that an oxymoron? Why should you be expected to bother learning

20

all the details of a language unless it’s actually good for something you care
about?" So I’ll start by giving you a small example of what you can do with
Common Lisp. In this chapter you’ll write a simple database for keeping track of
CDs. You’ll use similar techniques in Chapter 27 when you build a database of
MP3s for our streaming MP3 server. In fact, you could think of this as part of
the MP3 software project--after all, in order to have a bunch of MP3s to listen
to, it might be helpful to be able to keep track of which CDs you have and which
ones you need to rip.

In this chapter, I’ll cover just enough Lisp as we go along for you to understand
how the code works. But I’ll gloss over quite a few details. For now you needn’t
sweat the small stuff--the next several chapters will cover all the Common Lisp
constructs used here, and more, in a much more systematic way.

One terminology note: I’ll discuss a handful of Lisp operators in this chapter.
In Chapter 4, you’ll learn that Common Lisp provides three distinct kinds of
operators: functions, macros, and special operators. For the purposes of this
chapter, you don’t really need to know the difference. I will, however, refer to
different operators as functions or macros or special operators as appropriate,
rather than trying to hide the details behind the word operator. For now you
can treat function, macro, and special operator as all more or less equivalent.1

Also, keep in mind that I won’t bust out all the most sophisticated Common
Lisp techniques for your very first post-"hello, world" program. The point of this
chapter isn’t that this is how you would write a database in Lisp; rather, the
point is for you to get an idea of what programming in Lisp is like and to see
how even a relatively simple Lisp program can be quite featureful.

CDs and Records
To keep track of CDs that need to be ripped to MP3s and which CDs should
be ripped first, each record in the database will contain the title and artist of
the CD, a rating of how much the user likes it, and a flag saying whether it has
been ripped. So, to start with, you’ll need a way to represent a single database
record (in other words, one CD). Common Lisp gives you lots of choices of data
structures from a simple four-item list to a user-defined class, using the Common
Lisp Object System (CLOS).

For now you can stay at the simple end of the spectrum and use a list. You can
make a list with the LIST function, which, appropriately enough, returns a list
of its arguments.

CL-USER> (list 1 2 3)
(1 2 3)

You could use a four-item list, mapping a given position in the list to a given
field in the record. However, another flavor of list--called a property list, or plist
for short--is even more convenient. A plist is a list where every other element,
starting with the first, is a symbol that describes what the next element in the

21

list is. I won’t get into all the details of exactly what a symbol is right now;
basically it’s a name. For the symbols that name the fields in the CD database,
you can use a particular kind of symbol, called a keyword symbol. A keyword is
any name that starts with a colon (:), for instance, :foo. Here’s an example of
a plist using the keyword symbols :a, :b, and :c as property names:

CL-USER> (list :a 1 :b 2 :c 3)
(:A 1 :B 2 :C 3)

Note that you can create a property list with the same LIST function as you use
to create other lists; it’s the contents that make it a plist.

The thing that makes plists a convenient way to represent the records in a
database is the function GETF, which takes a plist and a symbol and returns the
value in the plist following the symbol, making a plist a sort of poor man’s hash
table. Lisp has real hash tables too, but plists are sufficient for your needs here
and can more easily be saved to a file, which will come in handy later.

CL-USER> (getf (list :a 1 :b 2 :c 3) :a)
1
CL-USER> (getf (list :a 1 :b 2 :c 3) :c)
3

Given all that, you can easily enough write a function make-cd that will take
the four fields as arguments and return a plist representing that CD.

(defun make-cd (title artist rating ripped)
(list :title title :artist artist :rating rating :ripped ripped))

The word DEFUN tells us that this form is defining a new function. The name of
the function is make-cd. After the name comes the parameter list. This function
has four parameters: title, artist, rating, and ripped. Everything after the
parameter list is the body of the function. In this case the body is just one form,
a call to LIST. When make-cd is called, the arguments passed to the call will be
bound to the variables in the parameter list. For instance, to make a record for
the CD Roses by Kathy Mattea, you might call make-cd like this:

CL-USER> (make-cd "Roses" "Kathy Mattea" 7 t)
(:TITLE "Roses" :ARTIST "Kathy Mattea" :RATING 7 :RIPPED T)

Filing CDs
A single record, however, does not a database make. You need some larger
construct to hold the records. Again, for simplicity’s sake, a list seems like a
good choice. Also for simplicity you can use a global variable, *db*, which you
can define with the DEFVAR macro. The asterisks (*) in the name are a Lisp
naming convention for global variables.2

(defvar *db* nil)

22

You can use the PUSH macro to add items to *db*. But it’s probably a good
idea to abstract things a tiny bit, so you should define a function add-record
that adds a record to the database.

(defun add-record (cd) (push cd *db*))

Now you can use add-record and make-cd together to add CDs to the database.

CL-USER> (add-record (make-cd "Roses" "Kathy Mattea" 7 t))
((:TITLE "Roses" :ARTIST "Kathy Mattea" :RATING 7 :RIPPED T))
CL-USER> (add-record (make-cd "Fly" "Dixie Chicks" 8 t))
((:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T)
(:TITLE "Roses" :ARTIST "Kathy Mattea" :RATING 7 :RIPPED T))

CL-USER> (add-record (make-cd "Home" "Dixie Chicks" 9 t))
((:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 9 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T)
(:TITLE "Roses" :ARTIST "Kathy Mattea" :RATING 7 :RIPPED T))

The stuff printed by the REPL after each call to add-record is the return value,
which is the value returned by the last expression in the function body, the PUSH.
And PUSH returns the new value of the variable it’s modifying. So what you’re
actually seeing is the value of the database after the record has been added.

Looking at the Database Contents
You can also see the current value of *db* whenever you want by typing *db*
at the REPL.

CL-USER> *db*
((:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 9 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T)
(:TITLE "Roses" :ARTIST "Kathy Mattea" :RATING 7 :RIPPED T))

However, that’s not a very satisfying way of looking at the output. You can write
a dump-db function that dumps out the database in a more human-readable
format, like this:

TITLE: Home
ARTIST: Dixie Chicks
RATING: 9
RIPPED: T

TITLE: Fly
ARTIST: Dixie Chicks
RATING: 8
RIPPED: T

TITLE: Roses
ARTIST: Kathy Mattea

23

RATING: 7
RIPPED: T

The function looks like this:

(defun dump-db ()
(dolist (cd *db*)
(format t "~{~a:~10t~a~%~}~%" cd)))

This function works by looping over all the elements of *db* with the DOLIST
macro, binding each element to the variable cd in turn. For each value of cd,
you use the FORMAT function to print it.

Admittedly, the FORMAT call is a little cryptic. However, FORMAT isn’t particularly
more complicated than C or Perl’s printf function or Python’s string-% operator.
In Chapter 18 I’ll discuss FORMAT in greater detail. For now we can take this call
bit by bit. As you saw in Chapter 2, FORMAT takes at least two arguments, the
first being the stream where it sends its output; t is shorthand for the stream
standard-output.

The second argument to FORMAT is a format string that can contain both literal
text and directives telling FORMAT things such as how to interpolate the rest of
its arguments. Format directives start with ~ (much the way printf’s directives
start with %). FORMAT understands dozens of directives, each with their own
set of options.3 However, for now I’ll just focus on the ones you need to write
dump-db.

The ~a directive is the aesthetic directive; it means to consume one argument
and output it in a human-readable form. This will render keywords without the
leading : and strings without quotation marks. For instance:

CL-USER> (format t "~a" "Dixie Chicks")
Dixie Chicks
NIL

or:

CL-USER> (format t "~a" :title)
TITLE
NIL

The ~t directive is for tabulating. The ~10t tells FORMAT to emit enough spaces
to move to the tenth column before processing the next ~a. A ~t doesn’t consume
any arguments.

CL-USER> (format t "~a:~10t~a" :artist "Dixie Chicks")
ARTIST: Dixie Chicks
NIL

Now things get slightly more complicated. When FORMAT sees ~{ the next
argument to be consumed must be a list. FORMAT loops over that list, processing
the directives between the ~{ and ~}, consuming as many elements of the list as

24

needed each time through the list. In dump-db, the FORMAT loop will consume
one keyword and one value from the list each time through the loop. The ~%
directive doesn’t consume any arguments but tells FORMAT to emit a newline.
Then after the ~} ends the loop, the last ~% tells FORMAT to emit one more
newline to put a blank line between each CD.

Technically, you could have also used FORMAT to loop over the database itself,
turning our dump-db function into a one-liner.

(defun dump-db ()
(format t "~{~{~a:~10t~a~%~}~%~}" *db*))

That’s either very cool or very scary depending on your point of view.

Improving the User Interaction
While our add-record function works fine for adding records, it’s a bit Lispy
for the casual user. And if they want to add a bunch of records, it’s not
very convenient. So you may want to write a function to prompt the user for
information about a set of CDs. Right away you know you’ll need some way to
prompt the user for a piece of information and read it. So let’s write that.

(defun prompt-read (prompt)
(format *query-io* "~a: " prompt)
(force-output *query-io*)
(read-line *query-io*))

You use your old friend FORMAT to emit a prompt. Note that there’s no ~% in the
format string, so the cursor will stay on the same line. The call to FORCE-OUTPUT
is necessary in some implementations to ensure that Lisp doesn’t wait for a
newline before it prints the prompt.

Then you can read a single line of text with the aptly named READ-LINE function.
The variable *query-io* is a global variable (which you can tell because of
the * naming convention for global variables) that contains the input stream
connected to the terminal. The return value of prompt-read will be the value
of the last form, the call to READ-LINE, which returns the string it read (without
the trailing newline.)

You can combine your existing make-cd function with prompt-read to build a
function that makes a new CD record from data it gets by prompting for each
value in turn.

(defun prompt-for-cd ()
(make-cd
(prompt-read "Title")
(prompt-read "Artist")
(prompt-read "Rating")
(prompt-read "Ripped [y/n]")))

25

That’s almost right. Except prompt-read returns a string, which, while fine
for the Title and Artist fields, isn’t so great for the Rating and Ripped fields,
which should be a number and a boolean. Depending on how sophisticated a
user interface you want, you can go to arbitrary lengths to validate the data the
user enters. For now let’s lean toward the quick and dirty: you can wrap the
prompt-read for the rating in a call to Lisp’s PARSE-INTEGER function, like this:

(parse-integer (prompt-read "Rating"))

Unfortunately, the default behavior of PARSE-INTEGER is to signal an error if it
can’t parse an integer out of the string or if there’s any non-numeric junk in the
string. However, it takes an optional keyword argument :junk-allowed, which
tells it to relax a bit.

(parse-integer (prompt-read "Rating") :junk-allowed t)

But there’s still one problem: if it can’t find an integer amidst all the junk,
PARSE-INTEGER will return NIL rather than a number. In keeping with the
quick-and-dirty approach, you may just want to call that 0 and continue. Lisp’s
OR macro is just the thing you need here. It’s similar to the "short-circuiting" ||
in Perl, Python, Java, and C; it takes a series of expressions, evaluates them one
at a time, and returns the first non-nil value (or NIL if they’re all NIL). So you
can use the following:

(or (parse-integer (prompt-read "Rating") :junk-allowed t) 0)

to get a default value of 0.

Fixing the code to prompt for Ripped is quite a bit simpler. You can just use
the Common Lisp function Y-OR-N-P.

(y-or-n-p "Ripped [y/n]: ")

In fact, this will be the most robust part of prompt-for-cd, as Y-OR-N-P will
reprompt the user if they enter something that doesn’t start with y, Y, n, or N.

Putting those pieces together you get a reasonably robust prompt-for-cd func-
tion.

(defun prompt-for-cd ()
(make-cd
(prompt-read "Title")
(prompt-read "Artist")
(or (parse-integer (prompt-read "Rating") :junk-allowed t) 0)
(y-or-n-p "Ripped [y/n]: ")))

Finally, you can finish the "add a bunch of CDs" interface by wrapping
prompt-for-cd in a function that loops until the user is done. You can use the
simple form of the LOOP macro, which repeatedly executes a body of expressions
until it’s exited by a call to RETURN. For example:

(defun add-cds ()

26

(loop (add-record (prompt-for-cd))
(if (not (y-or-n-p "Another? [y/n]: ")) (return))))

Now you can use add-cds to add some more CDs to the database.

CL-USER> (add-cds)
Title: Rockin’ the Suburbs
Artist: Ben Folds
Rating: 6
Ripped [y/n]: y
Another? [y/n]: y
Title: Give Us a Break
Artist: Limpopo
Rating: 10
Ripped [y/n]: y
Another? [y/n]: y
Title: Lyle Lovett
Artist: Lyle Lovett
Rating: 9
Ripped [y/n]: y
Another? [y/n]: n
NIL

Saving and Loading the Database
Having a convenient way to add records to the database is nice. But it’s not
so nice that the user is going to be very happy if they have to reenter all the
records every time they quit and restart Lisp. Luckily, with the data structures
you’re using to represent the data, it’s trivially easy to save the data to a file and
reload it later. Here’s a save-db function that takes a filename as an argument
and saves the current state of the database:

(defun save-db (filename)
(with-open-file (out filename

:direction :output
:if-exists :supersede)

(with-standard-io-syntax
(print *db* out))))

The WITH-OPEN-FILE macro opens a file, binds the stream to a variable, executes
a set of expressions, and then closes the file. It also makes sure the file is closed
even if something goes wrong while evaluating the body. The list directly after
WITH-OPEN-FILE isn’t a function call but rather part of the syntax defined by
WITH-OPEN-FILE. It contains the name of the variable that will hold the file
stream to which you’ll write within the body of WITH-OPEN-FILE, a value that
must be a file name, and then some options that control how the file is opened.
Here you specify that you’re opening the file for writing with :direction

27

:output and that you want to overwrite an existing file of the same name if it
exists with :if-exists :supersede.

Once you have the file open, all you have to do is print the contents of the database
with (print *db* out). Unlike FORMAT, PRINT prints Lisp objects in a form that
can be read back in by the Lisp reader. The macro WITH-STANDARD-IO-SYNTAX
ensures that certain variables that affect the behavior of PRINT are set to their
standard values. You’ll use the same macro when you read the data back in to
make sure the Lisp reader and printer are operating compatibly.

The argument to save-db should be a string containing the name of the file
where the user wants to save the database. The exact form of the string will
depend on what operating system they’re using. For instance, on a Unix box
they should be able to call save-db like this:

CL-USER> (save-db "~/my-cds.db")
((:TITLE "Lyle Lovett" :ARTIST "Lyle Lovett" :RATING 9 :RIPPED T)
(:TITLE "Give Us a Break" :ARTIST "Limpopo" :RATING 10 :RIPPED T)
(:TITLE "Rockin’ the Suburbs" :ARTIST "Ben Folds" :RATING 6 :RIPPED
T)
(:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 9 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T)
(:TITLE "Roses" :ARTIST "Kathy Mattea" :RATING 9 :RIPPED T))

On Windows, the filename might be something like "c:/my-cds.db" or
"c:\\my-cds.db."4

You can open this file in any text editor to see what it looks like. You should
see something a lot like what the REPL prints if you type *db*.

The function to load the database back in is similar.

(defun load-db (filename)
(with-open-file (in filename)
(with-standard-io-syntax
(setf *db* (read in)))))

This time you don’t need to specify :direction in the options to
WITH-OPEN-FILE, since you want the default of :input. And instead of
printing, you use the function READ to read from the stream in. This is the
same reader used by the REPL and can read any Lisp expression you could
type at the REPL prompt. However, in this case, you’re just reading and saving
the expression, not evaluating it. Again, the WITH-STANDARD-IO-SYNTAX macro
ensures that READ is using the same basic syntax that save-db did when it
PRINTed the data.

The SETF macro is Common Lisp’s main assignment operator. It sets its first
argument to the result of evaluating its second argument. So in load-db the
db variable will contain the object read from the file, namely, the list of
lists written by save-db. You do need to be careful about one thing--load-db

28

clobbers whatever was in *db* before the call. So if you’ve added records with
add-record or add-cds that haven’t been saved with save-db, you’ll lose them.

Querying the Database
Now that you have a way to save and reload the database to go along with a
convenient user interface for adding new records, you soon may have enough
records that you won’t want to be dumping out the whole database just to look
at what’s in it. What you need is a way to query the database. You might like,
for instance, to be able to write something like this:

(select :artist "Dixie Chicks")

and get a list of all the records where the artist is the Dixie Chicks. Again, it
turns out that the choice of saving the records in a list will pay off.

The function REMOVE-IF-NOT takes a predicate and a list and returns a list
containing only the elements of the original list that match the predicate. In
other words, it has removed all the elements that don’t match the predicate.
However, REMOVE-IF-NOT doesn’t really remove anything--it creates a new list,
leaving the original list untouched. It’s like running grep over a file. The
predicate argument can be any function that accepts a single argument and
returns a boolean value--NIL for false and anything else for true.

For instance, if you wanted to extract all the even elements from a list of numbers,
you could use REMOVE-IF-NOT as follows:

CL-USER> (remove-if-not #’evenp ’(1 2 3 4 5 6 7 8 9 10))
(2 4 6 8 10)

In this case, the predicate is the function EVENP, which returns true if its argument
is an even number. The funny notation #' is shorthand for "Get me the function
with the following name." Without the #', Lisp would treat evenp as the name
of a variable and look up the value of the variable, not the function.

You can also pass REMOVE-IF-NOT an anonymous function. For instance, if EVENP
didn’t exist, you could write the previous expression as the following:

CL-USER> (remove-if-not #’(lambda (x) (= 0 (mod x 2))) ’(1 2 3 4 5 6 7 8 9 10))
(2 4 6 8 10)

In this case, the predicate is this anonymous function:

(lambda (x) (= 0 (mod x 2)))

which checks that its argument is equal to 0 modulus 2 (in other words, is even).
If you wanted to extract only the odd numbers using an anonymous function,
you’d write this:

CL-USER> (remove-if-not #’(lambda (x) (= 1 (mod x 2))) ’(1 2 3 4 5 6 7 8 9 10))
(1 3 5 7 9)

29

Note that lambda isn’t the name of the function--it’s the indicator you’re defining
an anonymous function.5 Other than the lack of a name, however, a LAMBDA
expression looks a lot like a DEFUN: the word lambda is followed by a parameter
list, which is followed by the body of the function.

To select all the Dixie Chicks’ albums in the database using REMOVE-IF-NOT,
you need a function that returns true when the artist field of a record is "Dixie
Chicks". Remember that we chose the plist representation for the database
records because the function GETF can extract named fields from a plist. So
assuming cd is the name of a variable holding a single database record, you
can use the expression (getf cd :artist) to extract the name of the artist.
The function EQUAL, when given string arguments, compares them character by
character. So (equal (getf cd :artist) "Dixie Chicks") will test whether
the artist field of a given CD is equal to "Dixie Chicks". All you need to do
is wrap that expression in a LAMBDA form to make an anonymous function and
pass it to REMOVE-IF-NOT.

CL-USER> (remove-if-not
#’(lambda (cd) (equal (getf cd :artist) "Dixie Chicks")) *db*)

((:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 9 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T))

Now suppose you want to wrap that whole expression in a function that takes
the name of the artist as an argument. You can write that like this:

(defun select-by-artist (artist)
(remove-if-not
#’(lambda (cd) (equal (getf cd :artist) artist))
db))

Note how the anonymous function, which contains code that won’t run until
it’s invoked in REMOVE-IF-NOT, can nonetheless refer to the variable artist. In
this case the anonymous function doesn’t just save you from having to write a
regular function--it lets you write a function that derives part of its meaning--the
value of artist--from the context in which it’s embedded.

So that’s select-by-artist. However, selecting by artist is only one of the
kinds of queries you might like to support. You could write several more functions,
such as select-by-title, select-by-rating, select-by-title-and-artist,
and so on. But they’d all be about the same except for the contents of the
anonymous function. You can instead make a more general select function
that takes a function as an argument.

(defun select (selector-fn)
(remove-if-not selector-fn *db*))

So what happened to the #'? Well, in this case you don’t want REMOVE-IF-NOT
to use the function named selector-fn. You want it to use the anonymous
function that was passed as an argument to select in the variable selector-fn.
Though, the #' comes back in the call to select.

30

CL-USER> (select #’(lambda (cd) (equal (getf cd :artist) "Dixie Chicks")))
((:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 9 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T))

But that’s really quite gross-looking. Luckily, you can wrap up the creation of
the anonymous function.

(defun artist-selector (artist)
#’(lambda (cd) (equal (getf cd :artist) artist)))

This is a function that returns a function and one that references a variable
that--it seems--won’t exist after artist-selector returns.6 It may seem odd
now, but it actually works just the way you’d want--if you call artist-selector
with an argument of "Dixie Chicks", you get an anonymous function that
matches CDs whose :artist field is "Dixie Chicks", and if you call it with
"Lyle Lovett", you get a different function that will match against an :artist
field of "Lyle Lovett". So now you can rewrite the call to select like this:

CL-USER> (select (artist-selector "Dixie Chicks"))
((:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 9 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T))

Now you just need some more functions to generate selectors. But just as you
don’t want to have to write select-by-title, select-by-rating, and so on,
because they would all be quite similar, you’re not going to want to write a bunch
of nearly identical selector-function generators, one for each field. Why not write
one general-purpose selector-function generator, a function that, depending on
what arguments you pass it, will generate a selector function for different fields
or maybe even a combination of fields? You can write such a function, but first
you need a crash course in a feature called keyword parameters.

In the functions you’ve written so far, you’ve specified a simple list of parameters,
which are bound to the corresponding arguments in the call to the function. For
instance, the following function:

(defun foo (a b c) (list a b c))

has three parameters, a, b, and c, and must be called with three arguments. But
sometimes you may want to write a function that can be called with varying
numbers of arguments. Keyword parameters are one way to achieve this. A
version of foo that uses keyword parameters might look like this:

(defun foo (&key a b c) (list a b c))

The only difference is the &key at the beginning of the argument list. However,
the calls to this new foo will look quite different. These are all legal calls with
the result to the right of the ==>:

(foo :a 1 :b 2 :c 3) ==> (1 2 3)
(foo :c 3 :b 2 :a 1) ==> (1 2 3)
(foo :a 1 :c 3) ==> (1 NIL 3)

31

(foo) ==> (NIL NIL NIL)

As these examples show, the value of the variables a, b, and c are bound to the
values that follow the corresponding keyword. And if a particular keyword isn’t
present in the call, the corresponding variable is set to NIL. I’m glossing over a
bunch of details of how keyword parameters are specified and how they relate to
other kinds of parameters, but you need to know one more detail.

Normally if a function is called with no argument for a particular keyword
parameter, the parameter will have the value NIL. However, sometimes you’ll
want to be able to distinguish between a NIL that was explicitly passed as the
argument to a keyword parameter and the default value NIL. To allow this, when
you specify a keyword parameter you can replace the simple name with a list
consisting of the name of the parameter, a default value, and another parameter
name, called a supplied-p parameter. The supplied-p parameter will be set to
true or false depending on whether an argument was actually passed for that
keyword parameter in a particular call to the function. Here’s a version of foo
that uses this feature:

(defun foo (&key a (b 20) (c 30 c-p)) (list a b c c-p))

Now the same calls from earlier yield these results:

(foo :a 1 :b 2 :c 3) ==> (1 2 3 T)
(foo :c 3 :b 2 :a 1) ==> (1 2 3 T)
(foo :a 1 :c 3) ==> (1 20 3 T)
(foo) ==> (NIL 20 30 NIL)

The general selector-function generator, which you can call where for reasons
that will soon become apparent if you’re familiar with SQL databases, is a
function that takes four keyword parameters corresponding to the fields in our
CD records and generates a selector function that selects any CDs that match
all the values given to where. For instance, it will let you say things like this:

(select (where :artist "Dixie Chicks"))

or this:

(select (where :rating 10 :ripped nil))

The function looks like this:

(defun where (&key title artist rating (ripped nil ripped-p))
#’(lambda (cd)

(and
(if title (equal (getf cd :title) title) t)
(if artist (equal (getf cd :artist) artist) t)
(if rating (equal (getf cd :rating) rating) t)
(if ripped-p (equal (getf cd :ripped) ripped) t))))

This function returns an anonymous function that returns the logical AND of one
clause per field in our CD records. Each clause checks if the appropriate argument

32

was passed in and then either compares it to the value in the corresponding field
in the CD record or returns t, Lisp’s version of truth, if the parameter wasn’t
passed in. Thus, the selector function will return t only for CDs that match all
the arguments passed to where.7 Note that you need to use a three-item list to
specify the keyword parameter ripped because you need to know whether the
caller actually passed :ripped nil, meaning, "Select CDs whose ripped field is
nil," or whether they left out :ripped altogether, meaning "I don’t care what
the value of the ripped field is."

Updating Existing Records--Another Use for WHERE
Now that you’ve got nice generalized select and where functions, you’re in a
good position to write the next feature that every database needs--a way to
update particular records. In SQL the update command is used to update a set
of records matching a particular where clause. That seems like a good model,
especially since you’ve already got a where-clause generator. In fact, the update
function is mostly just the application of a few ideas you’ve already seen: using
a passed-in selector function to choose the records to update and using keyword
arguments to specify the values to change. The main new bit is the use of a
function MAPCAR that maps over a list, *db* in this case, and returns a new list
containing the results of calling a function on each item in the original list.

(defun update (selector-fn &key title artist rating (ripped nil ripped-p))
(setf *db*

(mapcar
#’(lambda (row)

(when (funcall selector-fn row)
(if title (setf (getf row :title) title))
(if artist (setf (getf row :artist) artist))
(if rating (setf (getf row :rating) rating))
(if ripped-p (setf (getf row :ripped) ripped)))

row) *db*)))

One other new bit here is the use of SETF on a complex form such as (getf
row :title). I’ll discuss SETF in greater detail in Chapter 6, but for now you
just need to know that it’s a general assignment operator that can be used to
assign lots of "places" other than just variables. (It’s a coincidence that SETF
and GETF have such similar names--they don’t have any special relationship.)
For now it’s enough to know that after (setf (getf row :title) title), the
plist referenced by row will have the value of the variable title following the
property name :title. With this update function if you decide that you really
dig the Dixie Chicks and that all their albums should go to 11, you can evaluate
the following form:

CL-USER> (update (where :artist "Dixie Chicks") :rating 11)
NIL

And it is so.

33

CL-USER> (select (where :artist "Dixie Chicks"))
((:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 11 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 11 :RIPPED T))

You can even more easily add a function to delete rows from the database.

(defun delete-rows (selector-fn)
(setf *db* (remove-if selector-fn *db*)))

The function REMOVE-IF is the complement of REMOVE-IF-NOT; it returns a list
with all the elements that do match the predicate removed. Like REMOVE-IF-NOT,
it doesn’t actually affect the list it’s passed but by saving the result back into
db, delete-rows8 actually changes the contents of the database.9

Removing Duplication and Winning Big
So far all the database code supporting insert, select, update, and delete, not to
mention a command-line user interface for adding new records and dumping out
the contents, is just a little more than 50 lines. Total.10

Yet there’s still some annoying code duplication. And it turns out you can
remove the duplication and make the code more flexible at the same time. The
duplication I’m thinking of is in the where function. The body of the where
function is a bunch of clauses like this, one per field:

(if title (equal (getf cd :title) title) t)

Right now it’s not so bad, but like all code duplication it has the same cost: if
you want to change how it works, you have to change multiple copies. And if
you change the fields in a CD, you’ll have to add or remove clauses to where.
And update suffers from the same kind of duplication. It’s doubly annoying
since the whole point of the where function is to dynamically generate a bit of
code that checks the values you care about; why should it have to do work at
runtime checking whether title was even passed in?

Imagine that you were trying to optimize this code and discovered that it was
spending too much time checking whether title and the rest of the keyword
parameters to where were even set?11 If you really wanted to remove all those
runtime checks, you could go through a program and find all the places you
call where and look at exactly what arguments you’re passing. Then you could
replace each call to where with an anonymous function that does only the
computation necessary. For instance, if you found this snippet of code:

(select (where :title "Give Us a Break" :ripped t))

you could change it to this:

(select
#’(lambda (cd)

(and (equal (getf cd :title) "Give Us a Break")
(equal (getf cd :ripped) t))))

34

Note that the anonymous function is different from the one that where would
have returned; you’re not trying to save the call to where but rather to provide
a more efficient selector function. This anonymous function has clauses only for
the fields that you actually care about at this call site, so it doesn’t do any extra
work the way a function returned by where might.

You can probably imagine going through all your source code and fixing up all
the calls to where in this way. But you can probably also imagine that it would
be a huge pain. If there were enough of them, and it was important enough,
it might even be worthwhile to write some kind of preprocessor that converts
where calls to the code you’d write by hand.

The Lisp feature that makes this trivially easy is its macro system. I can’t
emphasize enough that the Common Lisp macro shares essentially nothing but
the name with the text-based macros found in C and C++. Where the C
pre-processor operates by textual substitution and understands almost nothing
of the structure of C and C++, a Lisp macro is essentially a code generator
that gets run for you automatically by the compiler.12 When a Lisp expression
contains a call to a macro, instead of evaluating the arguments and passing them
to the function, the Lisp compiler passes the arguments, unevaluated, to the
macro code, which returns a new Lisp expression that is then evaluated in place
of the original macro call.

I’ll start with a simple, and silly, example and then show how you can replace the
where function with a where macro. Before I can write this example macro, I
need to quickly introduce one new function: REVERSE takes a list as an argument
and returns a new list that is its reverse. So (reverse '(1 2 3)) evaluates to
(3 2 1). Now let’s create a macro.

(defmacro backwards (expr) (reverse expr))

The main syntactic difference between a function and a macro is that you define
a macro with DEFMACRO instead of DEFUN. After that a macro definition consists
of a name, just like a function, a parameter list, and a body of expressions, both
also like a function. However, a macro has a totally different effect. You can use
this macro as follows:

CL-USER> (backwards ("hello, world" t format))
hello, world
NIL

How did that work? When the REPL started to evaluate the backwards
expression, it recognized that backwards is the name of a macro. So it left the
expression ("hello, world" t format) unevaluated, which is good because
it isn’t a legal Lisp form. It then passed that list to the backwards code. The
code in backwards passed the list to REVERSE, which returned the list (format
t "hello, world"). backwards then passed that value back out to the REPL,
which then evaluated it in place of the original expression.

The backwards macro thus defines a new language that’s a lot like Lisp--just

35

backward--that you can drop into anytime simply by wrapping a backward Lisp
expression in a call to the backwards macro. And, in a compiled Lisp program,
that new language is just as efficient as normal Lisp because all the macro
code--the code that generates the new expression--runs at compile time. In
other words, the compiler will generate exactly the same code whether you write
(backwards ("hello, world" t format)) or (format t "hello, world").

So how does that help with the code duplication in where? Well, you can write a
macro that generates exactly the code you need for each particular call to where.
Again, the best approach is to build our code bottom up. In the hand-optimized
selector function, you had an expression of the following form for each actual
field referred to in the original call to where:

(equal (getf cd field) value)

So let’s write a function that, given the name of a field and a value, returns such
an expression. Since an expression is just a list, you might think you could write
something like this:

(defun make-comparison-expr (field value) ; wrong
(list equal (list getf cd field) value))

However, there’s one trick here: as you know, when Lisp sees a simple name
such as field or value other than as the first element of a list, it assumes it’s
the name of a variable and looks up its value. That’s fine for field and value;
it’s exactly what you want. But it will treat equal, getf, and cd the same way,
which isn’t what you want. However, you also know how to stop Lisp from
evaluating a form: stick a single forward quote (') in front of it. So if you write
make-comparison-expr like this, it will do what you want:

(defun make-comparison-expr (field value)
(list ’equal (list ’getf ’cd field) value))

You can test it out in the REPL.

CL-USER> (make-comparison-expr :rating 10)
(EQUAL (GETF CD :RATING) 10)
CL-USER> (make-comparison-expr :title "Give Us a Break")
(EQUAL (GETF CD :TITLE) "Give Us a Break")

It turns out that there’s an even better way to do it. What you’d really like is a
way to write an expression that’s mostly not evaluated and then have some way
to pick out a few expressions that you do want evaluated. And, of course, there’s
just such a mechanism. A back quote (`) before an expression stops evaluation
just like a forward quote.

CL-USER> ‘(1 2 3)
(1 2 3)
CL-USER> ’(1 2 3)
(1 2 3)

36

However, in a back-quoted expression, any subexpression that’s preceded by a
comma is evaluated. Notice the effect of the comma in the second expression:

‘(1 2 (+ 1 2)) ==> (1 2 (+ 1 2))
‘(1 2 ,(+ 1 2)) ==> (1 2 3)

Using a back quote, you can write make-comparison-expr like this:

(defun make-comparison-expr (field value)
‘(equal (getf cd ,field) ,value))

Now if you look back to the hand-optimized selector function, you can see that
the body of the function consisted of one comparison expression per field/value
pair, all wrapped in an AND expression. Assume for the moment that you’ll
arrange for the arguments to the where macro to be passed as a single list. You’ll
need a function that can take the elements of such a list pairwise and collect
the results of calling make-comparison-expr on each pair. To implement that
function, you can dip into the bag of advanced Lisp tricks and pull out the
mighty and powerful LOOP macro.

(defun make-comparisons-list (fields)
(loop while fields

collecting (make-comparison-expr (pop fields) (pop fields))))

A full discussion of LOOP will have to wait until Chapter 22; for now just note
that this LOOP expression does exactly what you need: it loops while there are
elements left in the fields list, popping off two at a time, passing them to
make-comparison-expr, and collecting the results to be returned at the end of
the loop. The POP macro performs the inverse operation of the PUSH macro you
used to add records to *db*.

Now you just need to wrap up the list returned by make-comparison-list in
an AND and an anonymous function, which you can do in the where macro itself.
Using a back quote to make a template that you fill in by interpolating the value
of make-comparisons-list, it’s trivial.

(defmacro where (&rest clauses)
‘#’(lambda (cd) (and ,@(make-comparisons-list clauses))))

This macro uses a variant of , (namely, the ,@) before the call to
make-comparisons-list. The ,@ "splices" the value of the following
expression--which must evaluate to a list--into the enclosing list. You can see
the difference between , and ,@ in the following two expressions:

‘(and ,(list 1 2 3)) ==> (AND (1 2 3))
‘(and ,@(list 1 2 3)) ==> (AND 1 2 3)

You can also use ,@ to splice into the middle of a list.

‘(and ,@(list 1 2 3) 4) ==> (AND 1 2 3 4)

37

The other important feature of the where macro is the use of &rest in the
argument list. Like &key, &rest modifies the way arguments are parsed. With
a &rest in its parameter list, a function or macro can take an arbitrary number
of arguments, which are collected into a single list that becomes the value of the
variable whose name follows the &rest. So if you call where like this:

(where :title "Give Us a Break" :ripped t)

the variable clauses will contain the list.

(:title "Give Us a Break" :ripped t)

This list is passed to make-comparisons-list, which returns a list of comparison
expressions. You can see exactly what code a call to where will generate using
the function MACROEXPAND-1. If you pass MACROEXPAND-1, a form representing
a macro call, it will call the macro code with appropriate arguments and return
the expansion. So you can check out the previous where call like this:

CL-USER> (macroexpand-1 ’(where :title "Give Us a Break" :ripped t))
#’(LAMBDA (CD)

(AND (EQUAL (GETF CD :TITLE) "Give Us a Break")
(EQUAL (GETF CD :RIPPED) T)))

T

Looks good. Let’s try it for real.

CL-USER> (select (where :title "Give Us a Break" :ripped t))
((:TITLE "Give Us a Break" :ARTIST "Limpopo" :RATING 10 :RIPPED T))

It works. And the where macro with its two helper functions is actually one line
shorter than the old where function. And it’s more general in that it’s no longer
tied to the specific fields in our CD records.

Wrapping Up
Now, an interesting thing has happened. You removed duplication and made
the code more efficient and more general at the same time. That’s often the
way it goes with a well-chosen macro. This makes sense because a macro is just
another mechanism for creating abstractions--abstraction at the syntactic level,
and abstractions are by definition more concise ways of expressing underlying
generalities. Now the only code in the mini-database that’s specific to CDs and
the fields in them is in the make-cd, prompt-for-cd, and add-cd functions. In
fact, our new where macro would work with any plist-based database.

However, this is still far from being a complete database. You can probably
think of plenty of features to add, such as supporting multiple tables or more
elaborate queries. In Chapter 27 we’ll build an MP3 database that incorporates
some of those features.

The point of this chapter was to give you a quick introduction to just a handful
of Lisp’s features and show how they’re used to write code that’s a bit more

38

interesting than "hello, world." In the next chapter we’ll begin a more systematic
overview of Lisp.

1Before I proceed, however, it’s crucially important that you forget anything you
may know about #define-style "macros" as implemented in the C pre-processor.
Lisp macros are a totally different beast.
2Using a global variable also has some drawbacks--for instance, you can have
only one database at a time. In Chapter 27, with more of the language under
your belt, you’ll be ready to build a more flexible database. You’ll also see, in
Chapter 6, how even using a global variable is more flexible in Common Lisp
than it may be in other languages.
3One of the coolest FORMAT directives is the ~R directive. Ever want to know
how to say a really big number in English words? Lisp knows. Evaluate this:

(format nil "~r" 1606938044258990275541962092)

and you should get back (wrapped for legibility):

"one octillion six hundred six septillion nine hundred thirty-eight
sextillion forty-four quintillion two hundred fifty-eight quadrillion nine
hundred ninety trillion two hundred seventy-five billion five hundred
forty-one million nine hundred sixty-two thousand ninety-two"

4Windows actually understands forward slashes in filenames even though it
normally uses a backslash as the directory separator. This is convenient since
otherwise you have to write double backslashes because backslash is the escape
character in Lisp strings.
5The word lambda is used in Lisp because of an early connection to the lambda
calculus, a mathematical formalism invented for studying mathematical functions.
6The technical term for a function that references a variable in its enclosing
scope is a closure because the function "closes over" the variable. I’ll discuss
closures in more detail in Chapter 6.
7Note that in Lisp, an IF form, like everything else, is an expression that returns
a value. It’s actually more like the ternary operator (?:) in Perl, Java, and C in
that this is legal in those languages:

some_var = some_boolean ? value1 : value2;

while this isn’t:

some_var = if (some_boolean) value1; else value2;

because in those languages, if is a statement, not an expression.
8You need to use the name delete-rows rather than the more obvious delete
because there’s already a function in Common Lisp called DELETE. The Lisp
package system gives you a way to deal with such naming conflicts, so you

39

could have a function named delete if you wanted. But I’m not ready to explain
packages just yet.
9If you’re worried that this code creates a memory leak, rest assured: Lisp
was the language that invented garbage collection (and heap allocation for that
matter). The memory used by the old value of *db* will be automatically
reclaimed, assuming no one else is holding on to a reference to it, which none of
this code is.
10A friend of mine was once interviewing an engineer for a programming job
and asked him a typical interview question: how do you know when a function
or method is too big? Well, said the candidate, I don’t like any method to be
bigger than my head. You mean you can’t keep all the details in your head? No,
I mean I put my head up against my monitor, and the code shouldn’t be bigger
than my head.
11It’s unlikely that the cost of checking whether keyword parameters had been
passed would be a detectible drag on performance since checking whether a
variable is NIL is going to be pretty cheap. On the other hand, these functions
returned by where are going to be right in the middle of the inner loop of any
select, update, or delete-rows call, as they have to be called once per entry
in the database. Anyway, for illustrative purposes, this will have to do.
12Macros are also run by the interpreter--however, it’s easier to understand the
point of macros when you think about compiled code. As with everything else
in this chapter, I’ll cover this in greater detail in future chapters.

Copyright © 2003-2005, Peter Seibel

4. Syntax and Semantics
After that whirlwind tour, we’ll settle down for a few chapters to take a more
systematic look at the features you’ve used so far. I’ll start with an overview of
the basic elements of Lisp’s syntax and semantics, which means, of course, that
I must first address that burning question. . .

What’s with All the Parentheses?
Lisp’s syntax is quite a bit different from the syntax of languages descended
from Algol. The two most immediately obvious characteristics are the extensive
use of parentheses and prefix notation. For whatever reason, a lot of folks are
put off by this syntax. Lisp’s detractors tend to describe the syntax as "weird"
and "annoying." Lisp, they say, must stand for Lots of Irritating Superfluous
Parentheses. Lisp folks, on the other hand, tend to consider Lisp’s syntax one of
its great virtues. How is it that what’s so off-putting to one group is a source of
delight to another?

I can’t really make the complete case for Lisp’s syntax until I’ve explained Lisp’s

40

macros a bit more thoroughly, but I can start with an historical tidbit that
suggests it may be worth keeping an open mind: when John McCarthy first
invented Lisp, he intended to implement a more Algol-like syntax, which he
called M-expressions. However, he never got around to it. He explained why not
in his article "History of Lisp."1

The project of defining M-expressions precisely and compiling them
or at least translating them into S-expressions was neither finalized
nor explicitly abandoned. It just receded into the indefinite future,
and a new generation of programmers appeared who preferred [S-
expressions] to any FORTRAN-like or ALGOL-like notation that
could be devised.

In other words, the people who have actually used Lisp over the past 45 years
have liked the syntax and have found that it makes the language more powerful.
In the next few chapters, you’ll begin to see why.

Breaking Open the Black Box
Before we look at the specifics of Lisp’s syntax and semantics, it’s worth taking
a moment to look at how they’re defined and how this differs from many other
languages.

In most programming languages, the language processor--whether an interpreter
or a compiler--operates as a black box: you shove a sequence of characters
representing the text of a program into the black box, and it--depending on
whether it’s an interpreter or a compiler--either executes the behaviors indicated
or produces a compiled version of the program that will execute the behaviors
when it’s run.

Inside the black box, of course, language processors are usually divided into
subsystems that are each responsible for one part of the task of translating a
program text into behavior or object code. A typical division is to split the
processor into three phases, each of which feeds into the next: a lexical analyzer
breaks up the stream of characters into tokens and feeds them to a parser that
builds a tree representing the expressions in the program, according to the
language’s grammar. This tree--called an abstract syntax tree--is then fed to an
evaluator that either interprets it directly or compiles it into some other language
such as machine code. Because the language processor is a black box, the data
structures used by the processor, such as the tokens and abstract syntax trees,
are of interest only to the language implementer.

In Common Lisp things are sliced up a bit differently, with consequences for
both the implementer and for how the language is defined. Instead of a single
black box that goes from text to program behavior in one step, Common Lisp
defines two black boxes, one that translates text into Lisp objects and another
that implements the semantics of the language in terms of those objects. The
first box is called the reader, and the second is called the evaluator.2

41

Each black box defines one level of syntax. The reader defines how strings
of characters can be translated into Lisp objects called s-expressions.3 Since
the s-expression syntax includes syntax for lists of arbitrary objects, including
other lists, s-expressions can represent arbitrary tree expressions, much like the
abstract syntax tree generated by the parsers for non-Lisp languages.

The evaluator then defines a syntax of Lisp forms that can be built out of
s-expressions. Not all s-expressions are legal Lisp forms any more than all
sequences of characters are legal s-expressions. For instance, both (foo 1 2)
and ("foo" 1 2) are s-expressions, but only the former can be a Lisp form since
a list that starts with a string has no meaning as a Lisp form.

This split of the black box has a couple of consequences. One is that you can
use s-expressions, as you saw in Chapter 3, as an externalizable data format
for data other than source code, using READ to read it and PRINT to print it.4
The other consequence is that since the semantics of the language are defined in
terms of trees of objects rather than strings of characters, it’s easier to generate
code within the language than it would be if you had to generate code as text.
Generating code completely from scratch is only marginally easier--building up
lists vs. building up strings is about the same amount of work. The real win,
however, is that you can generate code by manipulating existing data. This
is the basis for Lisp’s macros, which I’ll discuss in much more detail in future
chapters. For now I’ll focus on the two levels of syntax defined by Common
Lisp: the syntax of s-expressions understood by the reader and the syntax of
Lisp forms understood by the evaluator.

S-expressions
The basic elements of s-expressions are lists and atoms. Lists are delimited
by parentheses and can contain any number of whitespace-separated elements.
Atoms are everything else.5 The elements of lists are themselves s-expressions
(in other words, atoms or nested lists). Comments--which aren’t, technically
speaking, s-expressions--start with a semicolon, extend to the end of a line, and
are treated essentially like whitespace.

And that’s pretty much it. Since lists are syntactically so trivial, the only
remaining syntactic rules you need to know are those governing the form of
different kinds of atoms. In this section I’ll describe the rules for the most
commonly used kinds of atoms: numbers, strings, and names. After that, I’ll
cover how s-expressions composed of these elements can be evaluated as Lisp
forms.

Numbers are fairly straightforward: any sequence of digits--possibly prefaced
with a sign (+ or -), containing a decimal point (.) or a solidus (/), or ending
with an exponent marker--is read as a number. For example:

123 ; the integer one hundred twenty-three
3/7 ; the ratio three-sevenths

42

1.0 ; the floating-point number one in default precision
1.0e0 ; another way to write the same floating-point number
1.0d0 ; the floating-point number one in "double" precision
1.0e-4 ; the floating-point equivalent to one-ten-thousandth
+42 ; the integer forty-two
-42 ; the integer negative forty-two
-1/4 ; the ratio negative one-quarter
-2/8 ; another way to write negative one-quarter
246/2 ; another way to write the integer one hundred twenty-three

These different forms represent different kinds of numbers: integers, ratios, and
floating point. Lisp also supports complex numbers, which have their own
notation and which I’ll discuss in Chapter 10.

As some of these examples suggest, you can notate the same number in many
ways. But regardless of how you write them, all rationals--integers and ratios--are
represented internally in "simplified" form. In other words, the objects that
represent -2/8 or 246/2 aren’t distinct from the objects that represent -1/4 and
123. Similarly, 1.0 and 1.0e0 are just different ways of writing the same number.
On the other hand, 1.0, 1.0d0, and 1 can all denote different objects because the
different floating-point representations and integers are different types. We’ll save
the details about the characteristics of different kinds of numbers for Chapter
10.

Strings literals, as you saw in the previous chapter, are enclosed in double quotes.
Within a string a backslash (\) escapes the next character, causing it to be
included in the string regardless of what it is. The only two characters that
must be escaped within a string are double quotes and the backslash itself. All
other characters can be included in a string literal without escaping, regardless
of their meaning outside a string. Some example string literals are as follows:

"foo" ; the string containing the characters f, o, and o.
"fo\o" ; the same string
"fo\\o" ; the string containing the characters f, o, \, and o.
"fo\"o" ; the string containing the characters f, o, ", and o.

Names used in Lisp programs, such as FORMAT and hello-world, and *db*
are represented by objects called symbols. The reader knows nothing about
how a given name is going to be used--whether it’s the name of a variable, a
function, or something else. It just reads a sequence of characters and builds
an object to represent the name.6 Almost any character can appear in a name.
Whitespace characters can’t, though, because the elements of lists are separated
by whitespace. Digits can appear in names as long as the name as a whole can’t
be interpreted as a number. Similarly, names can contain periods, but the reader
can’t read a name that consists only of periods. Ten characters that serve other
syntactic purposes can’t appear in names: open and close parentheses, double
and single quotes, backtick, comma, colon, semicolon, backslash, and vertical
bar. And even those characters can, if you’re willing to escape them by preceding

43

the character to be escaped with a backslash or by surrounding the part of the
name containing characters that need escaping with vertical bars.

Two important characteristics of the way the reader translates names to symbol
objects have to do with how it treats the case of letters in names and how it
ensures that the same name is always read as the same symbol. While reading
names, the reader converts all unescaped characters in a name to their uppercase
equivalents. Thus, the reader will read foo, Foo, and FOO as the same symbol:
FOO. However, \f\o\o and |foo| will both be read as foo, which is a different
object than the symbol FOO. This is why when you define a function at the
REPL and it prints the name of the function, it’s been converted to uppercase.
Standard style, these days, is to write code in all lowercase and let the reader
change names to uppercase.7

To ensure that the same textual name is always read as the same symbol,
the reader interns symbols--after it has read the name and converted it to all
uppercase, the reader looks in a table called a package for an existing symbol
with the same name. If it can’t find one, it creates a new symbol and adds it to
the table. Otherwise, it returns the symbol already in the table. Thus, anywhere
the same name appears in any s-expression, the same object will be used to
represent it.8

Because names can contain many more characters in Lisp than they can in
Algol-derived languages, certain naming conventions are distinct to Lisp, such as
the use of hyphenated names like hello-world. Another important convention
is that global variables are given names that start and end with *. Similarly,
constants are given names starting and ending in +. And some programmers will
name particularly low-level functions with names that start with % or even %%.
The names defined in the language standard use only the alphabetic characters
(A-Z) plus *, +, -, /, 1, 2, <, =, >, and &.

The syntax for lists, numbers, strings, and symbols can describe a good percentage
of Lisp programs. Other rules describe notations for literal vectors, individual
characters, and arrays, which I’ll cover when I talk about the associated data
types in Chapters 10 and 11. For now the key thing to understand is how you
can combine numbers, strings, and symbols with parentheses-delimited lists to
build s-expressions representing arbitrary trees of objects. Some simple examples
look like this:

x ; the symbol X
() ; the empty list
(1 2 3) ; a list of three numbers
("foo" "bar") ; a list of two strings
(x y z) ; a list of three symbols
(x 1 "foo") ; a list of a symbol, a number, and a string
(+ (* 2 3) 4) ; a list of a symbol, a list, and a number.

An only slightly more complex example is the following four-item list that
contains two symbols, the empty list, and another list, itself containing two

44

symbols and a string:

(defun hello-world ()
(format t "hello, world"))

S-expressions As Lisp Forms
After the reader has translated a bunch of text into s-expressions, the s-
expressions can then be evaluated as Lisp code. Or some of them can--not
every s-expressions that the reader can read can necessarily be evaluated as
Lisp code. Common Lisp’s evaluation rule defines a second level of syntax that
determines which s-expressions can be treated as Lisp forms.9 The syntactic
rules at this level are quite simple. Any atom--any nonlist or the empty list--is a
legal Lisp form as is any list that has a symbol as its first element.10

Of course, the interesting thing about Lisp forms isn’t their syntax but how
they’re evaluated. For purposes of discussion, you can think of the evaluator as
a function that takes as an argument a syntactically well-formed Lisp form and
returns a value, which we can call the value of the form. Of course, when the
evaluator is a compiler, this is a bit of a simplification--in that case, the evaluator
is given an expression and generates code that will compute the appropriate
value when it’s run. But this simplification lets me describe the semantics of
Common Lisp in terms of how the different kinds of Lisp forms are evaluated by
this notional function.

The simplest Lisp forms, atoms, can be divided into two categories: symbols
and everything else. A symbol, evaluated as a form, is considered the name
of a variable and evaluates to the current value of the variable.11 I’ll discuss
in Chapter 6 how variables get their values in the first place. You should also
note that certain "variables" are that old oxymoron of programming: "constant
variables." For instance, the symbol PI names a constant variable whose value is
the best possible floating-point approximation to the mathematical constant pi.

All other atoms--numbers and strings are the kinds you’ve seen so far--are self-
evaluating objects. This means when such an expression is passed to the notional
evaluation function, it’s simply returned. You saw examples of self-evaluating
objects in Chapter 2 when you typed 10 and "hello, world" at the REPL.

It’s also possible for symbols to be self-evaluating in the sense that the variables
they name can be assigned the value of the symbol itself. Two important
constants that are defined this way are T and NIL, the canonical true and false
values. I’ll discuss their role as booleans in the section "Truth, Falsehood, and
Equality."

Another class of self-evaluating symbols are the keyword symbols--symbols whose
names start with :. When the reader interns such a name, it automatically
defines a constant variable with the name and with the symbol as the value.

Things get more interesting when we consider how lists are evaluated. All legal

45

list forms start with a symbol, but three kinds of list forms are evaluated in three
quite different ways. To determine what kind of form a given list is, the evaluator
must determine whether the symbol that starts the list is the name of a function,
a macro, or a special operator. If the symbol hasn’t been defined yet--as may
be the case if you’re compiling code that contains references to functions that
will be defined later--it’s assumed to be a function name.12 I’ll refer to the three
kinds of forms as function call forms, macro forms, and special forms.

Function Calls
The evaluation rule for function call forms is simple: evaluate the remaining
elements of the list as Lisp forms and pass the resulting values to the named
function. This rule obviously places some additional syntactic constraints on a
function call form: all the elements of the list after the first must themselves be
well-formed Lisp forms. In other words, the basic syntax of a function call form
is as follows, where each of the arguments is itself a Lisp form:

(function-name argument*)

Thus, the following expression is evaluated by first evaluating 1, then evaluating
2, and then passing the resulting values to the + function, which returns 3:

(+ 1 2)

A more complex expression such as the following is evaluated in similar fash-
ion except that evaluating the arguments (+ 1 2) and (- 3 4) entails first
evaluating their arguments and applying the appropriate functions to them:

(* (+ 1 2) (- 3 4))

Eventually, the values 3 and -1 are passed to the * function, which returns -3.

As these examples show, functions are used for many of the things that require
special syntax in other languages. This helps keep Lisp’s syntax regular.

Special Operators
That said, not all operations can be defined as functions. Because all the
arguments to a function are evaluated before the function is called, there’s no
way to write a function that behaves like the IF operator you used in Chapter 3.
To see why, consider this form:

(if x (format t "yes") (format t "no"))

If IF were a function, the evaluator would evaluate the argument expressions
from left to right. The symbol x would be evaluated as a variable yielding some
value; then (format t "yes") would be evaluated as a function call, yielding
NIL after printing "yes" to standard output. Then (format t "no") would be
evaluated, printing "no" and also yielding NIL. Only after all three expressions

46

were evaluated would the resulting values be passed to IF, too late for it to
control which of the two FORMAT expressions gets evaluated.

To solve this problem, Common Lisp defines a couple dozen so-called special
operators, IF being one, that do things that functions can’t do. There are 25 in
all, but only a small handful are used directly in day-to-day programming.13

When the first element of a list is a symbol naming a special operator, the rest
of the expressions are evaluated according to the rule for that operator.

The rule for IF is pretty easy: evaluate the first expression. If it evaluates to
non-NIL, then evaluate the next expression and return its value. Otherwise,
return the value of evaluating the third expression or NIL if the third expression
is omitted. In other words, the basic form of an IF expression is as follows:

(if test-form then-form [else-form])

The test-form will always be evaluated and then one or the other of the then-form
or else-form.

An even simpler special operator is QUOTE, which takes a single expression as
its "argument" and simply returns it, unevaluated. For instance, the following
evaluates to the list (+ 1 2), not the value 3:

(quote (+ 1 2))

There’s nothing special about this list; you can manipulate it just like any list
you could create with the LIST function.14

QUOTE is used commonly enough that a special syntax for it is built into the
reader. Instead of writing the following:

(quote (+ 1 2))

you can write this:

’(+ 1 2)

This syntax is a small extension of the s-expression syntax understood by the
reader. From the point of view of the evaluator, both those expressions will
look the same: a list whose first element is the symbol QUOTE and whose second
element is the list (+ 1 2).15

In general, the special operators implement features of the language that require
some special processing by the evaluator. For instance, several special operators
manipulate the environment in which other forms will be evaluated. One of
these, which I’ll discuss in detail in Chapter 6, is LET, which is used to create
new variable bindings. The following form evaluates to 10 because the second x
is evaluated in an environment where it’s the name of a variable established by
the LET with the value 10:

(let ((x 10)) x)

47

Macros
While special operators extend the syntax of Common Lisp beyond what can
be expressed with just function calls, the set of special operators is fixed by the
language standard. Macros, on the other hand, give users of the language a
way to extend its syntax. As you saw in Chapter 3, a macro is a function that
takes s-expressions as arguments and returns a Lisp form that’s then evaluated
in place of the macro form. The evaluation of a macro form proceeds in two
phases: First, the elements of the macro form are passed, unevaluated, to the
macro function. Second, the form returned by the macro function--called its
expansion--is evaluated according to the normal evaluation rules.

It’s important to keep the two phases of evaluating a macro form clear in your
mind. It’s easy to lose track when you’re typing expressions at the REPL because
the two phases happen one after another and the value of the second phase is
immediately returned. But when Lisp code is compiled, the two phases happen
at completely different times, so it’s important to keep clear what’s happening
when. For instance, when you compile a whole file of source code with the
function COMPILE-FILE, all the macro forms in the file are recursively expanded
until the code consists of nothing but function call forms and special forms. This
macroless code is then compiled into a FASL file that the LOAD function knows
how to load. The compiled code, however, isn’t executed until the file is loaded.
Because macros generate their expansion at compile time, they can do relatively
large amounts of work generating their expansion without having to pay for it
when the file is loaded or the functions defined in the file are called.

Since the evaluator doesn’t evaluate the elements of the macro form before
passing them to the macro function, they don’t need to be well-formed Lisp
forms. Each macro assigns a meaning to the s-expressions in the macro form by
virtue of how it uses them to generate its expansion. In other words, each macro
defines its own local syntax. For instance, the backwards macro from Chapter 3
defines a syntax in which an expression is a legal backwards form if it’s a list
that’s the reverse of a legal Lisp form.

I’ll talk quite a bit more about macros throughout this book. For now the
important thing for you to realize is that macros--while syntactically similar
to function calls--serve quite a different purpose, providing a hook into the
compiler.16

Truth, Falsehood, and Equality
Two last bits of basic knowledge you need to get under your belt are Common
Lisp’s notion of truth and falsehood and what it means for two Lisp objects to be
"equal." Truth and falsehood are--in this realm--straightforward: the symbol NIL
is the only false value, and everything else is true. The symbol T is the canonical
true value and can be used when you need to return a non-NIL value and don’t
have anything else handy. The only tricky thing about NIL is that it’s the only
object that’s both an atom and a list: in addition to falsehood, it’s also used to

48

represent the empty list.17 This equivalence between NIL and the empty list is
built into the reader: if the reader sees (), it reads it as the symbol NIL. They’re
completely interchangeable. And because NIL, as I mentioned previously, is the
name of a constant variable with the symbol NIL as its value, the expressions
nil, (), 'nil, and '() all evaluate to the same thing--the unquoted forms are
evaluated as a reference to the constant variable whose value is the symbol NIL,
but in the quoted forms the QUOTE special operator evaluates to the symbol
directly. For the same reason, both t and 't will evaluate to the same thing:
the symbol T.

Using phrases such as "the same thing" of course begs the question of what it
means for two values to be "the same." As you’ll see in future chapters, Common
Lisp provides a number of type-specific equality predicates: = is used to compare
numbers, CHAR= to compare characters, and so on. In this section I’ll discuss
the four "generic" equality predicates--functions that can be passed any two Lisp
objects and will return true if they’re equivalent and false otherwise. They are,
in order of discrimination, EQ, EQL, EQUAL, and EQUALP.

EQ tests for "object identity"--two objects are EQ if they’re identical. Unfortu-
nately, the object identity of numbers and characters depends on how those
data types are implemented in a particular Lisp. Thus, EQ may consider two
numbers or two characters with the same value to be equivalent, or it may not.
Implementations have enough leeway that the expression (eq 3 3) can legally
evaluate to either true or false. More to the point, (eq x x) can evaluate to
either true or false if the value of x happens to be a number or character.

Thus, you should never use EQ to compare values that may be numbers or
characters. It may seem to work in a predictable way for certain values in a
particular implementation, but you have no guarantee that it will work the
same way if you switch implementations. And switching implementations may
mean simply upgrading your implementation to a new version--if your Lisp
implementer changes how they represent numbers or characters, the behavior of
EQ could very well change as well.

Thus, Common Lisp defines EQL to behave like EQ except that it also is guaranteed
to consider two objects of the same class representing the same numeric or
character value to be equivalent. Thus, (eql 1 1) is guaranteed to be true.
And (eql 1 1.0) is guaranteed to be false since the integer value 1 and the
floating-point value are instances of different classes.

There are two schools of thought about when to use EQ and when to use EQL:
The "use EQ when possible" camp argues you should use EQ when you know you
aren’t going to be com-paring numbers or characters because (a) it’s a way to
indicate that you aren’t going to be comparing numbers or characters and (b)
it will be marginally more efficient since EQ doesn’t have to check whether its
arguments are numbers or characters.

The "always use EQL" camp says you should never use EQ because (a) the potential
gain in clarity is lost because every time someone reading your code--including

49

you--sees an EQ, they have to stop and check whether it’s being used correctly
(in other words, that it’s never going to be called upon to compare numbers or
characters) and (b) that the efficiency difference between EQ and EQL is in the
noise compared to real performance bottlenecks.

The code in this book is written in the "always use EQL" style.18

The other two equality predicates, EQUAL and EQUALP, are general in the sense that
they can operate on all types of objects, but they’re much less fundamental than
EQ or EQL. They each define a slightly less discriminating notion of equivalence
than EQL, allowing different objects to be considered equivalent. There’s nothing
special about the particular notions of equivalence these functions implement
except that they’ve been found to be handy by Lisp programmers in the past. If
these predicates don’t suit your needs, you can always define your own predicate
function that compares different types of objects in the way you need.

EQUAL loosens the discrimination of EQL to consider lists equivalent if they have
the same structure and contents, recursively, according to EQUAL. EQUAL also
considers strings equivalent if they contain the same characters. It also defines
a looser definition of equivalence than EQL for bit vectors and pathnames, two
data types I’ll discuss in future chapters. For all other types, it falls back on
EQL.

EQUALP is similar to EQUAL except it’s even less discriminating. It considers
two strings equivalent if they contain the same characters, ignoring differences
in case. It also considers two characters equivalent if they differ only in case.
Numbers are equivalent under EQUALP if they represent the same mathematical
value. Thus, (equalp 1 1.0) is true. Lists with EQUALP elements are EQUALP;
likewise, arrays with EQUALP elements are EQUALP. As with EQUAL, there are a
few other data types that I haven’t covered yet for which EQUALP can consider
two objects equivalent that neither EQL nor EQUAL will. For all other data types,
EQUALP falls back on EQL.

Formatting Lisp Code
While code formatting is, strictly speaking, neither a syntactic nor a semantic
matter, proper formatting is important to reading and writing code fluently and
idiomatically. The key to formatting Lisp code is to indent it properly. The
indentation should reflect the structure of the code so that you don’t need to
count parentheses to see what goes with what. In general, each new level of
nesting gets indented a bit more, and, if line breaks are necessary, items at the
same level of nesting are lined up. Thus, a function call that needs to be broken
up across multiple lines might be written like this:

(some-function arg-with-a-long-name
another-arg-with-an-even-longer-name)

Macro and special forms that implement control constructs are typically indented
a little differently: the "body" elements are indented two spaces relative to the

50

opening parenthesis of the form. Thus:

(defun print-list (list)
(dolist (i list)
(format t "item: ~a~%" i)))

However, you don’t need to worry too much about these rules because a proper
Lisp environment such as SLIME will take care of it for you. In fact, one of the
advantages of Lisp’s regular syntax is that it’s fairly easy for software such as
editors to know how to indent it. Since the indentation is supposed to reflect
the structure of the code and the structure is marked by parentheses, it’s easy
to let the editor indent your code for you.

In SLIME, hitting Tab at the beginning of each line will cause it to be indented
appropriately, or you can re-indent a whole expression by positioning the cursor
on the opening parenthesis and typing C-M-q. Or you can re-indent the whole
body of a function from anywhere within it by typing C-c M-q.

Indeed, experienced Lisp programmers tend to rely on their editor handling
indenting automatically, not just to make their code look nice but to detect
typos: once you get used to how code is supposed to be indented, a misplaced
parenthesis will be instantly recognizable by the weird indentation your editor
gives you. For example, suppose you were writing a function that was supposed
to look like this:

(defun foo ()
(if (test)
(do-one-thing)
(do-another-thing)))

Now suppose you accidentally left off the closing parenthesis after test. Because
you don’t bother counting parentheses, you quite likely would have added an
extra parenthesis at the end of the DEFUN form, giving you this code:

(defun foo ()
(if (test
(do-one-thing)
(do-another-thing))))

However, if you had been indenting by hitting Tab at the beginning of each line,
you wouldn’t have code like that. Instead you’d have this:

(defun foo ()
(if (test

(do-one-thing)
(do-another-thing))))

Seeing the then and else clauses indented way out under the condition rather than
just indented slightly relative to the IF shows you immediately that something
is awry.

51

Another important formatting rule is that closing parentheses are always put on
the same line as the last element of the list they’re closing. That is, don’t write
this:

(defun foo ()
(dotimes (i 10)
(format t "~d. hello~%" i)

)
)

but instead write this:

(defun foo ()
(dotimes (i 10)
(format t "~d. hello~%" i)))

The string of)))s at the end may seem forbidding, but as long your code is
properly indented the parentheses should fade away--no need to give them undue
prominence by spreading them across several lines.

Finally, comments should be prefaced with one to four semicolons depending on
the scope of the comment as follows:

;;;; Four semicolons are used for a file header comment.

;;; A comment with three semicolons will usually be a paragraph
;;; comment that applies to a large section of code that follows,

(defun foo (x)
(dotimes (i x)
;; Two semicolons indicate this comment applies to the code
;; that follows. Note that this comment is indented the same
;; as the code that follows.
(some-function-call)
(another i) ; this comment applies to this line only
(and-another) ; and this is for this line
(baz)))

Now you’re ready to start looking in greater detail at the major building blocks
of Lisp programs, functions, variables, and macros. Up next: functions.

1http://www-formal.stanford.edu/jmc/history/lisp/node3.html
2Lisp implementers, like implementers of any language, have many ways they
can implement an evaluator, ranging from a "pure" interpreter that interprets
the objects given to the evaluator directly to a compiler that translates the
objects into machine code that it then runs. In the middle are implementations
that compile the input into an intermediate form such as bytecodes for a virtual

52

machine and then interprets the bytecodes. Most Common Lisp implementations
these days use some form of compilation even when evaluating code at run time.
3Sometimes the phrase s-expression refers to the textual representation and
sometimes to the objects that result from reading the textual representation.
Usually either it’s clear from context which is meant or the distinction isn’t that
important.
4Not all Lisp objects can be written out in a way that can be read back in. But
anything you can READ can be printed back out "readably" with PRINT.
5The empty list, (), which can also be written NIL, is both an atom and a list.
6In fact, as you’ll see later, names aren’t intrinsically tied to any one kind of
thing. You can use the same name, depending on context, to refer to both a
variable and a function, not to mention several other possibilities.
7The case-converting behavior of the reader can, in fact, be customized, but
understanding when and how to change it requires a much deeper discussion
of the relation between names, symbols, and other program elements than I’m
ready to get into just yet.
8I’ll discuss the relation between symbols and packages in more detail in Chapter
21.
9Of course, other levels of correctness exist in Lisp, as in other languages. For
instance, the s-expression that results from reading (foo 1 2) is syntactically
well-formed but can be evaluated only if foo is the name of a function or macro.
10One other rarely used kind of Lisp form is a list whose first element is a lambda
form. I’ll discuss this kind of form in Chapter 5.
11One other possibility exists--it’s possible to define symbol macros that are
evaluated slightly differently. We won’t worry about them.
12In Common Lisp a symbol can name both an operator--function, macro, or
special operator--and a variable. This is one of the major differences between
Common Lisp and Scheme. The difference is sometimes described as Common
Lisp being a Lisp-2 vs. Scheme being a Lisp-1--a Lisp-2 has two namespaces, one
for operators and one for variables, but a Lisp-1 uses a single namespace. Both
choices have advantages, and partisans can debate endlessly which is better.
13The others provide useful, but somewhat esoteric, features. I’ll discuss them
as the features they support come up.
14Well, one difference exists--literal objects such as quoted lists, but also including
double-quoted strings, literal arrays, and vectors (whose syntax you’ll see later),
must not be modified. Consequently, any lists you plan to manipulate you should
create with LIST.
15This syntax is an example of a reader macro. Reader macros modify the syntax
the reader uses to translate text into Lisp objects. It is, in fact, possible to define

53

your own reader macros, but that’s a rarely used facility of the language. When
most Lispers talk about "extending the syntax" of the language, they’re talking
about regular macros, as I’ll discuss in a moment.
16People without experience using Lisp’s macros or, worse yet, bearing the scars
of C preprocessor-inflicted wounds, tend to get nervous when they realize that
macro calls look like regular function calls. This turns out not to be a problem
in practice for several reasons. One is that macro forms are usually formatted
differently than function calls. For instance, you write the following:

(dolist (x foo)
(print x))

rather than this:

(dolist (x foo) (print x))

or

(dolist (x foo)
(print x))

the way you would if DOLIST was a function. A good Lisp environment will
automatically format macro calls correctly, even for user-defined macros.

And even if a DOLIST form was written on a single line, there are several clues
that it’s a macro: For one, the expression (x foo) is meaningful by itself only if
x is the name of a function or macro. Combine that with the later occurrence of
x as a variable, and it’s pretty suggestive that DOLIST is a macro that’s creating a
binding for a variable named x. Naming conventions also help--looping constructs,
which are invariably macros--are frequently given names starting with do.
17Using the empty list as false is a reflection of Lisp’s heritage as a list-processing
language much as the use of the integer 0 as false in C is a reflection of its
heritage as a bit-twiddling language. Not all Lisps handle boolean values the
same way. Another of the many subtle differences upon which a good Common
Lisp vs. Scheme flame war can rage for days is Scheme’s use of a distinct false
value #f, which isn’t the same value as either the symbol nil or the empty list,
which are also distinct from each other.
18Even the language standard is a bit ambivalent about which of EQ or EQL
should be preferred. Object identity is defined by EQ, but the standard defines
the phrase the same when talking about objects to mean EQL unless another
predicate is explicitly mentioned. Thus, if you want to be 100 percent technically
correct, you can say that (- 3 2) and (- 4 3) evaluate to "the same" object
but not that they evaluate to "identical" objects. This is, admittedly, a bit of an
angels-on-pinheads kind of issue.

Copyright © 2003-2005, Peter Seibel

54

5. Functions
After the rules of syntax and semantics, the three most basic components of all
Lisp programs are functions, variables and macros. You used all three while
building the database in Chapter 3, but I glossed over a lot of the details of
how they work and how to best use them. I’ll devote the next few chapters to
these three topics, starting with functions, which--like their counterparts in other
languages--provide the basic mechanism for abstracting, well, functionality.

The bulk of Lisp itself consists of functions. More than three quarters of the
names defined in the language standard name functions. All the built-in data
types are defined purely in terms of what functions operate on them. Even Lisp’s
powerful object system is built upon a conceptual extension to functions, generic
functions, which I’ll cover in Chapter 16.

And, despite the importance of macros to The Lisp Way, in the end all real
functionality is provided by functions. Macros run at compile time, so the
code they generate--the code that will actually make up the program after all
the macros are expanded--will consist entirely of calls to functions and special
operators. Not to mention, macros themselves are also functions, albeit functions
that are used to generate code rather than to perform the actions of the program.1

Defining New Functions
Normally functions are defined using the DEFUN macro. The basic skeleton of a
DEFUN looks like this:

(defun name (parameter*)
"Optional documentation string."
body-form*)

Any symbol can be used as a function name.2 Usually function names contain
only alphabetic characters and hyphens, but other characters are allowed and
are used in certain naming conventions. For instance, functions that convert
one kind of value to another sometimes use -> in the name. For example, a
function to convert strings to widgets might be called string->widget. The
most important naming convention is the one mentioned in Chapter 2, which is
that you construct compound names with hyphens rather than underscores or
inner caps. Thus, frob-widget is better Lisp style than either frob_widget or
frobWidget.

A function’s parameter list defines the variables that will be used to hold the
arguments passed to the function when it’s called.3 If the function takes no
arguments, the list is empty, written as (). Different flavors of parameters handle
required, optional, multiple, and keyword arguments. I’ll discuss the details in
the next section.

If a string literal follows the parameter list, it’s a documentation string that
should describe the purpose of the function. When the function is defined, the

55

documentation string will be associated with the name of the function and can
later be obtained using the DOCUMENTATION function.4

Finally, the body of a DEFUN consists of any number of Lisp expressions. They
will be evaluated in order when the function is called and the value of the last
expression is returned as the value of the function. Or the RETURN-FROM special
operator can be used to return immediately from anywhere in a function, as I’ll
discuss in a moment.

In Chapter 2 we wrote a hello-world function, which looked like this:

(defun hello-world () (format t "hello, world"))

You can now analyze the parts of this function. Its name is hello-world, its
parameter list is empty so it takes no arguments, it has no documentation string,
and its body consists of one expression.

(format t "hello, world")

The following is a slightly more complex function:

(defun verbose-sum (x y)
"Sum any two numbers after printing a message."
(format t "Summing ~d and ~d.~%" x y)
(+ x y))

This function is named verbose-sum, takes two arguments that will be bound to
the parameters x and y, has a documentation string, and has a body consisting
of two expressions. The value returned by the call to + becomes the return value
of verbose-sum.

Function Parameter Lists
There’s not a lot more to say about function names or documentation strings,
and it will take a good portion of the rest of this book to describe all the things
you can do in the body of a function, which leaves us with the parameter list.

The basic purpose of a parameter list is, of course, to declare the variables
that will receive the arguments passed to the function. When a parameter
list is a simple list of variable names--as in verbose-sum--the parameters are
called required parameters. When a function is called, it must be supplied
with one argument for every required parameter. Each parameter is bound to
the corresponding argument. If a function is called with too few or too many
arguments, Lisp will signal an error.

However, Common Lisp’s parameter lists also give you more flexible ways of
mapping the arguments in a function call to the function’s parameters. In
addition to required parameters, a function can have optional parameters. Or
a function can have a single parameter that’s bound to a list containing any
extra arguments. And, finally, arguments can be mapped to parameters using

56

keywords rather than position. Thus, Common Lisp’s parameter lists provide a
convenient solution to several common coding problems.

Optional Parameters
While many functions, like verbose-sum, need only required parameters, not
all functions are quite so simple. Sometimes a function will have a parameter
that only certain callers will care about, perhaps because there’s a reasonable
default value. An example is a function that creates a data structure that can
grow as needed. Since the data structure can grow, it doesn’t matter--from a
correctness point of view--what the initial size is. But callers who have a good
idea how many items they’re going to put into the data structure may be able to
improve performance by specifying a specific initial size. Most callers, though,
would probably rather let the code that implements the data structure pick
a good general-purpose value. In Common Lisp you can accommodate both
kinds of callers by using an optional parameter; callers who don’t care will get a
reasonable default, and other callers can provide a specific value.5

To define a function with optional parameters, after the names of any required
parameters, place the symbol &optional followed by the names of the optional
parameters. A simple example looks like this:

(defun foo (a b &optional c d) (list a b c d))

When the function is called, arguments are first bound to the required parameters.
After all the required parameters have been given values, if there are any
arguments left, their values are assigned to the optional parameters. If the
arguments run out before the optional parameters do, the remaining optional
parameters are bound to the value NIL. Thus, the function defined previously
gives the following results:

(foo 1 2) ==> (1 2 NIL NIL)
(foo 1 2 3) ==> (1 2 3 NIL)
(foo 1 2 3 4) ==> (1 2 3 4)

Lisp will still check that an appropriate number of arguments are passed to the
function--in this case between two and four, inclusive--and will signal an error if
the function is called with too few or too many.

Of course, you’ll often want a different default value than NIL. You can specify
the default value by replacing the parameter name with a list containing a name
and an expression. The expression will be evaluated only if the caller doesn’t
pass enough arguments to provide a value for the optional parameter. The
common case is simply to provide a value as the expression.

(defun foo (a &optional (b 10)) (list a b))

This function requires one argument that will be bound to the parameter a. The
second parameter, b, will take either the value of the second argument, if there
is one, or 10.

57

(foo 1 2) ==> (1 2)
(foo 1) ==> (1 10)

Sometimes, however, you may need more flexibility in choosing the default value.
You may want to compute a default value based on other parameters. And you
can--the default-value expression can refer to parameters that occur earlier in
the parameter list. If you were writing a function that returned some sort of
representation of a rectangle and you wanted to make it especially convenient to
make squares, you might use an argument list like this:

(defun make-rectangle (width &optional (height width)) ...)

which would cause the height parameter to take the same value as the width
parameter unless explicitly specified.

Occasionally, it’s useful to know whether the value of an optional argument was
supplied by the caller or is the default value. Rather than writing code to check
whether the value of the parameter is the default (which doesn’t work anyway,
if the caller happens to explicitly pass the default value), you can add another
variable name to the parameter specifier after the default-value expression. This
variable will be bound to true if the caller actually supplied an argument for this
parameter and NIL otherwise. By convention, these variables are usually named
the same as the actual parameter with a "-supplied-p" on the end. For example:

(defun foo (a b &optional (c 3 c-supplied-p))
(list a b c c-supplied-p))

This gives results like this:

(foo 1 2) ==> (1 2 3 NIL)
(foo 1 2 3) ==> (1 2 3 T)
(foo 1 2 4) ==> (1 2 4 T)

Rest Parameters
Optional parameters are just the thing when you have discrete parameters for
which the caller may or may not want to provide values. But some functions need
to take a variable number of arguments. Several of the built-in functions you’ve
seen already work this way. FORMAT has two required arguments, the stream
and the control string. But after that it needs a variable number of arguments
depending on how many values need to be interpolated into the control string.
The + function also takes a variable number of arguments--there’s no particular
reason to limit it to summing just two numbers; it will sum any number of values.
(It even works with zero arguments, returning 0, the identity under addition.)
The following are all legal calls of those two functions:

(format t "hello, world")
(format t "hello, ~a" name)
(format t "x: ~d y: ~d" x y)
(+)

58

(+ 1)
(+ 1 2)
(+ 1 2 3)

Obviously, you could write functions taking a variable number of arguments by
simply giving them a lot of optional parameters. But that would be incredibly
painful--just writing the parameter list would be bad enough, and that doesn’t
get into dealing with all the parameters in the body of the function. To do
it properly, you’d have to have as many optional parameters as the number
of arguments that can legally be passed in a function call. This number is
implementation dependent but guaranteed to be at least 50. And in current
implementations it ranges from 4,096 to 536,870,911.6 Blech. That kind of
mind-bending tedium is definitely not The Lisp Way.

Instead, Lisp lets you include a catchall parameter after the symbol &rest. If
a function includes a &rest parameter, any arguments remaining after values
have been doled out to all the required and optional parameters are gathered up
into a list that becomes the value of the &rest parameter. Thus, the parameter
lists for FORMAT and + probably look something like this:

(defun format (stream string &rest values) ...)
(defun + (&rest numbers) ...)

Keyword Parameters
Optional and rest parameters give you quite a bit of flexibility, but neither is
going to help you out much in the following situation: Suppose you have a
function that takes four optional parameters. Now suppose that most of the
places the function is called, the caller wants to provide a value for only one of
the four parameters and, further, that the callers are evenly divided as to which
parameter they will use.

The callers who want to provide a value for the first parameter are fine--they
just pass the one optional argument and leave off the rest. But all the other
callers have to pass some value for between one and three arguments they don’t
care about. Isn’t that exactly the problem optional parameters were designed to
solve?

Of course it is. The problem is that optional parameters are still positional--if
the caller wants to pass an explicit value for the fourth optional parameter,
it turns the first three optional parameters into required parameters for that
caller. Luckily, another parameter flavor, keyword parameters, allow the caller
to specify which values go with which parameters.

To give a function keyword parameters, after any required, &optional, and
&rest parameters you include the symbol &key and then any number of keyword
parameter specifiers, which work like optional parameter specifiers. Here’s a
function that has only keyword parameters:

59

(defun foo (&key a b c) (list a b c))

When this function is called, each keyword parameters is bound to the value
immediately following a keyword of the same name. Recall from Chapter 4
that keywords are names that start with a colon and that they’re automatically
defined as self-evaluating constants.

If a given keyword doesn’t appear in the argument list, then the corresponding
parameter is assigned its default value, just like an optional parameter. Because
the keyword arguments are labeled, they can be passed in any order as long as
they follow any required arguments. For instance, foo can be invoked as follows:

(foo) ==> (NIL NIL NIL)
(foo :a 1) ==> (1 NIL NIL)
(foo :b 1) ==> (NIL 1 NIL)
(foo :c 1) ==> (NIL NIL 1)
(foo :a 1 :c 3) ==> (1 NIL 3)
(foo :a 1 :b 2 :c 3) ==> (1 2 3)
(foo :a 1 :c 3 :b 2) ==> (1 2 3)

As with optional parameters, keyword parameters can provide a default value
form and the name of a supplied-p variable. In both keyword and optional
parameters, the default value form can refer to parameters that appear earlier
in the parameter list.

(defun foo (&key (a 0) (b 0 b-supplied-p) (c (+ a b)))
(list a b c b-supplied-p))

(foo :a 1) ==> (1 0 1 NIL)
(foo :b 1) ==> (0 1 1 T)
(foo :b 1 :c 4) ==> (0 1 4 T)
(foo :a 2 :b 1 :c 4) ==> (2 1 4 T)

Also, if for some reason you want the keyword the caller uses to specify the
parameter to be different from the name of the actual parameter, you can replace
the parameter name with another list containing the keyword to use when calling
the function and the name to be used for the parameter. The following definition
of foo:

(defun foo (&key ((:apple a)) ((:box b) 0) ((:charlie c) 0 c-supplied-p))
(list a b c c-supplied-p))

lets the caller call it like this:

(foo :apple 10 :box 20 :charlie 30) ==> (10 20 30 T)

This style is mostly useful if you want to completely decouple the public API
of the function from the internal details, usually because you want to use short
variable names internally but descriptive keywords in the API. It’s not, however,
very frequently used.

60

Mixing Different Parameter Types
It’s possible, but rare, to use all four flavors of parameters in a single function.
Whenever more than one flavor of parameter is used, they must be declared
in the order I’ve discussed them: first the names of the required parameters,
then the optional parameters, then the rest parameter, and finally the keyword
parameters. Typically, however, in functions that use multiple flavors of pa-
rameters, you’ll combine required parameters with one other flavor or possibly
combine &optional and &rest parameters. The other two combinations, either
&optional or &rest parameters combined with &key parameters, can lead to
somewhat surprising behavior.

Combining &optional and &key parameters yields surprising enough results
that you should probably avoid it altogether. The problem is that if a caller
doesn’t supply values for all the optional parameters, then those parameters
will eat up the keywords and values intended for the keyword parameters. For
instance, this function unwisely mixes &optional and &key parameters:

(defun foo (x &optional y &key z) (list x y z))

If called like this, it works fine:

(foo 1 2 :z 3) ==> (1 2 3)

And this is also fine:

(foo 1) ==> (1 nil nil)

But this will signal an error:

(foo 1 :z 3) ==> ERROR

This is because the keyword :z is taken as a value to fill the optional y parameter,
leaving only the argument 3 to be processed. At that point, Lisp will be expecting
either a keyword/value pair or nothing and will complain. Perhaps even worse,
if the function had had two &optional parameters, this last call would have
resulted in the values :z and 3 being bound to the two &optional parameters
and the &key parameter z getting the default value NIL with no indication that
anything was amiss.

In general, if you find yourself writing a function that uses both &optional and
&key parameters, you should probably just change it to use all &key parameters-
-they’re more flexible, and you can always add new keyword parameters without
disturbing existing callers of the function. You can also remove keyword param-
eters, as long as no one is using them.7 In general, using keyword parameters
helps make code much easier to maintain and evolve--if you need to add some
new behavior to a function that requires new parameters, you can add keyword
parameters without having to touch, or even recompile, any existing code that
calls the function.

You can safely combine &rest and &key parameters, but the behavior may be

61

a bit surprising initially. Normally the presence of either &rest or &key in a
parameter list causes all the values remaining after the required and &optional
parameters have been filled in to be processed in a particular way--either gathered
into a list for a &rest parameter or assigned to the appropriate &key parameters
based on the keywords. If both &rest and &key appear in a parameter list,
then both things happen--all the remaining values, which include the keywords
themselves, are gathered into a list that’s bound to the &rest parameter, and
the appropriate values are also bound to the &key parameters. So, given this
function:

(defun foo (&rest rest &key a b c) (list rest a b c))

you get this result:

(foo :a 1 :b 2 :c 3) ==> ((:A 1 :B 2 :C 3) 1 2 3)

Function Return Values
All the functions you’ve written so far have used the default behavior of returning
the value of the last expression evaluated as their own return value. This is the
most common way to return a value from a function.

However, sometimes it’s convenient to be able to return from the middle of a
function such as when you want to break out of nested control constructs. In
such cases you can use the RETURN-FROM special operator to immediately return
any value from the function.

You’ll see in Chapter 20 that RETURN-FROM is actually not tied to functions at all;
it’s used to return from a block of code defined with the BLOCK special operator.
However, DEFUN automatically wraps the whole function body in a block with the
same name as the function. So, evaluating a RETURN-FROM with the name of the
function and the value you want to return will cause the function to immediately
exit with that value. RETURN-FROM is a special operator whose first "argument"
is the name of the block from which to return. This name isn’t evaluated and
thus isn’t quoted.

The following function uses nested loops to find the first pair of numbers, each less
than 10, whose product is greater than the argument, and it uses RETURN-FROM
to return the pair as soon as it finds it:

(defun foo (n)
(dotimes (i 10)
(dotimes (j 10)
(when (> (* i j) n)
(return-from foo (list i j))))))

Admittedly, having to specify the name of the function you’re returning from
is a bit of a pain--for one thing, if you change the function’s name, you’ll need
to change the name used in the RETURN-FROM as well.8 But it’s also the case
that explicit RETURN-FROMs are used much less frequently in Lisp than return

62

statements in C-derived languages, because all Lisp expressions, including control
constructs such as loops and conditionals, evaluate to a value. So it’s not much
of a problem in practice.

Functions As Data, a.k.a. Higher-Order Functions
While the main way you use functions is to call them by name, a number of
situations exist where it’s useful to be able treat functions as data. For instance,
if you can pass one function as an argument to another, you can write a general-
purpose sorting function while allowing the caller to provide a function that’s
responsible for comparing any two elements. Then the same underlying algorithm
can be used with many different comparison functions. Similarly, callbacks and
hooks depend on being able to store references to code in order to run it later.
Since functions are already the standard way to abstract bits of code, it makes
sense to allow functions to be treated as data.9

In Lisp, functions are just another kind of object. When you define a function
with DEFUN, you’re really doing two things: creating a new function object
and giving it a name. It’s also possible, as you saw in Chapter 3, to use
LAMBDA expressions to create a function without giving it a name. The actual
representation of a function object, whether named or anonymous, is opaque--in
a native-compiling Lisp, it probably consists mostly of machine code. The only
things you need to know are how to get hold of it and how to invoke it once
you’ve got it.

The special operator FUNCTION provides the mechanism for getting at a function
object. It takes a single argument and returns the function with that name. The
name isn’t quoted. Thus, if you’ve defined a function foo, like so:

CL-USER> (defun foo (x) (* 2 x))
FOO

you can get the function object like this:10

CL-USER> (function foo)
#<Interpreted Function FOO>

In fact, you’ve already used FUNCTION, but it was in disguise. The syntax #',
which you used in Chapter 3, is syntactic sugar for FUNCTION, just the way ' is
syntactic sugar for QUOTE.11 Thus, you can also get the function object for foo
like this:

CL-USER> #’foo
#<Interpreted Function FOO>

Once you’ve got the function object, there’s really only one thing you can do
with it--invoke it. Common Lisp provides two functions for invoking a function
through a function object: FUNCALL and APPLY.12 They differ only in how they
obtain the arguments to pass to the function.

63

FUNCALL is the one to use when you know the number of arguments you’re going
to pass to the function at the time you write the code. The first argument to
FUNCALL is the function object to be invoked, and the rest of the arguments are
passed onto that function. Thus, the following two expressions are equivalent:

(foo 1 2 3) === (funcall #’foo 1 2 3)

However, there’s little point in using FUNCALL to call a function whose name you
know when you write the code. In fact, the previous two expressions will quite
likely compile to exactly the same machine instructions.

The following function demonstrates a more apt use of FUNCALL. It accepts a
function object as an argument and plots a simple ASCII-art histogram of the
values returned by the argument function when it’s invoked on the values from
min to max, stepping by step.

(defun plot (fn min max step)
(loop for i from min to max by step do

(loop repeat (funcall fn i) do (format t "*"))
(format t "~%")))

The FUNCALL expression computes the value of the function for each value of i.
The inner LOOP uses that computed value to determine how many times to print
an asterisk to standard output.

Note that you don’t use FUNCTION or #' to get the function value of fn; you
want it to be interpreted as a variable because it’s the variable’s value that will
be the function object. You can call plot with any function that takes a single
numeric argument, such as the built-in function EXP that returns the value of e
raised to the power of its argument.

CL-USER> (plot #’exp 0 4 1/2)
*
*
**

**
NIL

FUNCALL, however, doesn’t do you any good when the argument list is known only
at runtime. For instance, to stick with the plot function for another moment,
suppose you’ve obtained a list containing a function object, a minimum and
maximum value, and a step value. In other words, the list contains the values
you want to pass as arguments to plot. Suppose this list is in the variable
plot-data. You could invoke plot on the values in that list like this:

64

(plot (first plot-data) (second plot-data) (third plot-data) (fourth plot-data))

This works fine, but it’s pretty annoying to have to explicitly unpack the
arguments just so you can pass them to plot.

That’s where APPLY comes in. Like FUNCALL, the first argument to APPLY is a
function object. But after the function object, instead of individual arguments,
it expects a list. It then applies the function to the values in the list. This allows
you to write the following instead:

(apply #’plot plot-data)

As a further convenience, APPLY can also accept "loose" arguments as long as the
last argument is a list. Thus, if plot-data contained just the min, max, and
step values, you could still use APPLY like this to plot the EXP function over that
range:

(apply #’plot #’exp plot-data)

APPLY doesn’t care about whether the function being applied takes &optional,
&rest, or &key arguments--the argument list produced by combining any loose
arguments with the final list must be a legal argument list for the function with
enough arguments for all the required parameters and only appropriate keyword
parameters.

Anonymous Functions
Once you start writing, or even simply using, functions that accept other functions
as arguments, you’re bound to discover that sometimes it’s annoying to have
to define and name a whole separate function that’s used in only one place,
especially when you never call it by name.

When it seems like overkill to define a new function with DEFUN, you can create
an "anonymous" function using a LAMBDA expression. As discussed in Chapter 3,
a LAMBDA expression looks like this:

(lambda (parameters) body)

One way to think of LAMBDA expressions is as a special kind of function name
where the name itself directly describes what the function does. This explains
why you can use a LAMBDA expression in the place of a function name with #'.

(funcall #’(lambda (x y) (+ x y)) 2 3) ==> 5

You can even use a LAMBDA expression as the "name" of a function in a function
call expression. If you wanted, you could write the previous FUNCALL expression
more concisely.

((lambda (x y) (+ x y)) 2 3) ==> 5

But this is almost never done; it’s merely worth noting that it’s legal in order
to emphasize that LAMBDA expressions can be used anywhere a normal function

65

name can be.13

Anonymous functions can be useful when you need to pass a function as an
argument to another function and the function you need to pass is simple enough
to express inline. For instance, suppose you wanted to plot the function 2x. You
could define the following function:

(defun double (x) (* 2 x))

which you could then pass to plot.

CL-USER> (plot #’double 0 10 1)

**

NIL

But it’s easier, and arguably clearer, to write this:

CL-USER> (plot #’(lambda (x) (* 2 x)) 0 10 1)

**

NIL

The other important use of LAMBDA expressions is in making closures, functions
that capture part of the environment where they’re created. You used closures a
bit in Chapter 3, but the details of how closures work and what they’re used
for is really more about how variables work than functions, so I’ll save that
discussion for the next chapter.

1Despite the importance of functions in Common Lisp, it isn’t really accurate

66

to describe it as a functional language. It’s true some of Common Lisp’s fea-
tures, such as its list manipulation functions, are designed to be used in a
body-form* style and that Lisp has a prominent place in the history of functional
programming--McCarthy introduced many ideas that are now considered impor-
tant in functional programming--but Common Lisp was intentionally designed to
support many different styles of programming. In the Lisp family, Scheme is the
nearest thing to a "pure" functional language, and even it has several features
that disqualify it from absolute purity compared to languages such as Haskell
and ML.
2Well, almost any symbol. It’s undefined what happens if you use any of the
names defined in the language standard as a name for one of your own functions.
However, as you’ll see in Chapter 21, the Lisp package system allows you to
create names in different namespaces, so this isn’t really an issue.
3Parameter lists are sometimes also called lambda lists because of the historical
relationship between Lisp’s notion of functions and the lambda calculus.
4For example, the following:

(documentation ’foo ’function)

returns the documentation string for the function foo. Note, however, that
documentation strings are intended for human consumption, not programmatic
access. A Lisp implementation isn’t required to store them and is allowed to
discard them at any time, so portable programs shouldn’t depend on their
presence. In some implementations an implementation-defined variable needs to
be set before it will store documentation strings.
5In languages that don’t support optional parameters directly, programmers
typically find ways to simulate them. One technique is to use distinguished
"no-value" values that the caller can pass to indicate they want the default value
of a given parameter. In C, for example, it’s common to use NULL as such a
distinguished value. However, such a protocol between the function and its
callers is ad hoc--in some functions or for some arguments NULL may be the
distinguished value while in other functions or for other arguments the magic
value may be -1 or some #defined constant.
6The constant CALL-ARGUMENTS-LIMIT tells you the implementation-specific
value.
7Four standard functions take both &optional and &key arguments--
READ-FROM-STRING, PARSE-NAMESTRING, WRITE-LINE, and WRITE-STRING.
They were left that way during standardization for backward compatibility
with earlier Lisp dialects. READ-FROM-STRING tends to be the one that catches
new Lisp programmers most frequently--a call such as (read-from-string s
:start 10) seems to ignore the :start keyword argument, reading from index
0 instead of 10. That’s because READ-FROM-STRING also has two &optional
parameters that swallowed up the arguments :start and 10.

67

8Another macro, RETURN, doesn’t require a name. However, you can’t use
it instead of RETURN-FROM to avoid having to specify the function name; it’s
syntactic sugar for returning from a block named NIL. I’ll cover it, along with
the details of BLOCK and RETURN-FROM, in Chapter 20.
9Lisp, of course, isn’t the only language to treat functions as data. C uses
function pointers, Perl uses subroutine references, Python uses a scheme sim-
ilar to Lisp, and C# introduces delegates, essentially typed function pointers,
as an improvement over Java’s rather clunky reflection and anonymous class
mechanisms.
10The exact printed representation of a function object will differ from imple-
mentation to implementation.
11The best way to think of FUNCTION is as a special kind of quotation. QUOTEing
a symbol prevents it from being evaluated at all, resulting in the symbol itself
rather than the value of the variable named by that symbol. FUNCTION also
circumvents the normal evaluation rule but, instead of preventing the symbol
from being evaluated at all, causes it to be evaluated as the name of a function,
just the way it would if it were used as the function name in a function call
expression.
12There’s actually a third, the special operator MULTIPLE-VALUE-CALL, but I’ll
save that for when I discuss expressions that return multiple values in Chapter
20.
13In Common Lisp it’s also possible to use a LAMBDA expression as an argument
to FUNCALL (or some other function that takes a function argument such as SORT
or MAPCAR) with no #' before it, like this:

(funcall (lambda (x y) (+ x y)) 2 3)

This is legal and is equivalent to the version with the #' but for a tricky reason.
Historically LAMBDA expressions by themselves weren’t expressions that could
be evaluated. That is LAMBDA wasn’t the name of a function, macro, or special
operator. Rather, a list starting with the symbol LAMBDA was a special syntactic
construct that Lisp recognized as a kind of function name.

But if that were still true, then (funcall (lambda (...) ...)) would be
illegal because FUNCALL is a function and the normal evaluation rule for a function
call would require that the LAMBDA expression be evaluated. However, late in the
ANSI standardization process, in order to make it possible to implement ISLISP,
another Lisp dialect being standardized at the same time, strictly as a user-level
compatibility layer on top of Common Lisp, a LAMBDA macro was defined that
expands into a call to FUNCTION wrapped around the LAMBDA expression. In
other words, the following LAMBDA expression:

(lambda () 42)

exands into the following when it occurs in a context where it evaluated:

68

(function (lambda () 42)) ; or #’(lambda () 42)

This makes its use in a value position, such as an argument to FUNCALL, legal.
In other words, it’s pure syntactic sugar. Most folks either always use #' before
LAMBDA expressions in value positions or never do. In this book, I always use #'.

Copyright © 2003-2005, Peter Seibel

6. Variables
The next basic building block we need to look at are variables. Common
Lisp supports two kinds of variables: lexical and dynamic.1 These two types
correspond roughly to "local" and "global" variables in other languages. However,
the correspondence is only approximate. On one hand, some languages’ "local"
variables are in fact much like Common Lisp’s dynamic variables.2 And on the
other, some languages’ local variables are lexically scoped without providing all
the capabilities provided by Common Lisp’s lexical variables. In particular, not
all languages that provide lexically scoped variables support closures.

To make matters a bit more confusing, many of the forms that deal with variables
can be used with both lexical and dynamic variables. So I’ll start by discussing a
few aspects of Lisp’s variables that apply to both kinds and then cover the specific
characteristics of lexical and dynamic variables. Then I’ll discuss Common Lisp’s
general-purpose assignment operator, SETF, which is used to assign new values
to variables and just about every other place that can hold a value.

Variable Basics
As in other languages, in Common Lisp variables are named places that can
hold a value. However, in Common Lisp, variables aren’t typed the way they
are in languages such as Java or C++. That is, you don’t need to declare the
type of object that each variable can hold. Instead, a variable can hold values
of any type and the values carry type information that can be used to check
types at runtime. Thus, Common Lisp is dynamically typed--type errors are
detected dynamically. For instance, if you pass something other than a number
to the + function, Common Lisp will signal a type error. On the other hand,
Common Lisp is a strongly typed language in the sense that all type errors will
be detected--there’s no way to treat an object as an instance of a class that it’s
not.3

All values in Common Lisp are, conceptually at least, references to objects.4
Consequently, assigning a variable a new value changes what object the variable
refers to but has no effect on the previously referenced object. However, if a
variable holds a reference to a mutable object, you can use that reference to
modify the object, and the modification will be visible to any code that has a
reference to the same object.

69

One way to introduce new variables you’ve already used is to define function
parameters. As you saw in the previous chapter, when you define a function
with DEFUN, the parameter list defines the variables that will hold the function’s
arguments when it’s called. For example, this function defines three variables--x,
y, and z--to hold its arguments.

(defun foo (x y z) (+ x y z))

Each time a function is called, Lisp creates new bindings to hold the arguments
passed by the function’s caller. A binding is the runtime manifestation of a
variable. A single variable--the thing you can point to in the program’s source
code--can have many different bindings during a run of the program. A single
variable can even have multiple bindings at the same time; parameters to a
recursive function, for example, are rebound for each call to the function.

As with all Common Lisp variables, function parameters hold object references.5
Thus, you can assign a new value to a function parameter within the body of
the function, and it will not affect the bindings created for another call to the
same function. But if the object passed to a function is mutable and you change
it in the function, the changes will be visible to the caller since both the caller
and the callee will be referencing the same object.

Another form that introduces new variables is the LET special operator. The
skeleton of a LET form looks like this:

(let (variable*)
body-form*)

where each variable is a variable initialization form. Each initialization form
is either a list containing a variable name and an initial value form or--as
a shorthand for initializing the variable to NIL--a plain variable name. The
following LET form, for example, binds the three variables x, y, and z with initial
values 10, 20, and NIL:

(let ((x 10) (y 20) z)
...)

When the LET form is evaluated, all the initial value forms are first evaluated.
Then new bindings are created and initialized to the appropriate initial values
before the body forms are executed. Within the body of the LET, the variable
names refer to the newly created bindings. After the LET, the names refer to
whatever, if anything, they referred to before the LET.

The value of the last expression in the body is returned as the value of the LET
expression. Like function parameters, variables introduced with LET are rebound
each time the LET is entered.6

The scope of function parameters and LET variables--the area of the program
where the variable name can be used to refer to the variable’s binding--is delimited
by the form that introduces the variable. This form--the function definition
or the LET--is called the binding form. As you’ll see in a bit, the two types of

70

variables--lexical and dynamic--use two slightly different scoping mechanisms,
but in both cases the scope is delimited by the binding form.

If you nest binding forms that introduce variables with the same name, then the
bindings of the innermost variable shadows the outer bindings. For instance,
when the following function is called, a binding is created for the parameter x to
hold the function’s argument. Then the first LET creates a new binding with the
initial value 2, and the inner LET creates yet another binding, this one with the
initial value 3. The bars on the right mark the scope of each binding.

(defun foo (x)
(format t "Parameter: ~a~%" x) ; |<------ x is argument
(let ((x 2)) ; |
(format t "Outer LET: ~a~%" x) ; | |<---- x is 2
(let ((x 3)) ; | |
(format t "Inner LET: ~a~%" x)) ; | | |<-- x is 3

(format t "Outer LET: ~a~%" x)) ; | |
(format t "Parameter: ~a~%" x)) ; |

Each reference to x will refer to the binding with the smallest enclosing scope.
Once control leaves the scope of one binding form, the binding from the immedi-
ately enclosing scope is unshadowed and x refers to it instead. Thus, calling foo
results in this output:

CL-USER> (foo 1)
Parameter: 1
Outer LET: 2
Inner LET: 3
Outer LET: 2
Parameter: 1
NIL

In future chapters I’ll discuss other constructs that also serve as binding forms--
any construct that introduces a new variable name that’s usable only within the
construct is a binding form.

For instance, in Chapter 7 you’ll meet the DOTIMES loop, a basic counting loop.
It introduces a variable that holds the value of a counter that’s incremented
each time through the loop. The following loop, for example, which prints the
numbers from 0 to 9, binds the variable x:

(dotimes (x 10) (format t "~d " x))

Another binding form is a variant of LET, LET*. The difference is that in a LET,
the variable names can be used only in the body of the LET--the part of the LET
after the variables list--but in a LET*, the initial value forms for each variable
can refer to variables introduced earlier in the variables list. Thus, you can write
the following:

(let* ((x 10)

71

(y (+ x 10)))
(list x y))

but not this:

(let ((x 10)
(y (+ x 10)))

(list x y))

However, you could achieve the same result with nested LETs.

(let ((x 10))
(let ((y (+ x 10)))
(list x y)))

Lexical Variables and Closures
By default all binding forms in Common Lisp introduce lexically scoped variables.
Lexically scoped variables can be referred to only by code that’s textually
within the binding form. Lexical scoping should be familiar to anyone who has
programmed in Java, C, Perl, or Python since they all provide lexically scoped
"local" variables. For that matter, Algol programmers should also feel right at
home, as Algol first introduced lexical scoping in the 1960s.

However, Common Lisp’s lexical variables are lexical variables with a twist,
at least compared to the original Algol model. The twist is provided by the
combination of lexical scoping with nested functions. By the rules of lexical
scoping, only code textually within the binding form can refer to a lexical variable.
But what happens when an anonymous function contains a reference to a lexical
variable from an enclosing scope? For instance, in this expression:

(let ((count 0)) #’(lambda () (setf count (1+ count))))

the reference to count inside the LAMBDA form should be legal according to the
rules of lexical scoping. Yet the anonymous function containing the reference
will be returned as the value of the LET form and can be invoked, via FUNCALL,
by code that’s not in the scope of the LET. So what happens? As it turns out,
when count is a lexical variable, it just works. The binding of count created
when the flow of control entered the LET form will stick around for as long as
needed, in this case for as long as someone holds onto a reference to the function
object returned by the LET form. The anonymous function is called a closure
because it "closes over" the binding created by the LET.

The key thing to understand about closures is that it’s the binding, not the value
of the variable, that’s captured. Thus, a closure can not only access the value
of the variables it closes over but can also assign new values that will persist
between calls to the closure. For instance, you can capture the closure created
by the previous expression in a global variable like this:

(defparameter *fn* (let ((count 0)) #’(lambda () (setf count (1+ count)))))

72

Then each time you invoke it, the value of count will increase by one.

CL-USER> (funcall *fn*)
1
CL-USER> (funcall *fn*)
2
CL-USER> (funcall *fn*)
3

A single closure can close over many variable bindings simply by referring to
them. Or multiple closures can capture the same binding. For instance, the
following expression returns a list of three closures, one that increments the
value of the closed over count binding, one that decrements it, and one that
returns the current value:

(let ((count 0))
(list
#’(lambda () (incf count))
#’(lambda () (decf count))
#’(lambda () count)))

Dynamic, a.k.a. Special, Variables
Lexically scoped bindings help keep code understandable by limiting the scope,
literally, in which a given name has meaning. This is why most modern languages
use lexical scoping for local variables. Sometimes, however, you really want a
global variable--a variable that you can refer to from anywhere in your program.
While it’s true that indiscriminate use of global variables can turn code into
spaghetti nearly as quickly as unrestrained use of goto, global variables do have
legitimate uses and exist in one form or another in almost every programming
language.7 And as you’ll see in a moment, Lisp’s version of global variables,
dynamic variables, are both more useful and more manageable.

Common Lisp provides two ways to create global variables: DEFVAR and
DEFPARAMETER. Both forms take a variable name, an initial value, and an
optional documentation string. After it has been DEFVARed or DEFPARAMETERed,
the name can be used anywhere to refer to the current binding of the global
variable. As you’ve seen in previous chapters, global variables are conventionally
named with names that start and end with *. You’ll see later in this section
why it’s quite important to follow that naming convention. Examples of DEFVAR
and DEFPARAMETER look like this:

(defvar *count* 0
"Count of widgets made so far.")

(defparameter *gap-tolerance* 0.001
"Tolerance to be allowed in widget gaps.")

The difference between the two forms is that DEFPARAMETER always assigns the

73

initial value to the named variable while DEFVAR does so only if the variable is
undefined. A DEFVAR form can also be used with no initial value to define a
global variable without giving it a value. Such a variable is said to be unbound.

Practically speaking, you should use DEFVAR to define variables that will contain
data you’d want to keep even if you made a change to the source code that uses
the variable. For instance, suppose the two variables defined previously are part
of an application for controlling a widget factory. It’s appropriate to define the
count variable with DEFVAR because the number of widgets made so far isn’t
invalidated just because you make some changes to the widget-making code.8

On the other hand, the variable *gap-tolerance* presumably has some effect
on the behavior of the widget-making code itself. If you decide you need a tighter
or looser tolerance and change the value in the DEFPARAMETER form, you’d like
the change to take effect when you recompile and reload the file.

After defining a variable with DEFVAR or DEFPARAMETER, you can refer to it from
anywhere. For instance, you might define this function to increment the count
of widgets made:

(defun increment-widget-count () (incf *count*))

The advantage of global variables is that you don’t have to pass them around.
Most languages store the standard input and output streams in global variables
for exactly this reason--you never know when you’re going to want to print
something to standard out, and you don’t want every function to have to accept
and pass on arguments containing those streams just in case someone further
down the line needs them.

However, once a value, such as the standard output stream, is stored in a global
variable and you have written code that references that global variable, it’s
tempting to try to temporarily modify the behavior of that code by changing
the variable’s value.

For instance, suppose you’re working on a program that contains some
low-level logging functions that print to the stream in the global variable
standard-output. Now suppose that in part of the program you want to
capture all the output generated by those functions into a file. You might open
a file and assign the resulting stream to *standard-output*. Now the low-level
functions will send their output to the file.

This works fine until you forget to set *standard-output* back to the original
stream when you’re done. If you forget to reset *standard-output*, all the
other code in the program that uses *standard-output* will also send its output
to the file.9

What you really want, it seems, is a way to wrap a piece of code in something
that says, "All code below here--all the functions it calls, all the functions they
call, and so on, down to the lowest-level functions--should use this value for the

74

global variable *standard-output*." Then when the high-level function returns,
the old value of *standard-output* should be automatically restored.

It turns out that that’s exactly what Common Lisp’s other kind of variable--
dynamic variables--let you do. When you bind a dynamic variable--for example,
with a LET variable or a function parameter--the binding that’s created on entry
to the binding form replaces the global binding for the duration of the binding
form. Unlike a lexical binding, which can be referenced by code only within the
lexical scope of the binding form, a dynamic binding can be referenced by any
code that’s invoked during the execution of the binding form.10 And it turns out
that all global variables are, in fact, dynamic variables.

Thus, if you want to temporarily redefine *standard-output*, the way to do it
is simply to rebind it, say, with a LET.

(let ((*standard-output* *some-other-stream*))
(stuff))

In any code that runs as a result of the call to stuff, references to
standard-output will use the binding established by the LET. And when
stuff returns and control leaves the LET, the new binding of *standard-output*
will go away and subsequent references to *standard-output* will see the
binding that was current before the LET. At any given time, the most recently
established binding shadows all other bindings. Conceptually, each new binding
for a given dynamic variable is pushed onto a stack of bindings for that variable,
and references to the variable always use the most recent binding. As binding
forms return, the bindings they created are popped off the stack, exposing
previous bindings.11

A simple example shows how this works.

(defvar *x* 10)
(defun foo () (format t "X: ~d~%" *x*))

The DEFVAR creates a global binding for the variable *x* with the value 10. The
reference to *x* in foo will look up the current binding dynamically. If you call
foo from the top level, the global binding created by the DEFVAR is the only
binding available, so it prints 10.

CL-USER> (foo)
X: 10
NIL

But you can use LET to create a new binding that temporarily shadows the
global binding, and foo will print a different value.

CL-USER> (let ((*x* 20)) (foo))
X: 20
NIL

Now call foo again, with no LET, and it again sees the global binding.

75

CL-USER> (foo)
X: 10
NIL

Now define another function.

(defun bar ()
(foo)
(let ((*x* 20)) (foo))
(foo))

Note that the middle call to foo is wrapped in a LET that binds *x* to the new
value 20. When you run bar, you get this result:

CL-USER> (bar)
X: 10
X: 20
X: 10
NIL

As you can see, the first call to foo sees the global binding, with its value of 10.
The middle call, however, sees the new binding, with the value 20. But after the
LET, foo once again sees the global binding.

As with lexical bindings, assigning a new value affects only the current binding.
To see this, you can redefine foo to include an assignment to *x*.

(defun foo ()
(format t "Before assignment~18tX: ~d~%" *x*)
(setf *x* (+ 1 *x*))
(format t "After assignment~18tX: ~d~%" *x*))

Now foo prints the value of *x*, increments it, and prints it again. If you just
run foo, you’ll see this:

CL-USER> (foo)
Before assignment X: 10
After assignment X: 11
NIL

Not too surprising. Now run bar.

CL-USER> (bar)
Before assignment X: 11
After assignment X: 12
Before assignment X: 20
After assignment X: 21
Before assignment X: 12
After assignment X: 13
NIL

76

Notice that *x* started at 11--the earlier call to foo really did change the global
value. The first call to foo from bar increments the global binding to 12. The
middle call doesn’t see the global binding because of the LET. Then the last call
can see the global binding again and increments it from 12 to 13.

So how does this work? How does LET know that when it binds *x* it’s supposed
to create a dynamic binding rather than a normal lexical binding? It knows
because the name has been declared special.12 The name of every variable defined
with DEFVAR and DEFPARAMETER is automatically declared globally special. This
means whenever you use such a name in a binding form--in a LET or as a
function parameter or any other construct that creates a new variable binding--
the binding that’s created will be a dynamic binding. This is why the *naming*
convention is so important--it’d be bad news if you used a name for what
you thought was a lexical variable and that variable happened to be globally
special. On the one hand, code you call could change the value of the binding
out from under you; on the other, you might be shadowing a binding established
by code higher up on the stack. If you always name global variables according to
the * naming convention, you’ll never accidentally use a dynamic binding where
you intend to establish a lexical binding.

It’s also possible to declare a name locally special. If, in a binding form, you
declare a name special, then the binding created for that variable will be dynamic
rather than lexical. Other code can locally declare a name special in order to
refer to the dynamic binding. However, locally special variables are relatively
rare, so you needn’t worry about them.13

Dynamic bindings make global variables much more manageable, but it’s impor-
tant to notice they still allow action at a distance. Binding a global variable has
two at a distance effects--it can change the behavior of downstream code, and
it also opens the possibility that downstream code will assign a new value to a
binding established higher up on the stack. You should use dynamic variables
only when you need to take advantage of one or both of these characteristics.

Constants
One other kind of variable I haven’t mentioned at all is the oxymoronic "constant
variable." All constants are global and are defined with DEFCONSTANT. The basic
form of DEFCONSTANT is like DEFPARAMETER.

(defconstant name initial-value-form [documentation-string])

As with DEFVAR and DEFPARAMETER, DEFCONSTANT has a global effect on the
name used--thereafter the name can be used only to refer to the constant; it can’t
be used as a function parameter or rebound with any other binding form. Thus,
many Lisp programmers follow a naming convention of using names starting
and ending with + for constants. This convention is somewhat less universally
followed than the *-naming convention for globally special names but is a good
idea for the same reason.14

77

Another thing to note about DEFCONSTANT is that while the language allows you
to redefine a constant by reevaluating a DEFCONSTANT with a different initial-
value-form, what exactly happens after the redefinition isn’t defined. In practice,
most implementations will require you to reevaluate any code that refers to the
constant in order to see the new value since the old value may well have been
inlined. Consequently, it’s a good idea to use DEFCONSTANT only to define things
that are really constant, such as the value of NIL. For things you might ever
want to change, you should use DEFPARAMETER instead.

Assignment
Once you’ve created a binding, you can do two things with it: get the current
value and set it to a new value. As you saw in Chapter 4, a symbol evaluates to
the value of the variable it names, so you can get the current value simply by
referring to the variable. To assign a new value to a binding, you use the SETF
macro, Common Lisp’s general-purpose assignment operator. The basic form of
SETF is as follows:

(setf place value)

Because SETF is a macro, it can examine the form of the place it’s assigning to
and expand into appropriate lower-level operations to manipulate that place.
When the place is a variable, it expands into a call to the special operator SETQ,
which, as a special operator, has access to both lexical and dynamic bindings.15

For instance, to assign the value 10 to the variable x, you can write this:

(setf x 10)

As I discussed earlier, assigning a new value to a binding has no effect on any
other bindings of that variable. And it doesn’t have any effect on the value
that was stored in the binding prior to the assignment. Thus, the SETF in this
function:

(defun foo (x) (setf x 10))

will have no effect on any value outside of foo. The binding that was created
when foo was called is set to 10, immediately replacing whatever value was
passed as an argument. In particular, a form such as the following:

(let ((y 20))
(foo y)
(print y))

will print 20, not 10, as it’s the value of y that’s passed to foo where it’s briefly
the value of the variable x before the SETF gives x a new value.

SETF can also assign to multiple places in sequence. For instance, instead of the
following:

(setf x 1)
(setf y 2)

78

you can write this:

(setf x 1 y 2)

SETF returns the newly assigned value, so you can also nest calls to SETF as in
the following expression, which assigns both x and y the same random value:

(setf x (setf y (random 10)))

Generalized Assignment
Variable bindings, of course, aren’t the only places that can hold values. Common
Lisp supports composite data structures such as arrays, hash tables, and lists,
as well as user-defined data structures, all of which consist of multiple places
that can each hold a value.

I’ll cover those data structures in future chapters, but while we’re on the topic of
assignment, you should note that SETF can assign any place a value. As I cover
the different composite data structures, I’ll point out which functions can serve
as "SETFable places." The short version, however, is if you need to assign a value
to a place, SETF is almost certainly the tool to use. It’s even possible to extend
SETF to allow it to assign to user-defined places though I won’t cover that.16

In this regard SETF is no different from the = assignment operator in most
C-derived languages. In those languages, the = operator assigns new values to
variables, array elements, and fields of classes. In languages such as Perl and
Python that support hash tables as a built-in data type, = can also set the values
of individual hash table entries. Table 6-1 summarizes the various ways = is used
in those languages.

Table 6-1. Assignment with = in Other Languages

Assigning to ... Java, C, C++ Perl Python
... variable x = 10; $x = 10; x = 10
... array element a[0] = 10; $a[0] = 10; a[0] = 10
... hash table entry -- $hash{'key'} = 10; hash['key'] = 10
... field in object o.field = 10; $o->{'field'} = 10; o.field = 10

SETF works the same way--the first "argument" to SETF is a place to store the
value, and the second argument provides the value. As with the = operator in
these languages, you use the same form to express the place as you’d normally
use to fetch the value.17 Thus, the Lisp equivalents of the assignments in Table
6-1--given that AREF is the array access function, GETHASH does a hash table
lookup, and field might be a function that accesses a slot named field of a
user-defined object--are as follows:

Simple variable: (setf x 10)
Array: (setf (aref a 0) 10)

79

Hash table: (setf (gethash ’key hash) 10)
Slot named ’field’: (setf (field o) 10)

Note that SETFing a place that’s part of a larger object has the same semantics
as SETFing a variable: the place is modified without any effect on the object that
was previously stored in the place. Again, this is similar to how = behaves in
Java, Perl, and Python.18

Other Ways to Modify Places
While all assignments can be expressed with SETF, certain patterns involving
assigning a new value based on the current value are sufficiently common to
warrant their own operators. For instance, while you could increment a number
with SETF, like this:

(setf x (+ x 1))

or decrement it with this:

(setf x (- x 1))

it’s a bit tedious, compared to the C-style ++x and --x. Instead, you can use
the macros INCF and DECF, which increment and decrement a place by a certain
amount that defaults to 1.

(incf x) === (setf x (+ x 1))
(decf x) === (setf x (- x 1))
(incf x 10) === (setf x (+ x 10))

INCF and DECF are examples of a kind of macro called modify macros. Modify
macros are macros built on top of SETF that modify places by assigning a new
value based on the current value of the place. The main benefit of modify macros
is that they’re more concise than the same modification written out using SETF.
Additionally, modify macros are defined in a way that makes them safe to use
with places where the place expression must be evaluated only once. A silly
example is this expression, which increments the value of an arbitrary element
of an array:

(incf (aref *array* (random (length *array*))))

A naive translation of that into a SETF expression might look like this:

(setf (aref *array* (random (length *array*)))
(1+ (aref *array* (random (length *array*)))))

However, that doesn’t work because the two calls to RANDOM won’t necessarily
return the same value--this expression will likely grab the value of one element
of the array, increment it, and then store it back as the new value of a different
element. The INCF expression, however, does the right thing because it knows
how to take apart this expression:

(aref *array* (random (length *array*)))

80

to pull out the parts that could possibly have side effects to make sure they’re
evaluated only once. In this case, it would probably expand into something more
or less equivalent to this:

(let ((tmp (random (length *array*))))
(setf (aref *array* tmp) (1+ (aref *array* tmp))))

In general, modify macros are guaranteed to evaluate both their arguments and
the subforms of the place form exactly once each, in left-to-right order.

The macro PUSH, which you used in the mini-database to add elements to the
db variable, is another modify macro. You’ll take a closer look at how it and
its counterparts POP and PUSHNEW work in Chapter 12 when I talk about how
lists are represented in Lisp.

Finally, two slightly esoteric but useful modify macros are ROTATEF and SHIFTF.
ROTATEF rotates values between places. For instance, if you have two variables,
a and b, this call:

(rotatef a b)

swaps the values of the two variables and returns NIL. Since a and b are variables
and you don’t have to worry about side effects, the previous ROTATEF expression
is equivalent to this:

(let ((tmp a)) (setf a b b tmp) nil)

With other kinds of places, the equivalent expression using SETF would be quite
a bit more complex.

SHIFTF is similar except instead of rotating values it shifts them to the left--the
last argument provides a value that’s moved to the second-to-last argument
while the rest of the values are moved one to the left. The original value of the
first argument is simply returned. Thus, the following:

(shiftf a b 10)

is equivalent--again, since you don’t have to worry about side effects--to this:

(let ((tmp a)) (setf a b b 10) tmp)

Both ROTATEF and SHIFTF can be used with any number of arguments and, like
all modify macros, are guaranteed to evaluate them exactly once, in left to right
order.

With the basics of Common Lisp’s functions and variables under your belt, now
you’re ready to move onto the feature that continues to differentiate Lisp from
other languages: macros.

1Dynamic variables are also sometimes called special variables for reasons you’ll
see later in this chapter. It’s important to be aware of this synonym, as some
folks (and Lisp implementations) use one term while others use the other.

81

2Early Lisps tended to use dynamic variables for local variables, at least when
interpreted. Elisp, the Lisp dialect used in Emacs, is a bit of a throwback in
this respect, continuing to support only dynamic variables. Other languages
have recapitulated this transition from dynamic to lexical variables--Perl’s local
variables, for instance, are dynamic while its my variables, introduced in Perl
5, are lexical. Python never had true dynamic variables but only introduced
true lexical scoping in version 2.2. (Python’s lexical variables are still somewhat
limited compared to Lisp’s because of the conflation of assignment and binding
in the language’s syntax.)
3Actually, it’s not quite true to say that all type errors will always be detected--
it’s possible to use optional declarations to tell the compiler that certain variables
will always contain objects of a particular type and to turn off runtime type
checking in certain regions of code. However, declarations of this sort are used
to optimize code after it has been developed and debugged, not during normal
development.
4As an optimization certain kinds of objects, such as integers below a certain
size and characters, may be represented directly in memory where other objects
would be represented by a pointer to the actual object. However, since integers
and characters are immutable, it doesn’t matter that there may be multiple
copies of "the same" object in different variables. This is the root of the difference
between EQ and EQL discussed in Chapter 4.
5In compiler-writer terms Common Lisp functions are "pass-by-value." However,
the values that are passed are references to objects. This is similar to how Java
and Python work.
6The variables in LET forms and function parameters are created by exactly the
same mechanism. In fact, in some Lisp dialects--though not Common Lisp--LET
is simply a macro that expands into a call to an anonymous function. That is,
in those dialects, the following:

(let ((x 10)) (format t "~a" x))

is a macro form that expands into this:

((lambda (x) (format t "~a" x)) 10)
7Java disguises global variables as public static fields, C uses extern variables,
and Python’s module-level and Perl’s package-level variables can likewise be
accessed from anywhere.
8If you specifically want to reset a DEFVARed variable, you can either set it
directly with SETF or make it unbound using MAKUNBOUND and then reevaluate
the DEFVAR form.
9The strategy of temporarily reassigning *standard-output* also breaks if the
system is multithreaded--if there are multiple threads of control trying to print
to different streams at the same time, they’ll all try to set the global variable
to the stream they want to use, stomping all over each other. You could use a

82

lock to control access to the global variable, but then you’re not really getting
the benefit of multiple concurrent threads, since whatever thread is printing has
to lock out all the other threads until it’s done even if they want to print to a
different stream.
10The technical term for the interval during which references may be made to a
binding is its extent. Thus, scope and extent are complementary notions--scope
refers to space while extent refers to time. Lexical variables have lexical scope but
indefinite extent, meaning they stick around for an indefinite interval, determined
by how long they’re needed. Dynamic variables, by contrast, have indefinite
scope since they can be referred to from anywhere but dynamic extent. To
further confuse matters, the combination of indefinite scope and dynamic extent
is frequently referred to by the misnomer dynamic scope.
11Though the standard doesn’t specify how to incorporate multithreading into
Common Lisp, implementations that provide multithreading follow the practice
established on the Lisp machines and create dynamic bindings on a per-thread
basis. A reference to a global variable will find the binding most recently
established in the current thread, or the global binding.
12This is why dynamic variables are also sometimes called special variables.
13If you must know, you can look up DECLARE, SPECIAL, and LOCALLY in the
HyperSpec.
14Several key constants defined by the language itself don’t follow this convention-
-not least of which are T and NIL. This is occasionally annoying when one wants
to use t as a local variable name. Another is PI, which holds the best long-float
approximation of the mathematical constant pi.
15Some old-school Lispers prefer to use SETQ with variables, but modern style
tends to use SETF for all assignments.
16Look up DEFSETF, DEFINE-SETF-EXPANDER for more information.
17The prevalence of Algol-derived syntax for assignment with the "place" on the
left side of the = and the new value on the right side has spawned the terminology
lvalue, short for "left value," meaning something that can be assigned to, and
rvalue, meaning something that provides a value. A compiler hacker would say,
"SETF treats its first argument as an lvalue."
18C programmers may want to think of variables and other places as holding a
pointer to the real object; assigning to a variable simply changes what object it
points to while assigning to a part of a composite object is similar to indirecting
through the pointer to the actual object. C++ programmers should note that
the behavior of = in C++ when dealing with objects--namely, a memberwise
copy--is quite idiosyncratic.

Copyright © 2003-2005, Peter Seibel

83

7. Macros: Standard Control Constructs
While many of the ideas that originated in Lisp, from the conditional expression
to garbage collection, have been incorporated into other languages, the one
language feature that continues to set Common Lisp apart is its macro system.
Unfortunately, the word macro describes a lot of things in computing to which
Common Lisp’s macros bear only a vague and metaphorical similarity. This
causes no end of misunderstanding when Lispers try to explain to non-Lispers
what a great feature macros are.1 To understand Lisp’s macros, you really need
to come at them fresh, without preconceptions based on other things that also
happen to be called macros. So let’s start our discussion of Lisp’s macros by
taking a step back and looking at various ways languages support extensibility.

All programmers should be used to the idea that the definition of a language
can include a standard library of functionality that’s implemented in terms of
the "core" language--functionality that could have been implemented by any
programmer on top of the language if it hadn’t been defined as part of the
standard library. C’s standard library, for instance, can be implemented almost
entirely in portable C. Similarly, most of the ever-growing set of classes and
interfaces that ship with Java’s standard Java Development Kit (JDK) are
written in "pure" Java.

One advantage of defining languages in terms of a core plus a standard library
is it makes them easier to understand and implement. But the real benefit is in
terms of expressiveness--since much of what you think of as "the language" is
really just a library--the language is easy to extend. If C doesn’t have a function
to do some thing or another that you need, you can write that function, and
now you have a slightly richer version of C. Similarly, in a language such as Java
or Smalltalk where almost all the interesting parts of the "language" are defined
in terms of classes, by defining new classes you extend the language, making it
more suited for writing programs to do whatever it is you’re trying to do.

While Common Lisp supports both these methods of extending the language,
macros give Common Lisp yet another way. As I discussed briefly in Chapter 4,
each macro defines its own syntax, determining how the s-expressions it’s passed
are turned into Lisp forms. With macros as part of the core language it’s possible
to build new syntax--control constructs such as WHEN, DOLIST, and LOOP as well
as definitional forms such as DEFUN and DEFPARAMETER--as part of the "standard
library" rather than having to hardwire them into the core. This has implications
for how the language itself is implemented, but as a Lisp programmer you’ll care
more that it gives you another way to extend the language, making it a better
language for expressing solutions to your particular programming problems.

Now, it may seem that the benefits of having another way to extend the language
would be easy to recognize. But for some reason a lot of folks who haven’t
actually used Lisp macros--folks who think nothing of spending their days
creating new functional abstractions or defining hierarchies of classes to solve
their programming problems--get spooked by the idea of being able to define

84

new syntactic abstractions. The most common cause of macrophobia seems to
be bad experiences with other "macro" systems. Simple fear of the unknown no
doubt plays a role, too. To avoid triggering any macrophobic reactions, I’ll ease
into the subject by discussing several of the standard control-construct macros
defined by Common Lisp. These are some of the things that, if Lisp didn’t have
macros, would have to be built into the language core. When you use them, you
don’t have to care that they’re implemented as macros, but they provide a good
example of some of the things you can do with macros.2 In the next chapter, I’ll
show you how you can define your own macros.

WHEN and UNLESS
As you’ve already seen, the most basic form of conditional execution--if x, do y;
otherwise do z--is provided by the IF special operator, which has this basic form:

(if condition then-form [else-form])

The condition is evaluated and, if its value is non-NIL, the then-form is evaluated
and the resulting value returned. Otherwise, the else-form, if any, is evaluated
and its value returned. If condition is NIL and there’s no else-form, then the IF
returns NIL.

(if (> 2 3) "Yup" "Nope") ==> "Nope"
(if (> 2 3) "Yup") ==> NIL
(if (> 3 2) "Yup" "Nope") ==> "Yup"

However, IF isn’t actually such a great syntactic construct because the then-form
and else-form are each restricted to being a single Lisp form. This means if you
want to perform a sequence of actions in either clause, you need to wrap them
in some other syntax. For instance, suppose in the middle of a spam-filtering
program you wanted to both file a message as spam and update the spam
database when a message is spam. You can’t write this:

(if (spam-p current-message)
(file-in-spam-folder current-message)
(update-spam-database current-message))

because the call to update-spam-database will be treated as the else clause,
not as part of the then clause. Another special operator, PROGN, executes any
number of forms in order and returns the value of the last form. So you could
get the desired behavior by writing the following:

(if (spam-p current-message)
(progn
(file-in-spam-folder current-message)
(update-spam-database current-message)))

That’s not too horrible. But given the number of times you’ll likely have to
use this idiom, it’s not hard to imagine that you’d get tired of it after a while.
"Why," you might ask yourself, "doesn’t Lisp provide a way to say what I really

85

want, namely, ’When x is true, do this, that, and the other thing’?" In other
words, after a while you’d notice the pattern of an IF plus a PROGN and wish for
a way to abstract away the details rather than writing them out every time.

This is exactly what macros provide. In this case, Common Lisp comes with a
standard macro, WHEN, which lets you write this:

(when (spam-p current-message)
(file-in-spam-folder current-message)
(update-spam-database current-message))

But if it wasn’t built into the standard library, you could define WHEN yourself
with a macro such as this, using the backquote notation I discussed in Chapter
3:3

(defmacro when (condition &rest body)
‘(if ,condition (progn ,@body)))

A counterpart to the WHEN macro is UNLESS, which reverses the condition, evalu-
ating its body forms only if the condition is false. In other words:

(defmacro unless (condition &rest body)
‘(if (not ,condition) (progn ,@body)))

Admittedly, these are pretty trivial macros. There’s no deep black magic here;
they just abstract away a few language-level bookkeeping details, allowing you
to express your true intent a bit more clearly. But their very triviality makes an
important point: because the macro system is built right into the language, you
can write trivial macros like WHEN and UNLESS that give you small but real gains
in clarity that are then multiplied by the thousands of times you use them. In
Chapters 24, 26, and 31 you’ll see how macros can also be used on a larger scale,
creating whole domain-specific embedded languages. But first let’s finish our
discussion of the standard control-construct macros.

COND
Another time raw IF expressions can get ugly is when you have a multibranch
conditional: if a do x, else if b do y; else do z. There’s no logical problem writing
such a chain of conditional expressions with just IF, but it’s not pretty.

(if a
(do-x)
(if b

(do-y)
(do-z)))

And it would be even worse if you needed to include multiple forms in the then
clauses, requiring PROGNs. So, not surprisingly, Common Lisp provides a macro
for expressing multibranch conditionals: COND. This is the basic skeleton:

(cond

86

(test-1 form*)
.
.
.

(test-N form*))

Each element of the body represents one branch of the conditional and consists
of a list containing a condition form and zero or more forms to be evaluated if
that branch is chosen. The conditions are evaluated in the order the branches
appear in the body until one of them evaluates to true. At that point, the
remaining forms in that branch are evaluated, and the value of the last form in
the branch is returned as the value of the COND as a whole. If the branch contains
no forms after the condition, the value of the condition is returned instead. By
convention, the branch representing the final else clause in an if/else-if chain
is written with a condition of T. Any non-NIL value will work, but a T serves
as a useful landmark when reading the code. Thus, you can write the previous
nested IF expression using COND like this:

(cond (a (do-x))
(b (do-y))
(t (do-z)))

AND, OR, and NOT
When writing the conditions in IF, WHEN, UNLESS, and COND forms, three operators
that will come in handy are the boolean logic operators, AND, OR, and NOT.

NOT is a function so strictly speaking doesn’t belong in this chapter, but it’s
closely tied to AND and OR. It takes a single argument and inverts its truth value,
returning T if the argument is NIL and NIL otherwise.

AND and OR, however, are macros. They implement logical conjunction and
disjunction of any number of subforms and are defined as macros so they can
short-circuit. That is, they evaluate only as many of their subforms--in left-
to-right order--as necessary to determine the overall truth value. Thus, AND
stops and returns NIL as soon as one of its subforms evaluates to NIL. If all the
subforms evaluate to non-NIL, it returns the value of the last subform. OR, on
the other hand, stops as soon as one of its subforms evaluates to non-NIL and
returns the resulting value. If none of the subforms evaluate to true, OR returns
NIL. Here are some examples:

(not nil) ==> T
(not (= 1 1)) ==> NIL
(and (= 1 2) (= 3 3)) ==> NIL
(or (= 1 2) (= 3 3)) ==> T

87

Looping
Control constructs are the other main kind of looping constructs. Common
Lisp’s looping facilities are--in addition to being quite powerful and flexible--an
interesting lesson in the have-your-cake-and-eat-it-too style of programming that
macros provide.

As it turns out, none of Lisp’s 25 special operators directly support structured
looping. All of Lisp’s looping control constructs are macros built on top of a
pair of special operators that provide a primitive goto facility.4 Like many good
abstractions, syntactic or otherwise, Lisp’s looping macros are built as a set
of layered abstractions starting from the base provided by those two special
operators.

At the bottom (leaving aside the special operators) is a very general looping
construct, DO. While very powerful, DO suffers, as do many general-purpose
abstractions, from being overkill for simple situations. So Lisp also provides two
other macros, DOLIST and DOTIMES, that are less flexible than DO but provide
convenient support for the common cases of looping over the elements of a list
and counting loops. While an implementation can implement these macros
however it wants, they’re typically implemented as macros that expand into an
equivalent DO loop. Thus, DO provides a basic structured looping construct on
top of the underlying primitives provided by Common Lisp’s special operators,
and DOLIST and DOTIMES provide two easier-to-use, if less general, constructs.
And, as you’ll see in the next chapter, you can build your own looping constructs
on top of DO for situations where DOLIST and DOTIMES don’t meet your needs.

Finally, the LOOP macro provides a full-blown mini-language for expressing
looping constructs in a non-Lispy, English-like (or at least Algol-like) language.
Some Lisp hackers love LOOP; others hate it. LOOP’s fans like it because it
provides a concise way to express certain commonly needed looping constructs.
Its detractors dislike it because it’s not Lispy enough. But whichever side one
comes down on, it’s a remarkable example of the power of macros to add new
constructs to the language.

DOLIST and DOTIMES
I’ll start with the easy-to-use DOLIST and DOTIMES macros.

DOLIST loops across the items of a list, executing the loop body with a variable
holding the successive items of the list.5 This is the basic skeleton (leaving out
some of the more esoteric options):

(dolist (var list-form)
body-form*)

When the loop starts, the list-form is evaluated once to produce a list. Then the
body of the loop is evaluated once for each item in the list with the variable var
holding the value of the item. For instance:

88

CL-USER> (dolist (x ’(1 2 3)) (print x))
1
2
3
NIL

Used this way, the DOLIST form as a whole evaluates to NIL.

If you want to break out of a DOLIST loop before the end of the list, you can use
RETURN.

CL-USER> (dolist (x ’(1 2 3)) (print x) (if (evenp x) (return)))
1
2
NIL

DOTIMES is the high-level looping construct for counting loops. The basic template
is much the same as DOLIST’s.

(dotimes (var count-form)
body-form*)

The count-form must evaluate to an integer. Each time through the loop var
holds successive integers from 0 to one less than that number. For instance:

CL-USER> (dotimes (i 4) (print i))
0
1
2
3
NIL

As with DOLIST, you can use RETURN to break out of the loop early.

Because the body of both DOLIST and DOTIMES loops can contain any kind of
expressions, you can also nest loops. For example, to print out the times tables
from 1

Copyright © 2003-2005, Peter Seibel

8. Macros: Defining Your Own
Now it’s time to start writing your own macros. The standard macros I covered
in the previous chapter hint at some of the things you can do with macros, but
that’s just the beginning. Common Lisp doesn’t support macros so every Lisp
programmer can create their own variants of standard control constructs any
more than C supports functions so every C programmer can write trivial variants
of the functions in the C standard library. Macros are part of the language to
allow you to create abstractions on top of the core language and standard library

89

that move you closer toward being able to directly express the things you want
to express.

Perhaps the biggest barrier to a proper understanding of macros is, ironically,
that they’re so well integrated into the language. In many ways they seem like
just a funny kind of function--they’re written in Lisp, they take arguments and
return results, and they allow you to abstract away distracting details. Yet
despite these many similarities, macros operate at a different level than functions
and create a totally different kind of abstraction.

Once you understand the difference between macros and functions, the tight
integration of macros in the language will be a huge benefit. But in the meantime,
it’s a frequent source of confusion for new Lispers. The following story, while not
true in a historical or technical sense, tries to alleviate the confusion by giving
you a way to think about how macros work.

The Story of Mac: A Just-So Story
Once upon a time, long ago, there was a company of Lisp programmers. It
was so long ago, in fact, that Lisp had no macros. Anything that couldn’t be
defined with a function or done with a special operator had to be written in full
every time, which was rather a drag. Unfortunately, the programmers in this
company--though brilliant--were also quite lazy. Often in the middle of their
programs--when the tedium of writing a bunch of code got to be too much--they
would instead write a note describing the code they needed to write at that
place in the program. Even more unfortunately, because they were lazy, the
programmers also hated to go back and actually write the code described by the
notes. Soon the company had a big stack of programs that nobody could run
because they were full of notes about code that still needed to be written.

In desperation, the big bosses hired a junior programmer, Mac, whose job was
to find the notes, write the required code, and insert it into the program in place
of the notes. Mac never ran the programs--they weren’t done yet, of course, so
he couldn’t. But even if they had been completed, Mac wouldn’t have known
what inputs to feed them. So he just wrote his code based on the contents of
the notes and sent it back to the original programmer.

With Mac’s help, all the programs were soon completed, and the company made
a ton of money selling them--so much money that the company could double the
size of its programming staff. But for some reason no one thought to hire anyone
to help Mac; soon he was single- handedly assisting several dozen programmers.
To avoid spending all his time searching for notes in source code, Mac made a
small modification to the compiler the programmers used. Thereafter, whenever
the compiler hit a note, it would e-mail him the note and wait for him to e-mail
back the replacement code. Unfortunately, even with this change, Mac had
a hard time keeping up with the programmers. He worked as carefully as he
could, but sometimes-- especially when the notes weren’t clear--he would make
mistakes.

90

The programmers noticed, however, that the more precisely they wrote their
notes, the more likely it was that Mac would send back correct code. One day,
one of the programmers, having a hard time describing in words the code he
wanted, included in one of his notes a Lisp program that would generate the
code he wanted. That was fine by Mac; he just ran the program and sent the
result to the compiler.

The next innovation came when a programmer put a note at the top of one of
his programs containing a function definition and a comment that said, "Mac,
don’t write any code here, but keep this function for later; I’m going to use it in
some of my other notes." Other notes in the same program said things such as,
"Mac, replace this note with the result of running that other function with the
symbols x and y as arguments."

This technique caught on so quickly that within a few days, most programs
contained dozens of notes defining functions that were only used by code in
other notes. To make it easy for Mac to pick out the notes containing only
definitions that didn’t require any immediate response, the programmers tagged
them with the standard preface: "Definition for Mac, Read Only." This--as the
programmers were still quite lazy--was quickly shortened to "DEF. MAC. R/O"
and then "DEFMACRO."

Pretty soon, there was no actual English left in the notes for Mac. All he did all
day was read and respond to e-mails from the compiler containing DEFMACRO
notes and calls to the functions defined in the DEFMACROs. Since the Lisp
programs in the notes did all the real work, keeping up with the e-mails was no
problem. Mac suddenly had a lot of time on his hands and would sit in his office
daydreaming about white-sand beaches, clear blue ocean water, and drinks with
little paper umbrellas in them.

Several months later the programmers realized nobody had seen Mac for quite
some time. When they went to his office, they found a thin layer of dust over
everything, a desk littered with travel brochures for various tropical locations,
and the computer off. But the compiler still worked--how could it be? It turned
out Mac had made one last change to the compiler: instead of e-mailing notes to
Mac, the compiler now saved the functions defined by DEFMACRO notes and
ran them when called for by the other notes. The programmers decided there
was no reason to tell the big bosses Mac wasn’t coming to the office anymore. So
to this day, Mac draws a salary and from time to time sends the programmers a
postcard from one tropical locale or another.

Macro Expansion Time vs. Runtime
The key to understanding macros is to be quite clear about the distinction
between the code that generates code (macros) and the code that eventually
makes up the program (everything else). When you write macros, you’re writing
programs that will be used by the compiler to generate the code that will then be
compiled. Only after all the macros have been fully expanded and the resulting

91

code compiled can the program actually be run. The time when macros run is
called macro expansion time; this is distinct from runtime, when regular code,
including the code generated by macros, runs.

It’s important to keep this distinction firmly in mind because code running at
macro expansion time runs in a very different environment than code running at
runtime. Namely, at macro expansion time, there’s no way to access the data
that will exist at runtime. Like Mac, who couldn’t run the programs he was
working on because he didn’t know what the correct inputs were, code running at
macro expansion time can deal only with the data that’s inherent in the source
code. For instance, suppose the following source code appears somewhere in a
program:

(defun foo (x)
(when (> x 10) (print ’big)))

Normally you’d think of x as a variable that will hold the argument passed in a
call to foo. But at macro expansion time, such as when the compiler is running
the WHEN macro, the only data available is the source code. Since the program
isn’t running yet, there’s no call to foo and thus no value associated with x.
Instead, the values the compiler passes to WHEN are the Lisp lists representing
the source code, namely, (> x 10) and (print 'big). Suppose that WHEN is
defined, as you saw in the previous chapter, with something like the following
macro:

(defmacro when (condition &rest body)
‘(if ,condition (progn ,@body)))

When the code in foo is compiled, the WHEN macro will be run with those two
forms as arguments. The parameter condition will be bound to the form (> x
10), and the form (print 'big) will be collected into a list that will become
the value of the &rest body parameter. The backquote expression will then
generate this code:

(if (> x 10) (progn (print ’big)))

by interpolating in the value of condition and splicing the value of body into
the PROGN.

When Lisp is interpreted, rather than compiled, the distinction between macro
expansion time and runtime is less clear because they’re temporally intertwined.
Also, the language standard doesn’t specify exactly how an interpreter must
handle macros--it could expand all the macros in the form being interpreted and
then interpret the resulting code, or it could start right in on interpreting the
form and expand macros when it hits them. In either case, macros are always
passed the unevaluated Lisp objects representing the subforms of the macro
form, and the job of the macro is still to produce code that will do something
rather than to do anything directly.

92

DEFMACRO
As you saw in Chapter 3, macros really are defined with DEFMACRO forms, though
it stands--of course--for DEFine MACRO, not Definition for Mac. The basic
skeleton of a DEFMACRO is quite similar to the skeleton of a DEFUN.

(defmacro name (parameter*)
"Optional documentation string."
body-form*)

Like a function, a macro consists of a name, a parameter list, an optional
documentation string, and a body of Lisp expressions.1 However, as I just
discussed, the job of a macro isn’t to do anything directly--its job is to generate
code that will later do what you want.

Macros can use the full power of Lisp to generate their expansion, which means
in this chapter I can only scratch the surface of what you can do with macros. I
can, however, describe a general process for writing macros that works for all
macros from the simplest to the most complex.

The job of a macro is to translate a macro form--in other words, a Lisp form
whose first element is the name of the macro--into code that does a particular
thing. Sometimes you write a macro starting with the code you’d like to be able
to write, that is, with an example macro form. Other times you decide to write
a macro after you’ve written the same pattern of code several times and realize
you can make your code clearer by abstracting the pattern.

Regardless of which end you start from, you need to figure out the other end
before you can start writing a macro: you need to know both where you’re
coming from and where you’re going before you can hope to write code to do it
automatically. Thus, the first step of writing a macro is to write at least one
example of a call to the macro and the code into which that call should expand.

Once you have an example call and the desired expansion, you’re ready for the
second step: writing the actual macro code. For simple macros this will be
a trivial matter of writing a backquoted template with the macro parameters
plugged into the right places. Complex macros will be significant programs in
their own right, complete with helper functions and data structures.

After you’ve written code to translate the example call to the appropriate
expansion, you need to make sure the abstraction the macro provides doesn’t
"leak" details of its implementation. Leaky macro abstractions will work fine
for certain arguments but not others or will interact with code in the calling
environment in undesirable ways. As it turns out, macros can leak in a small
handful of ways, all of which are easily avoided as long as you know to check for
them. I’ll discuss how in the section "Plugging the Leaks."

To sum up, the steps to writing a macro are as follows:

1. Write a sample call to the macro and the code it should expand into, or

93

vice versa.
2. Write code that generates the handwritten expansion from the arguments

in the sample call.
3. Make sure the macro abstraction doesn’t "leak."

A Sample Macro: do-primes
To see how this three-step process works, you’ll write a macro do-primes that
provides a looping construct similar to DOTIMES and DOLIST except that instead
of iterating over integers or elements of a list, it iterates over successive prime
numbers. This isn’t meant to be an example of a particularly useful macro--it’s
just a vehicle for demonstrating the process.

First, you’ll need two utility functions, one to test whether a given number
is prime and another that returns the next prime number greater or equal to
its argument. In both cases you can use a simple, but inefficient, brute-force
approach.

(defun primep (number)
(when (> number 1)
(loop for fac from 2 to (isqrt number) never (zerop (mod number fac)))))

(defun next-prime (number)
(loop for n from number when (primep n) return n))

Now you can write the macro. Following the procedure outlined previously, you
need at least one example of a call to the macro and the code into which it
should expand. Suppose you start with the idea that you want to be able to
write this:

(do-primes (p 0 19)
(format t "~d " p))

to express a loop that executes the body once each for each prime number greater
or equal to 0 and less than or equal to 19, with the variable p holding the prime
number. It makes sense to model this macro on the form of the standard DOLIST
and DOTIMES macros; macros that follow the pattern of existing macros are easier
to understand and use than macros that introduce gratuitously novel syntax.

Without the do-primes macro, you could write such a loop with DO (and the
two utility functions defined previously) like this:

(do ((p (next-prime 0) (next-prime (1+ p))))
((> p 19))

(format t "~d " p))

Now you’re ready to start writing the macro code that will translate from the
former to the latter.

94

Macro Parameters
Since the arguments passed to a macro are Lisp objects representing the source
code of the macro call, the first step in any macro is to extract whatever parts
of those objects are needed to compute the expansion. For macros that simply
interpolate their arguments directly into a template, this step is trivial: simply
defining the right parameters to hold the different arguments is sufficient.

But this approach, it seems, will not suffice for do-primes. The first argument
to the do-primes call is a list containing the name of the loop variable, p; the
lower bound, 0; and the upper bound, 19. But if you look at the expansion, the
list as a whole doesn’t appear in the expansion; the three element are split up
and put in different places.

You could define do-primes with two parameters, one to hold the list and a
&rest parameter to hold the body forms, and then take apart the list by hand,
something like this:

(defmacro do-primes (var-and-range &rest body)
(let ((var (first var-and-range))

(start (second var-and-range))
(end (third var-and-range)))

‘(do ((,var (next-prime ,start) (next-prime (1+ ,var))))
((> ,var ,end))

,@body)))

In a moment I’ll explain how the body generates the correct expansion; for now
you can just note that the variables var, start, and end each hold a value,
extracted from var-and-range, that’s then interpolated into the backquote
expression that generates do-primes’s expansion.

However, you don’t need to take apart var-and-range "by hand" because macro
parameter lists are what are called destructuring parameter lists. Destructuring,
as the name suggests, involves taking apart a structure--in this case the list
structure of the forms passed to a macro.

Within a destructuring parameter list, a simple parameter name can be replaced
with a nested parameter list. The parameters in the nested parameter list will
take their values from the elements of the expression that would have been bound
to the parameter the list replaced. For instance, you can replace var-and-range
with a list (var start end), and the three elements of the list will automatically
be destructured into those three parameters.

Another special feature of macro parameter lists is that you can use &body as a
synonym for &rest. Semantically &body and &rest are equivalent, but many
development environments will use the presence of a &body parameter to modify
how they indent uses of the macro--typically &body parameters are used to hold
a list of forms that make up the body of the macro.

So you can streamline the definition of do-primes and give a hint to both human

95

readers and your development tools about its intended use by defining it like
this:

(defmacro do-primes ((var start end) &body body)
‘(do ((,var (next-prime ,start) (next-prime (1+ ,var))))

((> ,var ,end))
,@body))

In addition to being more concise, destructuring parameter lists also give you
automatic error checking--with do-primes defined this way, Lisp will be able to
detect a call whose first argument isn’t a three-element list and will give you
a meaningful error message just as if you had called a function with too few
or too many arguments. Also, in development environments such as SLIME
that indicate what arguments are expected as soon as you type the name of a
function or macro, if you use a destructuring parameter list, the environment
will be able to tell you more specifically the syntax of the macro call. With the
original definition, SLIME would tell you do-primes is called like this:

(do-primes var-and-range &rest body)

But with the new definition, it can tell you that a call should look like this:

(do-primes (var start end) &body body)

Destructuring parameter lists can contain &optional, &key, and &rest parame-
ters and can contain nested destructuring lists. However, you don’t need any of
those options to write do-primes.

Generating the Expansion
Because do-primes is a fairly simple macro, after you’ve destructured the
arguments, all that’s left is to interpolate them into a template to get the
expansion.

For simple macros like do-primes, the special backquote syntax is perfect. To
review, a backquoted expression is similar to a quoted expression except you can
"unquote" particular subexpressions by preceding them with a comma, possibly
followed by an at (@) sign. Without an at sign, the comma causes the value of
the subexpression to be included as is. With an at sign, the value--which must
be a list--is "spliced" into the enclosing list.

Another useful way to think about the backquote syntax is as a particularly
concise way of writing code that generates lists. This way of thinking about
it has the benefit of being pretty much exactly what’s happening under the
covers--when the reader reads a backquoted expression, it translates it into code
that generates the appropriate list structure. For instance, `(,a b) might be
read as (list a 'b). The language standard doesn’t specify exactly what code
the reader must produce as long as it generates the right list structure.

Table 8-1 shows some examples of backquoted expressions along with equivalent

96

list-building code and the result you’d get if you evaluated either the backquoted
expression or the equivalent code.2

Table 8-1. Backquote Examples

Backquote Syntax Equivalent List-Building Code Result
`(a (+ 1 2) c) (list 'a '(+ 1 2) 'c) (a (+ 1 2) c)
`(a ,(+ 1 2) c) (list 'a (+ 1 2) 'c) (a 3 c)
`(a (list 1 2) c) (list 'a '(list 1 2) 'c) (a (list 1 2) c)
`(a ,(list 1 2) c) (list 'a (list 1 2) 'c) (a (1 2) c)
`(a ,@(list 1 2) c) (append (list 'a) (list 1 2) (list 'c)) (a 1 2 c)

It’s important to note that backquote is just a convenience. But it’s a big conve-
nience. To appreciate how big, compare the backquoted version of do-primes
to the following version, which uses explicit list-building code:

(defmacro do-primes-a ((var start end) &body body)
(append ’(do)

(list (list (list var
(list ’next-prime start)
(list ’next-prime (list ’1+ var)))))

(list (list (list ’> var end)))
body))

As you’ll see in a moment, the current implementation of do-primes doesn’t
handle certain edge cases correctly. But first you should verify that it at least
works for the original example. You can test it in two ways. You can test it
indirectly by simply using it--presumably, if the resulting behavior is correct, the
expansion is correct. For instance, you can type the original example’s use of
do-primes to the REPL and see that it indeed prints the right series of prime
numbers.

CL-USER> (do-primes (p 0 19) (format t "~d " p))
2 3 5 7 11 13 17 19
NIL

Or you can check the macro directly by looking at the expansion of a particular
call. The function MACROEXPAND-1 takes any Lisp expression as an argument and
returns the result of doing one level of macro expansion.3 Because MACROEXPAND-1
is a function, to pass it a literal macro form you must quote it. You can use it
to see the expansion of the previous call.4

CL-USER> (macroexpand-1 ’(do-primes (p 0 19) (format t "~d " p)))
(DO ((P (NEXT-PRIME 0) (NEXT-PRIME (1+ P))))

((> P 19))
(FORMAT T "~d " P))

T

97

Or, more conveniently, in SLIME you can check a macro’s expansion by placing
the cursor on the opening parenthesis of a macro form in your source code and
typing C-c RET to invoke the Emacs function slime-macroexpand-1, which
will pass the macro form to MACROEXPAND-1 and "pretty print" the result in a
temporary buffer.

However you get to it, you can see that the result of macro expansion is the
same as the original handwritten expansion, so it seems that do-primes works.

Plugging the Leaks
In his essay "The Law of Leaky Abstractions," Joel Spolsky coined the term
leaky abstraction to describe an abstraction that "leaks" details it’s supposed to
be abstracting away. Since writing a macro is a way of creating an abstraction,
you need to make sure your macros don’t leak needlessly.5

As it turns out, a macro can leak details of its inner workings in three ways.
Luckily, it’s pretty easy to tell whether a given macro suffers from any of those
leaks and to fix them.

The current definition suffers from one of the three possible macro leaks: namely,
it evaluates the end subform too many times. Suppose you were to call do-primes
with, instead of a literal number such as 19, an expression such as (random 100)
in the end position.

(do-primes (p 0 (random 100))
(format t "~d " p))

Presumably the intent here is to loop over the primes from zero to whatever
random number is returned by (random 100). However, this isn’t what the
current implementation does, as MACROEXPAND-1 shows.

CL-USER> (macroexpand-1 ’(do-primes (p 0 (random 100)) (format t "~d " p)))
(DO ((P (NEXT-PRIME 0) (NEXT-PRIME (1+ P))))

((> P (RANDOM 100)))
(FORMAT T "~d " P))

T

When this expansion code is run, RANDOM will be called each time the end test
for the loop is evaluated. Thus, instead of looping until p is greater than an
initially chosen random number, this loop will iterate until it happens to draw a
random number less than or equal to the current value of p. While the total
number of iterations will still be random, it will be drawn from a much different
distribution than the uniform distribution RANDOM returns.

This is a leak in the abstraction because, to use the macro correctly, the caller
needs to be aware that the end form is going to be evaluated more than once.
One way to plug this leak would be to simply define this as the behavior of
do-primes. But that’s not very satisfactory--you should try to observe the
Principle of Least Astonishment when implementing macros. And programmers

98

will typically expect the forms they pass to macros to be evaluated no more
times than absolutely necessary.6 Furthermore, since do-primes is built on the
model of the standard macros, DOTIMES and DOLIST, neither of which causes
any of the forms except those in the body to be evaluated more than once, most
programmers will expect do-primes to behave similarly.

You can fix the multiple evaluation easily enough; you just need to generate
code that evaluates end once and saves the value in a variable to be used later.
Recall that in a DO loop, variables defined with an initialization form and no
step form don’t change from iteration to iteration. So you can fix the multiple
evaluation problem with this definition:

(defmacro do-primes ((var start end) &body body)
‘(do ((ending-value ,end)

(,var (next-prime ,start) (next-prime (1+ ,var))))
((> ,var ending-value))

,@body))

Unfortunately, this fix introduces two new leaks to the macro abstraction.

One new leak is similar to the multiple-evaluation leak you just fixed. Because
the initialization forms for variables in a DO loop are evaluated in the order the
variables are defined, when the macro expansion is evaluated, the expression
passed as end will be evaluated before the expression passed as start, opposite
to the order they appear in the macro call. This leak doesn’t cause any problems
when start and end are literal values like 0 and 19. But when they’re forms
that can have side effects, evaluating them out of order can once again run afoul
of the Principle of Least Astonishment.

This leak is trivially plugged by swapping the order of the two variable definitions.

(defmacro do-primes ((var start end) &body body)
‘(do ((,var (next-prime ,start) (next-prime (1+ ,var)))

(ending-value ,end))
((> ,var ending-value))

,@body))

The last leak you need to plug was created by using the variable name
ending-value. The problem is that the name, which ought to be a purely
internal detail of the macro implementation, can end up interacting with code
passed to the macro or in the context where the macro is called. The following
seemingly innocent call to do-primes doesn’t work correctly because of this
leak:

(do-primes (ending-value 0 10)
(print ending-value))

Neither does this one:

(let ((ending-value 0))
(do-primes (p 0 10)

99

(incf ending-value p))
ending-value)

Again, MACROEXPAND-1 can show you the problem. The first call expands to this:

(do ((ending-value (next-prime 0) (next-prime (1+ ending-value)))
(ending-value 10))
((> ending-value ending-value))

(print ending-value))

Some Lisps may reject this code because ending-value is used twice as a variable
name in the same DO loop. If not rejected outright, the code will loop forever
since ending-value will never be greater than itself.

The second problem call expands to the following:

(let ((ending-value 0))
(do ((p (next-prime 0) (next-prime (1+ p)))

(ending-value 10))
((> p ending-value))

(incf ending-value p))
ending-value)

In this case the generated code is perfectly legal, but the behavior isn’t at all
what you want. Because the binding of ending-value established by the LET
outside the loop is shadowed by the variable with the same name inside the DO,
the form (incf ending-value p) increments the loop variable ending-value
instead of the outer variable with the same name, creating another infinite loop.7

Clearly, what you need to patch this leak is a symbol that will never be used
outside the code generated by the macro. You could try using a really unlikely
name, but that’s no guarantee. You could also protect yourself to some extent
by using packages, as described in Chapter 21. But there’s a better solution.

The function GENSYM returns a unique symbol each time it’s called. This is a
symbol that has never been read by the Lisp reader and never will be because
it isn’t interned in any package. Thus, instead of using a literal name like
ending-value, you can generate a new symbol each time do-primes is expanded.

(defmacro do-primes ((var start end) &body body)
(let ((ending-value-name (gensym)))
‘(do ((,var (next-prime ,start) (next-prime (1+ ,var)))

(,ending-value-name ,end))
((> ,var ,ending-value-name))

,@body)))

Note that the code that calls GENSYM isn’t part of the expansion; it runs as part
of the macro expander and thus creates a new symbol each time the macro
is expanded. This may seem a bit strange at first--ending-value-name is a
variable whose value is the name of another variable. But really it’s no different
from the parameter var whose value is the name of a variable--the difference

100

is the value of var was created by the reader when the macro form was read,
and the value of ending-value-name is generated programmatically when the
macro code runs.

With this definition the two previously problematic forms expand into code that
works the way you want. The first form:

(do-primes (ending-value 0 10)
(print ending-value))

expands into the following:

(do ((ending-value (next-prime 0) (next-prime (1+ ending-value)))
(#:g2141 10))
((> ending-value #:g2141))

(print ending-value))

Now the variable used to hold the ending value is the gensymed symbol, #:g2141.
The name of the symbol, G2141, was generated by GENSYM but isn’t significant;
the thing that matters is the object identity of the symbol. Gensymed symbols
are printed in the normal syntax for uninterned symbols, with a leading #:.

The other previously problematic form:

(let ((ending-value 0))
(do-primes (p 0 10)
(incf ending-value p))

ending-value)

looks like this if you replace the do-primes form with its expansion:

(let ((ending-value 0))
(do ((p (next-prime 0) (next-prime (1+ p)))

(#:g2140 10))
((> p #:g2140))

(incf ending-value p))
ending-value)

Again, there’s no leak since the ending-value variable bound by the LET sur-
rounding the do-primes loop is no longer shadowed by any variables introduced
in the expanded code.

Not all literal names used in a macro expansion will necessarily cause a problem-
-as you get more experience with the various binding forms, you’ll be able to
determine whether a given name is being used in a position that could cause a
leak in a macro abstraction. But there’s no real downside to using a gensymed
name just to be safe.

With that fix, you’ve plugged all the leaks in the implementation of do-primes.
Once you’ve gotten a bit of macro-writing experience under your belt, you’ll
learn to write macros with these kinds of leaks preplugged. It’s actually fairly
simple if you follow these rules of thumb:

101

• Unless there’s a particular reason to do otherwise, include any subforms in
the expansion in positions that will be evaluated in the same order as the
subforms appear in the macro call.

• Unless there’s a particular reason to do otherwise, make sure subforms
are evaluated only once by creating a variable in the expansion to hold
the value of evaluating the argument form and then using that variable
anywhere else the value is needed in the expansion.

• Use GENSYM at macro expansion time to create variable names used in the
expansion.

Macro-Writing Macros
Of course, there’s no reason you should be able to take advantage of macros only
when writing functions. The job of macros is to abstract away common syntactic
patterns, and certain patterns come up again and again in writing macros that
can also benefit from being abstracted away.

In fact, you’ve already seen one such pattern--many macros will, like the last
version of do-primes, start with a LET that introduces a few variables holding
gensymed symbols to be used in the macro’s expansion. Since this is such a
common pattern, why not abstract it away with its own macro?

In this section you’ll write a macro, with-gensyms, that does just that. In other
words, you’ll write a macro-writing macro: a macro that generates code that
generates code. While complex macro-writing macros can be a bit confusing
until you get used to keeping the various levels of code clear in your mind,
with-gensyms is fairly straightforward and will serve as a useful but not too
strenuous mental limbering exercise.

You want to be able to write something like this:

(defmacro do-primes ((var start end) &body body)
(with-gensyms (ending-value-name)
‘(do ((,var (next-prime ,start) (next-prime (1+ ,var)))

(,ending-value-name ,end))
((> ,var ,ending-value-name))

,@body)))

and have it be equivalent to the previous version of do-primes. In other words,
the with-gensyms needs to expand into a LET that binds each named variable,
ending-value-name in this case, to a gensymed symbol. That’s easy enough to
write with a simple backquote template.

(defmacro with-gensyms ((&rest names) &body body)
‘(let ,(loop for n in names collect ‘(,n (gensym)))

,@body))

Note how you can use a comma to interpolate the value of the LOOP expression.
The loop generates a list of binding forms where each binding form consists of

102

a list containing one of the names given to with-gensyms and the literal code
(gensym). You can test what code the LOOP expression would generate at the
REPL by replacing names with a list of symbols.

CL-USER> (loop for n in ’(a b c) collect ‘(,n (gensym)))
((A (GENSYM)) (B (GENSYM)) (C (GENSYM)))

After the list of binding forms, the body argument to with-gensyms is spliced
in as the body of the LET. Thus, in the code you wrap in a with-gensyms
you can refer to any of the variables named in the list of variables passed to
with-gensyms.

If you macro-expand the with-gensyms form in the new definition of do-primes,
you should see something like this:

(let ((ending-value-name (gensym)))
‘(do ((,var (next-prime ,start) (next-prime (1+ ,var)))

(,ending-value-name ,end))
((> ,var ,ending-value-name))

,@body))

Looks good. While this macro is fairly trivial, it’s important to keep clear about
when the different macros are expanded: when you compile the DEFMACRO of
do-primes, the with-gensyms form is expanded into the code just shown and
compiled. Thus, the compiled version of do-primes is just the same as if you
had written the outer LET by hand. When you compile a function that uses
do-primes, the code generated by with-gensyms runs generating the do-primes
expansion, but with-gensyms itself isn’t needed to compile a do-primes form
since it has already been expanded, back when do-primes was compiled.

Another classic macro-writing MACRO: ONCE-ONLY

Another classic macro-writing macro is once-only, which is used to generate
code that evaluates certain macro arguments once only and in a particular order.
Using once-only, you could write do-primes almost as simply as the original
leaky version, like this:

(defmacro do-primes ((var start end) &body body)
(once-only (start end)
‘(do ((,var (next-prime ,start) (next-prime (1+ ,var))))

((> ,var ,end))
,@body)))

However, the implementation of once-only is a bit too involved for a blow-by-
blow explanation, as it relies on multiple levels of backquoting and unquoting.
If you really want to sharpen your macro chops, you can try to figure out how it
works. It looks like this:

(defmacro once-only ((&rest names) &body body)
(let ((gensyms (loop for n in names collect (gensym))))
‘(let (,@(loop for g in gensyms collect ‘(,g (gensym))))

103

‘(let (,,@(loop for g in gensyms for n in names collect ‘‘(,,g ,,n)))
,(let (,@(loop for n in names for g in gensyms collect ‘(,n ,g)))

,@body)))))

Beyond Simple Macros
I could, of course, say a lot more about macros. All the macros you’ve seen so
far have been fairly simple examples that save you a bit of typing but don’t
provide radical new ways of expressing things. In upcoming chapters you’ll see
examples of macros that allow you to express things in ways that would be
virtually impossible without macros. You’ll start in the very next chapter, in
which you’ll build a simple but effective unit test framework.

1As with functions, macros can also contain declarations, but you don’t need to
worry about those for now.
2APPEND, which I haven’t discussed yet, is a function that takes any number of
list arguments and returns the result of splicing them together into a single list.
3Another function, MACROEXPAND, keeps expanding the result as long as the first
element of the resulting expansion is the name of the macro. However, this
will often show you a much lower-level view of what the code is doing than you
want, since basic control constructs such as DO are also implemented as macros.
In other words, while it can be educational to see what your macro ultimately
expands into, it isn’t a very useful view into what your own macros are doing.
4If the macro expansion is shown all on one line, it’s probably because the
variable *PRINT-PRETTY* is NIL. If it is, evaluating (setf *print-pretty* t)
should make the macro expansion easier to read.
5This is from Joel on Software by Joel Spolsky, also available at
http://www.joelonsoftware.com/ articles/LeakyAbstractions.html.
Spolsky’s point in the essay is that all abstractions leak to some extent; that is,
there are no perfect abstractions. But that doesn’t mean you should tolerate
leaks you can easily plug.
6Of course, certain forms are supposed to be evaluated more than once, such as
the forms in the body of a do-primes loop.
7It may not be obvious that this loop is necessarily infinite given the nonuniform
occurrences of prime numbers. The starting point for a proof that it is in fact
infinite is Bertrand’s postulate, which says for any n > 1, there exists a prime p,
n < p < 2n. From there you can prove that for any prime number, P less than
the sum of the preceding prime numbers, the next prime, P’, is also smaller than
the original sum plus P.

Copyright © 2003-2005, Peter Seibel

104

9. Practical: Building a Unit Test Framework
In this chapter you’ll return to cutting code and develop a simple unit testing
framework for Lisp. This will give you a chance to use some of the features
you’ve learned about since Chapter 3, including macros and dynamic variables,
in real code.

The main design goal of the test framework will be to make it as easy as possible
to add new tests, to run various suites of tests, and to track down test failures.
For now you’ll focus on designing a framework you can use during interactive
development.

The key feature of an automated testing framework is that the framework is
responsible for telling you whether all the tests passed. You don’t want to spend
your time slogging through test output checking answers when the computer can
do it much more quickly and accurately. Consequently, each test case must be
an expression that yields a boolean value--true or false, pass or fail. For instance,
if you were writing tests for the built-in + function, these might be reasonable
test cases:1

(= (+ 1 2) 3)
(= (+ 1 2 3) 6)
(= (+ -1 -3) -4)

Functions that have side effects will be tested slightly differently--you’ll have to
call the function and then check for evidence of the expected side effects.2 But
in the end, every test case has to boil down to a boolean expression, thumbs up
or thumbs down.

Two First Tries
If you were doing ad hoc testing, you could enter these expressions at the REPL
and check that they return T. But you want a framework that makes it easy to
organize and run these test cases whenever you want. If you want to start with
the simplest thing that could possibly work, you can just write a function that
evaluates the test cases and ANDs the results together.

(defun test-+ ()
(and
(= (+ 1 2) 3)
(= (+ 1 2 3) 6)
(= (+ -1 -3) -4)))

Whenever you want to run this set of test cases, you can call test-+.

CL-USER> (test-+)
T

As long as it returns T, you know the test cases are passing. This way of
organizing tests is also pleasantly concise--you don’t have to write a bunch of

105

test bookkeeping code. However, as you’ll discover the first time a test case fails,
the result reporting leaves something to be desired. When test-+ returns NIL,
you’ll know something failed, but you’ll have no idea which test case it was.

So let’s try another simple--even simpleminded--approach. To find out what
happens to each test case, you could write something like this:

(defun test-+ ()
(format t "~:[FAIL~;pass~] ... ~a~%" (= (+ 1 2) 3) ’(= (+ 1 2) 3))
(format t "~:[FAIL~;pass~] ... ~a~%" (= (+ 1 2 3) 6) ’(= (+ 1 2 3) 6))
(format t "~:[FAIL~;pass~] ... ~a~%" (= (+ -1 -3) -4) ’(= (+ -1 -3) -4)))

Now each test case will be reported individually. The ~:[FAIL~;pass~] part of
the FORMAT directive causes FORMAT to print "FAIL" if the first format argument
is false and "pass" otherwise.3 Then you label the result with the test expression
itself. Now running test-+ shows you exactly what’s going on.

CL-USER> (test-+)
pass ... (= (+ 1 2) 3)
pass ... (= (+ 1 2 3) 6)
pass ... (= (+ -1 -3) -4)
NIL

This time the result reporting is more like what you want, but the code itself
is pretty gross. The repeated calls to FORMAT as well as the tedious duplication
of the test expression cry out to be refactored. The duplication of the test
expression is particularly grating because if you mistype it, the test results will
be mislabeled.

Another problem is that you don’t get a single indicator whether all the test
cases passed. It’s easy enough, with only three test cases, to scan the output
looking for "FAIL"; however, when you have hundreds of test cases, it’ll be more
of a hassle.

Refactoring
What you’d really like is a way to write test functions as streamlined as the first
test-+ that return a single T or NIL value but that also report on the results of
individual test cases like the second version. Since the second version is close to
what you want in terms of functionality, your best bet is to see if you can factor
out some of the annoying duplication.

The simplest way to get rid of the repeated similar calls to FORMAT is to create a
new function.

(defun report-result (result form)
(format t "~:[FAIL~;pass~] ... ~a~%" result form))

Now you can write test-+ with calls to report-result instead of FORMAT. It’s
not a huge improvement, but at least now if you decide to change the way you

106

report results, there’s only one place you have to change.

(defun test-+ ()
(report-result (= (+ 1 2) 3) ’(= (+ 1 2) 3))
(report-result (= (+ 1 2 3) 6) ’(= (+ 1 2 3) 6))
(report-result (= (+ -1 -3) -4) ’(= (+ -1 -3) -4)))

Next you need to get rid of the duplication of the test case expression, with its
attendant risk of mislabeling of results. What you’d really like is to be able to
treat the expression as both code (to get the result) and data (to use as the
label). Whenever you want to treat code as data, that’s a sure sign you need a
macro. Or, to look at it another way, what you need is a way to automate writing
the error-prone report-result calls. You’d like to be able to say something
like this:

(check (= (+ 1 2) 3))

and have it mean the following:

(report-result (= (+ 1 2) 3) ’(= (+ 1 2) 3))

Writing a macro to do this translation is trivial.

(defmacro check (form)
‘(report-result ,form ’,form))

Now you can change test-+ to use check.

(defun test-+ ()
(check (= (+ 1 2) 3))
(check (= (+ 1 2 3) 6))
(check (= (+ -1 -3) -4)))

Since you’re on the hunt for duplication, why not get rid of those repeated calls
to check? You can define check to take an arbitrary number of forms and wrap
them each in a call to report-result.

(defmacro check (&body forms)
‘(progn

,@(loop for f in forms collect ‘(report-result ,f ’,f))))

This definition uses a common macro idiom of wrapping a PROGN around a series
of forms in order to turn them into a single form. Notice also how you can use
,@ to splice in the result of an expression that returns a list of expressions that
are themselves generated with a backquote template.

With the new version of check you can write a new version of test-+ like this:

(defun test-+ ()
(check
(= (+ 1 2) 3)
(= (+ 1 2 3) 6)
(= (+ -1 -3) -4)))

107

that is equivalent to the following code:

(defun test-+ ()
(progn
(report-result (= (+ 1 2) 3) ’(= (+ 1 2) 3))
(report-result (= (+ 1 2 3) 6) ’(= (+ 1 2 3) 6))
(report-result (= (+ -1 -3) -4) ’(= (+ -1 -3) -4))))

Thanks to check, this version is as concise as the first version of test-+ but
expands into code that does the same thing as the second version. And now any
changes you want to make to how test-+ behaves, you can make by changing
check.

Fixing the Return Value
You can start with fixing test-+ so its return value indicates whether all the test
cases passed. Since check is responsible for generating the code that ultimately
runs the test cases, you just need to change it to generate code that also keeps
track of the results.

As a first step, you can make a small change to report-result so it returns the
result of the test case it’s reporting.

(defun report-result (result form)
(format t "~:[FAIL~;pass~] ... ~a~%" result form)
result)

Now that report-result returns the result of its test case, it might seem you
could just change the PROGN to an AND to combine the results. Unfortunately,
AND doesn’t do quite what you want in this case because of its short-circuiting
behavior: as soon as one test case fails, AND will skip the rest. On the other
hand, if you had a construct that worked like AND without the short-circuiting,
you could use it in the place of PROGN, and you’d be done. Common Lisp doesn’t
provide such a construct, but that’s no reason you can’t use it: it’s a trivial
matter to write a macro to provide it yourself.

Leaving test cases aside for a moment, what you want is a macro--let’s call it
combine-results--that will let you say this:

(combine-results
(foo)
(bar)
(baz))

and have it mean something like this:

(let ((result t))
(unless (foo) (setf result nil))
(unless (bar) (setf result nil))
(unless (baz) (setf result nil))

108

result)

The only tricky bit to writing this macro is that you need to introduce a variable-
-result in the previous code--in the expansion. As you saw in the previous
chapter, using a literal name for variables in macro expansions can introduce a
leak in your macro abstraction, so you’ll need to create a unique name. This is
a job for with-gensyms. You can define combine-results like this:

(defmacro combine-results (&body forms)
(with-gensyms (result)
‘(let ((,result t))
,@(loop for f in forms collect ‘(unless ,f (setf ,result nil)))
,result)))

Now you can fix check by simply changing the expansion to use
combine-results instead of PROGN.

(defmacro check (&body forms)
‘(combine-results
,@(loop for f in forms collect ‘(report-result ,f ’,f))))

With that version of check, test-+ should emit the results of its three test
expressions and then return T to indicate that everything passed.4

CL-USER> (test-+)
pass ... (= (+ 1 2) 3)
pass ... (= (+ 1 2 3) 6)
pass ... (= (+ -1 -3) -4)
T

And if you change one of the test cases so it fails,5 the final return value changes
to NIL.

CL-USER> (test-+)
pass ... (= (+ 1 2) 3)
pass ... (= (+ 1 2 3) 6)
FAIL ... (= (+ -1 -3) -5)
NIL

Better Result Reporting
As long as you have only one test function, the current result reporting is pretty
clear. If a particular test case fails, all you have to do is find the test case in
the check form and figure out why it’s failing. But if you write a lot of tests,
you’ll probably want to organize them somehow, rather than shoving them all
into one function. For instance, suppose you wanted to add some test cases for
the * function. You might write a new test function.

(defun test-* ()
(check

109

(= (* 2 2) 4)
(= (* 3 5) 15)))

Now that you have two test functions, you’ll probably want another function
that runs all the tests. That’s easy enough.

(defun test-arithmetic ()
(combine-results
(test-+)
(test-*)))

In this function you use combine-results instead of check since both test-+
and test-* will take care of reporting their own results. When you run
test-arithmetic, you’ll get the following results:

CL-USER> (test-arithmetic)
pass ... (= (+ 1 2) 3)
pass ... (= (+ 1 2 3) 6)
pass ... (= (+ -1 -3) -4)
pass ... (= (* 2 2) 4)
pass ... (= (* 3 5) 15)
T

Now imagine that one of the test cases failed and you need to track down the
problem. With only five test cases and two test functions, it won’t be too hard
to find the code of the failing test case. But suppose you had 500 test cases
spread across 20 functions. It might be nice if the results told you what function
each test case came from.

Since the code that prints the results is centralized in report-result, you need
a way to pass information about what test function you’re in to report-result.
You could add a parameter to report-result to pass this information, but
check, which generates the calls to report-result, doesn’t know what function
it’s being called from, which means you’d also have to change the way you call
check, passing it an argument that it simply passes onto report-result.

This is exactly the kind of problem dynamic variables were designed to solve. If
you create a dynamic variable that each test function binds to the name of the
function before calling check, then report-result can use it without check
having to know anything about it.

Step one is to declare the variable at the top level.

(defvar *test-name* nil)

Now you need to make another tiny change to report-result to include
test-name in the FORMAT output.

(format t "~:[FAIL~;pass~] ... ~a: ~a~%" result *test-name* form)

With those changes, the test functions will still work but will produce the
following output because *test-name* is never rebound:

110

CL-USER> (test-arithmetic)
pass ... NIL: (= (+ 1 2) 3)
pass ... NIL: (= (+ 1 2 3) 6)
pass ... NIL: (= (+ -1 -3) -4)
pass ... NIL: (= (* 2 2) 4)
pass ... NIL: (= (* 3 5) 15)
T

For the name to be reported properly, you need to change the two test functions.

(defun test-+ ()
(let ((*test-name* ’test-+))
(check
(= (+ 1 2) 3)
(= (+ 1 2 3) 6)
(= (+ -1 -3) -4))))

(defun test-* ()
(let ((*test-name* ’test-*))
(check
(= (* 2 2) 4)
(= (* 3 5) 15))))

Now the results are properly labeled.

CL-USER> (test-arithmetic)
pass ... TEST-+: (= (+ 1 2) 3)
pass ... TEST-+: (= (+ 1 2 3) 6)
pass ... TEST-+: (= (+ -1 -3) -4)
pass ... TEST-*: (= (* 2 2) 4)
pass ... TEST-*: (= (* 3 5) 15)
T

An Abstraction Emerges
In fixing the test functions, you’ve introduced several new bits of duplication.
Not only does each function have to include the name of the function twice--once
as the name in the DEFUN and once in the binding of *test-name*--but the
same three-line code pattern is duplicated between the two functions. You could
remove the duplication simply on the grounds that duplication is bad. But if
you look more closely at the root cause of the duplication, you can learn an
important lesson about how to use macros.

The reason both these functions start the same way is because they’re both test
functions. The duplication arises because, at the moment, test function is only
half an abstraction. The abstraction exists in your mind, but in the code there’s
no way to express "this is a test function" other than to write code that follows
a particular pattern.

111

Unfortunately, partial abstractions are a crummy tool for building software.
Because a half abstraction is expressed in code by a manifestation of the pattern,
you’re guaranteed to have massive code duplication with all the normal bad
consequences that implies for maintainability. More subtly, because the abstrac-
tion exists only in the minds of programmers, there’s no mechanism to make
sure different programmers (or even the same programmer working at different
times) actually understand the abstraction the same way. To make a complete
abstraction, you need a way to express "this is a test function" and have all the
code required by the pattern be generated for you. In other words, you need a
macro.

Because the pattern you’re trying to capture is a DEFUN plus some boilerplate
code, you need to write a macro that will expand into a DEFUN. You’ll then use
this macro, instead of a plain DEFUN to define test functions, so it makes sense
to call it deftest.

(defmacro deftest (name parameters &body body)
‘(defun ,name ,parameters
(let ((*test-name* ’,name))
,@body)))

With this macro you can rewrite test-+ as follows:

(deftest test-+ ()
(check
(= (+ 1 2) 3)
(= (+ 1 2 3) 6)
(= (+ -1 -3) -4)))

A Hierarchy of Tests
Now that you’ve established test functions as first-class citizens, the question
might arise, should test-arithmetic be a test function? As things stand,
it doesn’t really matter--if you did define it with deftest, its binding of
test-name would be shadowed by the bindings in test-+ and test-* before
any results are reported.

But now imagine you’ve got thousands of test cases to organize. The first level
of organization is provided by test functions such as test-+ and test-* that
directly call check. But with thousands of test cases, you’ll likely need other
levels of organization. Functions such as test-arithmetic can group related
test functions into test suites. Now suppose some low-level test functions are
called from multiple test suites. It’s not unheard of for a test case to pass in one
context but fail in another. If that happens, you’ll probably want to know more
than just what low-level test function contains the test case.

If you define the test suite functions such as test-arithmetic with deftest
and make a small change to the *test-name* bookkeeping, you can have results
reported with a "fully qualified" path to the test case, something like this:

112

pass ... (TEST-ARITHMETIC TEST-+): (= (+ 1 2) 3)

Because you’ve already abstracted the process of defining a test function, you
can change the bookkeeping details without modifying the code of the test
functions.6 To make *test-name* hold a list of test function names instead of
just the name of the most recently entered test function, you just need to change
this binding form:

(let ((*test-name* ’,name))

to the following:

(let ((*test-name* (append *test-name* (list ’,name))))

Since APPEND returns a new list made up of the elements of its arguments,
this version will bind *test-name* to a list containing the old contents of
test-name with the new name tacked onto the end.7 When each test function
returns, the old value of *test-name* will be restored.

Now you can redefine test-arithmetic with deftest instead of DEFUN.

(deftest test-arithmetic ()
(combine-results
(test-+)
(test-*)))

The results now show exactly how you got to each test expression.

CL-USER> (test-arithmetic)
pass ... (TEST-ARITHMETIC TEST-+): (= (+ 1 2) 3)
pass ... (TEST-ARITHMETIC TEST-+): (= (+ 1 2 3) 6)
pass ... (TEST-ARITHMETIC TEST-+): (= (+ -1 -3) -4)
pass ... (TEST-ARITHMETIC TEST-*): (= (* 2 2) 4)
pass ... (TEST-ARITHMETIC TEST-*): (= (* 3 5) 15)
T

As your test suite grows, you can add new layers of test functions; as long as
they’re defined with deftest, the results will be reported correctly. For instance,
the following:

(deftest test-math ()
(test-arithmetic))

would generate these results:

CL-USER> (test-math)
pass ... (TEST-MATH TEST-ARITHMETIC TEST-+): (= (+ 1 2) 3)
pass ... (TEST-MATH TEST-ARITHMETIC TEST-+): (= (+ 1 2 3) 6)
pass ... (TEST-MATH TEST-ARITHMETIC TEST-+): (= (+ -1 -3) -4)
pass ... (TEST-MATH TEST-ARITHMETIC TEST-*): (= (* 2 2) 4)
pass ... (TEST-MATH TEST-ARITHMETIC TEST-*): (= (* 3 5) 15)
T

113

Wrapping Up
You could keep going, adding more features to this test framework. But as a
framework for writing tests with a minimum of busywork and easily running
them from the REPL, this is a reasonable start. Here’s the complete code, all
26 lines of it:

(defvar *test-name* nil)

(defmacro deftest (name parameters &body body)
"Define a test function. Within a test function we can call
other test functions or use ’check’ to run individual test
cases."
‘(defun ,name ,parameters
(let ((*test-name* (append *test-name* (list ’,name))))
,@body)))

(defmacro check (&body forms)
"Run each expression in ’forms’ as a test case."
‘(combine-results
,@(loop for f in forms collect ‘(report-result ,f ’,f))))

(defmacro combine-results (&body forms)
"Combine the results (as booleans) of evaluating ’forms’ in order."
(with-gensyms (result)
‘(let ((,result t))
,@(loop for f in forms collect ‘(unless ,f (setf ,result nil)))
,result)))

(defun report-result (result form)
"Report the results of a single test case. Called by ’check’."
(format t "~:[FAIL~;pass~] ... ~a: ~a~%" result *test-name* form)
result)

It’s worth reviewing how you got here because it’s illustrative of how programming
in Lisp often goes.

You started by defining a simple version of your problem--how to evaluate a
bunch of boolean expressions and find out if they all returned true. Just ANDing
them together worked and was syntactically clean but revealed the need for
better result reporting. So you wrote some really simpleminded code, chock-full
of duplication and error-prone idioms that reported the results the way you
wanted.

The next step was to see if you could refactor the second version into something
as clean as the former. You started with a standard refactoring technique of
extracting some code into a function, report-result. Unfortunately, you could
see that using report-result was going to be tedious and error-prone since you

114

had to pass the test expression twice, once for the value and once as quoted data.
So you wrote the check macro to automate the details of calling report-result
correctly.

While writing check, you realized as long as you were generating code, you could
make a single call to check to generate multiple calls to report-result, getting
you back to a version of test-+ about as concise as the original AND version.

At that point you had the check API nailed down, which allowed you to start
mucking with how it worked on the inside. The next task was to fix check so
the code it generated would return a boolean indicating whether all the test
cases had passed. Rather than immediately hacking away at check, you paused
to indulge in a little language design by fantasy. What if--you fantasized--there
was already a non-short-circuiting AND construct. Then fixing check would be
trivial. Returning from fantasyland you realized there was no such construct but
that you could write one in a few lines. After writing combine-results, the fix
to check was indeed trivial.

At that point all that was left was to make a few more improvements to the
way you reported test results. Once you started making changes to the test
functions, you realized those functions represented a special category of function
that deserved its own abstraction. So you wrote deftest to abstract the pattern
of code that turns a regular function into a test function.

With deftest providing an abstraction barrier between the test definitions and
the underlying machinery, you were able to enhance the result reporting without
touching the test functions.

Now, with the basics of functions, variables, and macros mastered, and a little
practical experience using them, you’re ready to start exploring Common Lisp’s
rich standard library of functions and data types.

1This is for illustrative purposes only--obviously, writing test cases for built-in
functions such as + is a bit silly, since if such basic things aren’t working, the
chances the tests will be running the way you expect is pretty slim. On the other
hand, most Common Lisps are implemented largely in Common Lisp, so it’s not
crazy to imagine writing test suites in Common Lisp to test the standard library
functions.
2Side effects can include such things as signaling errors; I’ll discuss Common
Lisp’s error handling system in Chapter 19. You may, after reading that chapter,
want to think about how to incorporate tests that check whether a function does
or does not signal a particular error in certain situations.
3I’ll discuss this and other FORMAT directives in more detail in Chapter 18.
4If test-+ has been compiled--which may happen implicitly in certain Lisp
implementations--you may need to reevaluate the definition of test-+ to get
the changed definition of check to affect the behavior of test-+. Interpreted

115

code, on the other hand, typically expands macros anew each time the code is
interpreted, allowing the effects of macro redefinitions to be seen immediately.
5You have to change the test to make it fail since you can’t change the behavior
of +.
6Though, again, if the test functions have been compiled, you’ll have to recompile
them after changing the macro.
7As you’ll see in Chapter 12, APPENDing to the end of a list isn’t the most efficient
way to build a list. But for now this is sufficient--as long as the test hierarchies
aren’t too deep, it should be fine. And if it becomes a problem, all you’ll have
to do is change the definition of deftest.

Copyright © 2003-2005, Peter Seibel

10. Numbers, Characters, and Strings
While functions, variables, macros, and 25 special operators provide the basic
building blocks of the language itself, the building blocks of your programs
will be the data structures you use. As Fred Brooks observed in The Mythical
Man-Month, "Representation is the essence of programming."1

Common Lisp provides built-in support for most of the data types typically
found in modern languages: numbers (integer, floating point, and complex),
characters, strings, arrays (including multidimensional arrays), lists, hash tables,
input and output streams, and an abstraction for portably representing filenames.
Functions are also a first-class data type in Lisp--they can be stored in variables,
passed as arguments, returned as return values, and created at runtime.

And these built-in types are just the beginning. They’re defined in the language
standard so programmers can count on them being available and because they
tend to be easier to implement efficiently when tightly integrated with the rest
of the implementation. But, as you’ll see in later chapters, Common Lisp also
provides several ways for you to define new data types, define operations on
them, and integrate them with the built-in data types.

For now, however, you can start with the built-in data types. Because Lisp
is a high-level language, the details of exactly how different data types are
implemented are largely hidden. From your point of view as a user of the
language, the built-in data types are defined by the functions that operate on
them. So to learn a data type, you just have to learn about the functions you
can use with it. Additionally, most of the built-in data types have a special
syntax that the Lisp reader understands and that the Lisp printer uses. That’s
why, for instance, you can write strings as "foo"; numbers as 123, 1/23, and
1.23; and lists as (a b c). I’ll describe the syntax for different kinds of objects
when I describe the functions for manipulating them.

In this chapter, I’ll cover the built-in "scalar" data types: numbers, characters,

116

and strings. Technically, strings aren’t true scalars--a string is a sequence of
characters, and you can access individual characters and manipulate strings with
a function that operates on sequences. But I’ll discuss strings here because most
of the string-specific functions manipulate them as single values and also because
of the close relation between several of the string functions and their character
counterparts.

Numbers
Math, as Barbie says, is hard.2 Common Lisp can’t make the math part any
easier, but it does tend to get in the way a lot less than other programming
languages. That’s not surprising given its mathematical heritage. Lisp was
originally designed by a mathematician as a tool for studying mathematical
functions. And one of the main projects of the MAC project at MIT was the
Macsyma symbolic algebra system, written in Maclisp, one of Common Lisp’s
immediate predecessors. Additionally, Lisp has been used as a teaching language
at places such as MIT where even the computer science professors cringe at the
thought of telling their students that 10/4 = 2, leading to Lisp’s support for
exact ratios. And at various times Lisp has been called upon to compete with
FORTRAN in the high-performance numeric computing arena.

One of the reasons Lisp is a nice language for math is its numbers behave
more like true mathematical numbers than the approximations of numbers that
are easy to implement in finite computer hardware. For instance, integers in
Common Lisp can be almost arbitrarily large rather than being limited by the
size of a machine word.3 And dividing two integers results in an exact ratio, not
a truncated value. And since ratios are represented as pairs of arbitrarily sized
integers, ratios can represent arbitrarily precise fractions.4

On the other hand, for high-performance numeric programming, you may be
willing to trade the exactitude of rationals for the speed offered by using the
hardware’s underlying floating-point operations. So, Common Lisp also offers
several types of floating-point numbers, which are mapped by the implementation
to the appropriate hardware-supported floating-point representations.5 Floats
are also used to represent the results of a computation whose true mathematical
value would be an irrational number.

Finally, Common Lisp supports complex numbers--the numbers that result from
doing things such as taking square roots and logarithms of negative numbers.
The Common Lisp standard even goes so far as to specify the principal values
and branch cuts for irrational and transcendental functions on the complex
domain.

Numeric Literals
You can write numeric literals in a variety of ways; you saw a few examples
in Chapter 4. However, it’s important to keep in mind the division of labor

117

between the Lisp reader and the Lisp evaluator--the reader is responsible for
translating text into Lisp objects, and the Lisp evaluator then deals only with
those objects. For a given number of a given type, there can be many different
textual representations, all of which will be translated to the same object
representation by the Lisp reader. For instance, you can write the integer 10 as
10, 20/2, #xA, or any of a number of other ways, but the reader will translate
all these to the same object. When numbers are printed back out--say, at the
REPL--they’re printed in a canonical textual syntax that may be different from
the syntax used to enter the number. For example:

CL-USER> 10
10
CL-USER> 20/2
10
CL-USER> #xa
10

The syntax for integer values is an optional sign (+ or -) followed by one or more
digits. Ratios are written as an optional sign and a sequence of digits, representing
the numerator, a slash (/), and another sequence of digits representing the
denominator. All rational numbers are "canonicalized" as they’re read--that’s
why 10 and 20/2 are both read as the same number, as are 3/4 and 6/8.
Rationals are printed in "reduced" form--integer values are printed in integer
syntax and ratios with the numerator and denominator reduced to lowest terms.

It’s also possible to write rationals in bases other than 10. If preceded by #B or
#b, a rational literal is read as a binary number with 0 and 1 as the only legal
digits. An #O or #o indicates an octal number (legal digits 0-7), and #X or #x
indicates hexadecimal (legal digits 0-F or 0-f). You can write rationals in other
bases from 2 to 36 with #nR where n is the base (always written in decimal).
Additional "digits" beyond 9 are taken from the letters A-Z or a-z. Note that
these radix indicators apply to the whole rational--it’s not possible to write a
ratio with the numerator in one base and denominator in another. Also, you can
write integer values, but not ratios, as decimal digits terminated with a decimal
point.6 Some examples of rationals, with their canonical, decimal representation
are as follows:

123 ==> 123
+123 ==> 123
-123 ==> -123
123. ==> 123
2/3 ==> 2/3
-2/3 ==> -2/3
4/6 ==> 2/3
6/3 ==> 2
#b10101 ==> 21
#b1010/1011 ==> 10/11
#o777 ==> 511

118

#xDADA ==> 56026
#36rABCDEFGHIJKLMNOPQRSTUVWXYZ ==> 8337503854730415241050377135811259267835

You can also write floating-point numbers in a variety of ways. Unlike rational
numbers, the syntax used to notate a floating-point number can affect the actual
type of number read. Common Lisp defines four subtypes of floating-point
number: short, single, double, and long. Each subtype can use a different
number of bits in its representation, which means each subtype can represent
values spanning a different range and with different precision. More bits gives a
wider range and more precision.7

The basic format for floating-point numbers is an optional sign followed by a
nonempty sequence of decimal digits possibly with an embedded decimal point.
This sequence can be followed by an exponent marker for "computerized scientific
notation."8 The exponent marker consists of a single letter followed by an optional
sign and a sequence of digits, which are interpreted as the power of ten by which
the number before the exponent marker should be multiplied. The letter does
double duty: it marks the beginning of the exponent and indicates what floating-
point representation should be used for the number. The exponent markers
s, f, d, l (and their uppercase equivalents) indicate short, single, double, and
long floats, respectively. The letter e indicates that the default representation
(initially single-float) should be used.

Numbers with no exponent marker are read in the default representation and
must contain a decimal point followed by at least one digit to distinguish them
from integers. The digits in a floating-point number are always treated as
base 10 digits--the #B, #X, #O, and #R syntaxes work only with rationals. The
following are some example floating-point numbers along with their canonical
representation:

1.0 ==> 1.0
1e0 ==> 1.0
1d0 ==> 1.0d0
123.0 ==> 123.0
123e0 ==> 123.0
0.123 ==> 0.123
.123 ==> 0.123
123e-3 ==> 0.123
123E-3 ==> 0.123
0.123e20 ==> 1.23e+19
123d23 ==> 1.23d+25

Finally, complex numbers are written in their own syntax, namely, #C or #c
followed by a list of two real numbers representing the real and imaginary part of
the complex number. There are actually five kinds of complex numbers because
the real and imaginary parts must either both be rational or both be the same
kind of floating-point number.

But you can write them however you want--if a complex is written with one

119

rational and one floating-point part, the rational is converted to a float of the
appropriate representation. Similarly, if the real and imaginary parts are both
floats of different representations, the one in the smaller representation will be
upgraded.

However, no complex numbers have a rational real component and a zero
imaginary part--since such values are, mathematically speaking, rational, they’re
represented by the appropriate rational value. The same mathematical argument
could be made for complex numbers with floating-point components, but for
those complex types a number with a zero imaginary part is always a different
object than the floating-point number representing the real component. Here
are some examples of numbers written the complex number syntax:

#c(2 1) ==> #c(2 1)
#c(2/3 3/4) ==> #c(2/3 3/4)
#c(2 1.0) ==> #c(2.0 1.0)
#c(2.0 1.0d0) ==> #c(2.0d0 1.0d0)
#c(1/2 1.0) ==> #c(0.5 1.0)
#c(3 0) ==> 3
#c(3.0 0.0) ==> #c(3.0 0.0)
#c(1/2 0) ==> 1/2
#c(-6/3 0) ==> -2

Basic Math
The basic arithmetic operations--addition, subtraction, multiplication, and
division--are supported for all the different kinds of Lisp numbers with the
functions +, -, *, and /. Calling any of these functions with more than two
arguments is equivalent to calling the same function on the first two arguments
and then calling it again on the resulting value and the rest of the arguments. For
example, (+ 1 2 3) is equivalent to (+ (+ 1 2) 3). With only one argument,
+ and * return the value; - returns its negation and / its reciprocal.9

(+ 1 2) ==> 3
(+ 1 2 3) ==> 6
(+ 10.0 3.0) ==> 13.0
(+ #c(1 2) #c(3 4)) ==> #c(4 6)
(- 5 4) ==> 1
(- 2) ==> -2
(- 10 3 5) ==> 2
(* 2 3) ==> 6
(* 2 3 4) ==> 24
(/ 10 5) ==> 2
(/ 10 5 2) ==> 1
(/ 2 3) ==> 2/3
(/ 4) ==> 1/4

If all the arguments are the same type of number (rational, floating point, or

120

complex), the result will be the same type except in the case where the result of
an operation on complex numbers with rational components yields a number
with a zero imaginary part, in which case the result will be a rational. However,
floating-point and complex numbers are contagious--if all the arguments are reals
but one or more are floating-point numbers, the other arguments are converted
to the nearest floating-point value in a "largest" floating-point representation
of the actual floating-point arguments. Floating-point numbers in a "smaller"
representation are also converted to the larger representation. Similarly, if any
of the arguments are complex, any real arguments are converted to the complex
equivalents.

(+ 1 2.0) ==> 3.0
(/ 2 3.0) ==> 0.6666667
(+ #c(1 2) 3) ==> #c(4 2)
(+ #c(1 2) 3/2) ==> #c(5/2 2)
(+ #c(1 1) #c(2 -1)) ==> 3

Because / doesn’t truncate, Common Lisp provides four flavors of truncating
and rounding for converting a real number (rational or floating point) to an
integer: FLOOR truncates toward negative infinity, returning the largest integer
less than or equal to the argument. CEILING truncates toward positive infinity,
returning the smallest integer greater than or equal to the argument. TRUNCATE
truncates toward zero, making it equivalent to FLOOR for positive arguments and
to CEILING for negative arguments. And ROUND rounds to the nearest integer. If
the argument is exactly halfway between two integers, it rounds to the nearest
even integer.

Two related functions are MOD and REM, which return the modulus and remainder
of a truncating division on real numbers. These two functions are related to the
FLOOR and TRUNCATE functions as follows:

(+ (* (floor (/ x y)) y) (mod x y)) === x
(+ (* (truncate (/ x y)) y) (rem x y)) === x

Thus, for positive quotients they’re equivalent, but for negative quotients they
produce different results.10

The functions 1+ and 1- provide a shorthand way to express adding and sub-
tracting one from a number. Note that these are different from the macros
INCF and DECF. 1+ and 1- are just functions that return a new value, but INCF
and DECF modify a place. The following equivalences show the relation between
INCF/DECF, 1+/1-, and +/-:

(incf x) === (setf x (1+ x)) === (setf x (+ x 1))
(decf x) === (setf x (1- x)) === (setf x (- x 1))
(incf x 10) === (setf x (+ x 10))
(decf x 10) === (setf x (- x 10))

121

Numeric Comparisons
The function = is the numeric equality predicate. It compares numbers by mathe-
matical value, ignoring differences in type. Thus, = will consider mathematically
equivalent values of different types equivalent while the generic equality predicate
EQL would consider them inequivalent because of the difference in type. (The
generic equality predicate EQUALP, however, uses = to compare numbers.) If it’s
called with more than two arguments, it returns true only if they all have the
same value. Thus:

(= 1 1) ==> T
(= 10 20/2) ==> T
(= 1 1.0 #c(1.0 0.0) #c(1 0)) ==> T

The /= function, conversely, returns true only if all its arguments are different
values.

(/= 1 1) ==> NIL
(/= 1 2) ==> T
(/= 1 2 3) ==> T
(/= 1 2 3 1) ==> NIL
(/= 1 2 3 1.0) ==> NIL

The functions <, >, <=, and >= order rationals and floating-point numbers (in
other words, the real numbers.) Like = and /=, these functions can be called
with more than two arguments, in which case each argument is compared to the
argument to its right.

(< 2 3) ==> T
(> 2 3) ==> NIL
(> 3 2) ==> T
(< 2 3 4) ==> T
(< 2 3 3) ==> NIL
(<= 2 3 3) ==> T
(<= 2 3 3 4) ==> T
(<= 2 3 4 3) ==> NIL

To pick out the smallest or largest of several numbers, you can use the function
MIN or MAX, which takes any number of real number arguments and returns the
minimum or maximum value.

(max 10 11) ==> 11
(min -12 -10) ==> -12
(max -1 2 -3) ==> 2

Some other handy functions are ZEROP, MINUSP, and PLUSP, which test whether
a single real number is equal to, less than, or greater than zero. Two other
predicates, EVENP and ODDP, test whether a single integer argument is even or odd.
The P suffix on the names of these functions is a standard naming convention
for predicate functions, functions that test some condition and return a boolean.

122

Higher Math
The functions you’ve seen so far are the beginning of the built-in mathematical
functions. Lisp also supports logarithms: LOG; exponentiation: EXP and EXPT;
the basic trigonometric functions: SIN, COS, and TAN; their inverses: ASIN, ACOS,
and ATAN; hyperbolic functions: SINH, COSH, and TANH; and their inverses: ASINH,
ACOSH, and ATANH. It also provides functions to get at the individual bits of an
integer and to extract the parts of a ratio or a complex number. For a complete
list, see any Common Lisp reference.

Characters
Common Lisp characters are a distinct type of object from numbers. That’s as it
should be--characters are not numbers, and languages that treat them as if they
are tend to run into problems when character encodings change, say, from 8-bit
ASCII to 21-bit Unicode.11 Because the Common Lisp standard didn’t mandate
a particular representation for characters, today several Lisp implementations
use Unicode as their "native" character encoding despite Unicode being only a
gleam in a standards body’s eye at the time Common Lisp’s own standardization
was being wrapped up.

The read syntax for characters objects is simple: #\ followed by the desired
character. Thus, #\x is the character x. Any character can be used after
the #\, including otherwise special characters such as ", (, and whitespace.
However, writing whitespace characters this way isn’t very (human) readable;
an alternative syntax for certain characters is #\ followed by the character’s
name. Exactly what names are supported depends on the character set and on
the Lisp implementation, but all implementations support the names Space and
Newline. Thus, you should write #\Space instead of #\ , though the latter is
technically legal. Other semistandard names (that implementations must use if
the character set has the appropriate characters) are Tab, Page, Rubout, Linefeed,
Return, and Backspace.

Character Comparisons
The main thing you can do with characters, other than putting them into strings
(which I’ll get to later in this chapter), is to compare them with other characters.
Since characters aren’t numbers, you can’t use the numeric comparison func-
tions, such as < and >. Instead, two sets of functions provide character-specific
analogs to the numeric comparators; one set is case-sensitive and the other
case-insensitive.

The case-sensitive analog to the numeric = is the function CHAR=. Like =, CHAR=
can take any number of arguments and returns true only if they’re all the same
character. The case- insensitive version is CHAR-EQUAL.

The rest of the character comparators follow this same naming scheme: the
case-sensitive comparators are named by prepending the analogous numeric

123

comparator with CHAR; the case-insensitive versions spell out the comparator
name, separated from the CHAR with a hyphen. Note, however, that <= and >= are
"spelled out" with the logical equivalents NOT-GREATERP and NOT-LESSP rather
than the more verbose LESSP-OR-EQUALP and GREATERP-OR-EQUALP. Like their
numeric counterparts, all these functions can take one or more arguments. Table
10-1 summarizes the relation between the numeric and character comparison
functions.

Table 10-1. Character Comparison Functions

Numeric Analog Case-Sensitive Case-Insensitive
= CHAR= CHAR-EQUAL
/= CHAR/= CHAR-NOT-EQUAL
< CHAR< CHAR-LESSP
> CHAR> CHAR-GREATERP
<= CHAR<= CHAR-NOT-GREATERP
>= CHAR>= CHAR-NOT-LESSP

Other functions that deal with characters provide functions for, among other
things, testing whether a given character is alphabetic or a digit character,
testing the case of a character, obtaining a corresponding character in a different
case, and translating between numeric values representing character codes and
actual character objects. Again, for complete details, see your favorite Common
Lisp reference.

Strings
As mentioned earlier, strings in Common Lisp are really a composite data type,
namely, a one-dimensional array of characters. Consequently, I’ll cover many of
the things you can do with strings in the next chapter when I discuss the many
functions for manipulating sequences, of which strings are just one type. But
strings also have their own literal syntax and a library of functions for performing
string-specific operations. I’ll discuss these aspects of strings in this chapter and
leave the others for Chapter 11.

As you’ve seen, literal strings are written enclosed in double quotes. You can
include any character supported by the character set in a literal string except
double quote (") and backslash (\). And you can include these two as well if
you escape them with a backslash. In fact, backslash always escapes the next
character, whatever it is, though this isn’t necessary for any character except
for " and itself. Table 10-2 shows how various literal strings will be read by the
Lisp reader.

Table 10-2. Literal Strings

124

Literal Contents Comment
"foobar" foobar Plain string.
"foo\"bar" foo"bar The backslash escapes quote.
"foo\\bar" foo\bar The first backslash escapes second backslash.
"\"foobar\"" "foobar" The backslashes escape quotes.
"foo\bar" foobar The backslash "escapes" b

Note that the REPL will ordinarily print strings in readable form, adding the
enclosing quotation marks and any necessary escaping backslashes, so if you
want to see the actual contents of a string, you need to use function such as
FORMAT designed to print human-readable output. For example, here’s what you
see if you type a string containing an embedded quotation mark at the REPL:

CL-USER> "foo\"bar"
"foo\"bar"

FORMAT, on the other hand, will show you the actual string contents:12

CL-USER> (format t "foo\"bar")
foo"bar
NIL

String Comparisons
You can compare strings using a set of functions that follow the same naming
convention as the character comparison functions except with STRING as the
prefix rather than CHAR (see Table 10-3).

Table 10-3. String Comparison Functions

Numeric Analog Case-Sensitive Case-Insensitive
= STRING= STRING-EQUAL
/= STRING/= STRING-NOT-EQUAL
< STRING< STRING-LESSP
> STRING> STRING-GREATERP
<= STRING<= STRING-NOT-GREATERP
>= STRING>= STRING-NOT-LESSP

However, unlike the character and number comparators, the string comparators
can compare only two strings. That’s because they also take keyword arguments
that allow you to restrict the comparison to a substring of either or both
strings. The arguments--:start1, :end1, :start2, and :end2--specify the
starting (inclusive) and ending (exclusive) indices of substrings in the first and
second string arguments. Thus, the following:

(string= "foobarbaz" "quuxbarfoo" :start1 3 :end1 6 :start2 4 :end2 7)

125

compares the substring "bar" in the two arguments and returns true. The :end1
and :end2 arguments can be NIL (or the keyword argument omitted altogether)
to indicate that the corresponding substring extends to the end of the string.

The comparators that return true when their arguments differ--that is, all of
them except STRING= and STRING-EQUAL--return the index in the first string
where the mismatch was detected.

(string/= "lisp" "lissome") ==> 3

If the first string is a prefix of the second, the return value will be the length of
the first string, that is, one greater than the largest valid index into the string.

(string< "lisp" "lisper") ==> 4

When comparing substrings, the resulting value is still an index into the string
as a whole. For instance, the following compares the substrings "bar" and "baz"
but returns 5 because that’s the index of the r in the first string:

(string< "foobar" "abaz" :start1 3 :start2 1) ==> 5 ; N.B. not 2

Other string functions allow you to convert the case of strings and trim characters
from one or both ends of a string. And, as I mentioned previously, since strings
are really a kind of sequence, all the sequence functions I’ll discuss in the next
chapter can be used with strings. For instance, you can discover the length of a
string with the LENGTH function and can get and set individual characters of a
string with the generic sequence element accessor function, ELT, or the generic
array element accessor function, AREF. Or you can use the string-specific accessor,
CHAR. But those functions, and others, are the topic of the next chapter, so let’s
move on.

1Fred Brooks, The Mythical Man-Month, 20th Anniversary Edition (Boston:
Addison-Wesley, 1995), p. 103. Emphasis in original.
2Mattel’s Teen Talk Barbie
3Obviously, the size of a number that can be represented on a computer with
finite memory is still limited in practice; furthermore, the actual representation
of bignums used in a particular Common Lisp implementation may place other
limits on the size of number that can be represented. But these limits are going
to be well beyond "astronomically" large numbers. For instance, the number of
atoms in the universe is estimated to be less than 2ˆ269; current Common Lisp
implementations can easily handle numbers up to and beyond 2ˆ262144.
4Folks interested in using Common Lisp for intensive numeric computation
should note that a naive comparison of the performance of numeric code in
Common Lisp and languages such as C or FORTRAN will probably show
Common Lisp to be much slower. This is because something as simple as (+ a
b) in Common Lisp is doing a lot more than the seemingly equivalent a + b in
one of those languages. Because of Lisp’s dynamic typing and support for things

126

such as arbitrary precision rationals and complex numbers, a seemingly simple
addition is doing a lot more than an addition of two numbers that are known
to be represented by machine words. However, you can use declarations to give
Common Lisp information about the types of numbers you’re using that will
enable it to generate code that does only as much work as the code that would
be generated by a C or FORTRAN compiler. Tuning numeric code for this kind
of performance is beyond the scope of this book, but it’s certainly possible.
5While the standard doesn’t require it, many Common Lisp implementations
support the IEEE standard for floating-point arithmetic, IEEE Standard for
Binary Floating-Point Arithmetic, ANSI/ IEEE Std 754-1985 (Institute of
Electrical and Electronics Engineers, 1985).
6It’s also possible to change the default base the reader uses for numbers without
a specific radix marker by changing the value of the global variable *READ-BASE*.
However, it’s not clear that’s the path to anything other than complete insanity.
7Since the purpose of floating-point numbers is to make efficient use of floating-
point hardware, each Lisp implementation is allowed to map these four subtypes
onto the native floating-point types as appropriate. If the hardware supports
fewer than four distinct representations, one or more of the types may be
equivalent.
8"Computerized scientific notation" is in scare quotes because, while commonly
used in computer languages since the days of FORTRAN, it’s actually quite
different from real scientific notation. In particular, something like 1.0e4 means
10000.0, but in true scientific notation that would be written as 1.0 x 10ˆ4.
And to further confuse matters, in true scientific notation the letter e stands for
the base of the natural logarithm, so something like 1.0 x eˆ4, while superficially
similar to 1.0e4, is a completely different value, approximately 54.6.
9For mathematical consistency, + and * can also be called with no arguments, in
which case they return the appropriate identity: 0 for + and 1 for *.
10Roughly speaking, MOD is equivalent to the % operator in Perl and Python, and
REM is equivalent to the % in C and Java. (Technically, the exact behavior of %
in C wasn’t specified until the C99 standard.)
11Even Java, which was designed from the beginning to use Unicode characters on
the theory that Unicode was the going to be the character encoding of the future,
has run into trouble since Java characters are defined to be a 16-bit quantity
and the Unicode 3.1 standard extended the range of the Unicode character set
to require a 21-bit representation. Ooops.
12Note, however, that not all literal strings can be printed by passing them as
the second argument to FORMAT since certain sequences of characters have a
special meaning to FORMAT. To safely print an arbitrary string--say, the value of
a variable s--with FORMAT you should write (format t "~a" s).

Copyright © 2003-2005, Peter Seibel

127

11. Collections
Like most programming languages, Common Lisp provides standard data types
that collect multiple values into a single object. Every language slices up the
collection problem a little bit differently, but the basic collection types usually
boil down to an integer-indexed array type and a table type that can be used
to map more or less arbitrary keys to values. The former are variously called
arrays, lists, or tuples; the latter go by the names hash tables, associative arrays,
maps, and dictionaries.

Lisp is, of course, famous for its list data structure, and most Lisp books, following
the ontogeny-recapitulates-phylogeny principle of language instruction, start
their discussion of Lisp’s collections with lists. However, that approach often
leads readers to the mistaken conclusion that lists are Lisp’s only collection type.
To make matters worse, because Lisp’s lists are such a flexible data structure,
it is possible to use them for many of the things arrays and hash tables are
used for in other languages. But it’s a mistake to focus too much on lists; while
they’re a crucial data structure for representing Lisp code as Lisp data, in many
situations other data structures are more appropriate.

To keep lists from stealing the show, in this chapter I’ll focus on Common Lisp’s
other collection types: vectors and hash tables.1 However, vectors and lists share
enough characteristics that Common Lisp treats them both as subtypes of a
more general abstraction, the sequence. Thus, you can use many of the functions
I’ll discuss in this chapter with both vectors and lists.

Vectors
Vectors are Common Lisp’s basic integer-indexed collection, and they come in
two flavors. Fixed-size vectors are a lot like arrays in a language such as Java: a
thin veneer over a chunk of contiguous memory that holds the vector’s elements.2
Resizable vectors, on the other hand, are more like arrays in Perl or Ruby, lists
in Python, or the ArrayList class in Java: they abstract the actual storage,
allowing the vector to grow and shrink as elements are added and removed.

You can make fixed-size vectors containing specific values with the function
VECTOR, which takes any number of arguments and returns a freshly allocated
fixed-size vector containing those arguments.

(vector) ==> #()
(vector 1) ==> #(1)
(vector 1 2) ==> #(1 2)

The #(...) syntax is the literal notation for vectors used by the Lisp printer
and reader. This syntax allows you to save and restore vectors by PRINTing
them out and READing them back in. You can use the #(...) syntax to include
literal vectors in your code, but as the effects of modifying literal objects aren’t
defined, you should always use VECTOR or the more general function MAKE-ARRAY

128

to create vectors you plan to modify.

MAKE-ARRAY is more general than VECTOR since you can use it to create arrays
of any dimensionality as well as both fixed-size and resizable vectors. The one
required argument to MAKE-ARRAY is a list containing the dimensions of the array.
Since a vector is a one-dimensional array, this list will contain one number,
the size of the vector. As a convenience, MAKE-ARRAY will also accept a plain
number in the place of a one-item list. With no other arguments, MAKE-ARRAY
will create a vector with uninitialized elements that must be set before they can
be accessed.3 To create a vector with the elements all set to a particular value,
you can pass an :initial-element argument. Thus, to make a five-element
vector with its elements initialized to NIL, you can write the following:

(make-array 5 :initial-element nil) ==> #(NIL NIL NIL NIL NIL)

MAKE-ARRAY is also the function to use to make a resizable vector. A resizable
vector is a slightly more complicated object than a fixed-size vector; in addition
to keeping track of the memory used to hold the elements and the number of
slots available, a resizable vector also keeps track of the number of elements
actually stored in the vector. This number is stored in the vector’s fill pointer,
so called because it’s the index of the next position to be filled when you add an
element to the vector.

To make a vector with a fill pointer, you pass MAKE-ARRAY a :fill-pointer
argument. For instance, the following call to MAKE-ARRAY makes a vector with
room for five elements; but it looks empty because the fill pointer is zero:

(make-array 5 :fill-pointer 0) ==> #()

To add an element to the end of a resizable vector, you can use the function
VECTOR-PUSH. It adds the element at the current value of the fill pointer and then
increments the fill pointer by one, returning the index where the new element
was added. The function VECTOR-POP returns the most recently pushed item,
decrementing the fill pointer in the process.

(defparameter *x* (make-array 5 :fill-pointer 0))

(vector-push ’a *x*) ==> 0
x ==> #(A)
(vector-push ’b *x*) ==> 1
x ==> #(A B)
(vector-push ’c *x*) ==> 2
x ==> #(A B C)
(vector-pop *x*) ==> C
x ==> #(A B)
(vector-pop *x*) ==> B
x ==> #(A)
(vector-pop *x*) ==> A
x ==> #()

129

However, even a vector with a fill pointer isn’t completely resizable. The vector
x can hold at most five elements. To make an arbitrarily resizable vector, you
need to pass MAKE-ARRAY another keyword argument: :adjustable.

(make-array 5 :fill-pointer 0 :adjustable t) ==> #()

This call makes an adjustable vector whose underlying memory can be resized as
needed. To add elements to an adjustable vector, you use VECTOR-PUSH-EXTEND,
which works just like VECTOR-PUSH except it will automatically expand the array
if you try to push an element onto a full vector--one whose fill pointer is equal
to the size of the underlying storage.4

Subtypes of Vector
All the vectors you’ve dealt with so far have been general vectors that can
hold any type of object. It’s also possible to create specialized vectors that are
restricted to holding certain types of elements. One reason to use specialized
vectors is they may be stored more compactly and can provide slightly faster
access to their elements than general vectors. However, for the moment let’s
focus on a couple kinds of specialized vectors that are important data types in
their own right.

One of these you’ve seen already--strings are vectors specialized to hold characters.
Strings are important enough to get their own read/print syntax (double quotes)
and the set of string-specific functions I discussed in the previous chapter. But
because they’re also vectors, all the functions I’ll discuss in the next few sections
that take vector arguments can also be used with strings. These functions will
fill out the string library with functions for things such as searching a string for
a substring, finding occurrences of a character within a string, and more.

Literal strings, such as "foo", are like literal vectors written with the #()
syntax--their size is fixed, and they must not be modified. However, you can
use MAKE-ARRAY to make resizable strings by adding another keyword argument,
:element-type. This argument takes a type descriptor. I won’t discuss all the
possible type descriptors you can use here; for now it’s enough to know you
can create a string by passing the symbol CHARACTER as the :element-type
argument. Note that you need to quote the symbol to prevent it from being
treated as a variable name. For example, to make an initially empty but resizable
string, you can write this:

(make-array 5 :fill-pointer 0 :adjustable t :element-type ’character) ""

Bit vectors--vectors whose elements are all zeros or ones--also get some special
treatment. They have a special read/print syntax that looks like #*00001111
and a fairly large library of functions, which I won’t discuss, for performing
bit-twiddling operations such as "anding" together two bit arrays. The type
descriptor to pass as the :element-type to create a bit vector is the symbol
BIT.

130

Vectors As Sequences
As mentioned earlier, vectors and lists are the two concrete subtypes of the
abstract type sequence. All the functions I’ll discuss in the next few sections are
sequence functions; in addition to being applicable to vectors--both general and
specialized--they can also be used with lists.

The two most basic sequence functions are LENGTH, which returns the length
of a sequence, and ELT, which allows you to access individual elements via an
integer index. LENGTH takes a sequence as its only argument and returns the
number of elements it contains. For vectors with a fill pointer, this will be the
value of the fill pointer. ELT, short for element, takes a sequence and an integer
index between zero (inclusive) and the length of the sequence (exclusive) and
returns the corresponding element. ELT will signal an error if the index is out of
bounds. Like LENGTH, ELT treats a vector with a fill pointer as having the length
specified by the fill pointer.

(defparameter *x* (vector 1 2 3))

(length *x*) ==> 3
(elt *x* 0) ==> 1
(elt *x* 1) ==> 2
(elt *x* 2) ==> 3
(elt *x* 3) ==> error

ELT is also a SETFable place, so you can set the value of a particular element like
this:

(setf (elt *x* 0) 10)

x ==> #(10 2 3)

Sequence Iterating Functions
While in theory all operations on sequences boil down to some combination of
LENGTH, ELT, and SETF of ELT operations, Common Lisp provides a large library
of sequence functions.

One group of sequence functions allows you to express certain operations on
sequences such as finding or filtering specific elements without writing explicit
loops. Table 11-1 summarizes them.

Table 11-1.Basic Sequence Functions

Name Required Arguments Returns
COUNT Item and sequence Number of times item appears in sequence
FIND Item and sequence Item or NIL
POSITION Item and sequence Index into sequence or NIL
REMOVE Item and sequence Sequence with instances of item removed

131

SUBSTITUTE New item, item, and sequence Sequence with instances of item replaced with new item

Here are some simple examples of how to use these functions:

(count 1 #(1 2 1 2 3 1 2 3 4)) ==> 3
(remove 1 #(1 2 1 2 3 1 2 3 4)) ==> #(2 2 3 2 3 4)
(remove 1 ’(1 2 1 2 3 1 2 3 4)) ==> (2 2 3 2 3 4)
(remove #\a "foobarbaz") ==> "foobrbz"
(substitute 10 1 #(1 2 1 2 3 1 2 3 4)) ==> #(10 2 10 2 3 10 2 3 4)
(substitute 10 1 ’(1 2 1 2 3 1 2 3 4)) ==> (10 2 10 2 3 10 2 3 4)
(substitute #\x #\b "foobarbaz") ==> "fooxarxaz"
(find 1 #(1 2 1 2 3 1 2 3 4)) ==> 1
(find 10 #(1 2 1 2 3 1 2 3 4)) ==> NIL
(position 1 #(1 2 1 2 3 1 2 3 4)) ==> 0

Note how REMOVE and SUBSTITUTE always return a sequence of the same type
as their sequence argument.

You can modify the behavior of these five functions in a variety of ways using
keyword arguments. For instance, these functions, by default, look for elements
in the sequence that are the same object as the item argument. You can change
this in two ways: First, you can use the :test keyword to pass a function that
accepts two arguments and returns a boolean. If provided, it will be used to
compare item to each element instead of the default object equality test, EQL.5
Second, with the :key keyword you can pass a one-argument function to be
called on each element of the sequence to extract a key value, which will then
be compared to the item in the place of the element itself. Note, however, that
functions such as FIND that return elements of the sequence continue to return
the actual element, not just the extracted key.

(count "foo" #("foo" "bar" "baz") :test #’string=) ==> 1
(find ’c #((a 10) (b 20) (c 30) (d 40)) :key #’first) ==> (C 30)

To limit the effects of these functions to a particular subsequence of the sequence
argument, you can provide bounding indices with :start and :end arguments.
Passing NIL for :end or omitting it is the same as specifying the length of the
sequence.6

If a non-NIL :from-end argument is provided, then the elements of the sequence
will be examined in reverse order. By itself :from-end can affect the results of
only FIND and POSITION. For instance:

(find ’a #((a 10) (b 20) (a 30) (b 40)) :key #’first) ==> (A 10)
(find ’a #((a 10) (b 20) (a 30) (b 40)) :key #’first :from-end t) ==> (A 30)

However, the :from-end argument can affect REMOVE and SUBSTITUTE in con-
junction with another keyword parameter, :count, that’s used to specify how
many elements to remove or substitute. If you specify a :count lower than the

132

number of matching elements, then it obviously matters which end you start
from:

(remove #\a "foobarbaz" :count 1) ==> "foobrbaz"
(remove #\a "foobarbaz" :count 1 :from-end t) ==> "foobarbz"

And while :from-end can’t change the results of the COUNT function, it does
affect the order the elements are passed to any :test and :key functions, which
could possibly have side effects. For example:

CL-USER> (defparameter *v* #((a 10) (b 20) (a 30) (b 40)))
V
CL-USER> (defun verbose-first (x) (format t "Looking at ~s~%" x) (first x))
VERBOSE-FIRST
CL-USER> (count ’a *v* :key #’verbose-first)
Looking at (A 10)
Looking at (B 20)
Looking at (A 30)
Looking at (B 40)
2
CL-USER> (count ’a *v* :key #’verbose-first :from-end t)
Looking at (B 40)
Looking at (A 30)
Looking at (B 20)
Looking at (A 10)
2

Table 11-2 summarizes these arguments.

Table 11-2. Standard Sequence Function Keyword Arguments

Argument Meaning Default
:test Two-argument function used to compare item (or value extracted by :key function) to element. EQL
:key One-argument function to extract key value from actual sequence element. NIL means use element as is. NIL
:start Starting index (inclusive) of subsequence. 0
:end Ending index (exclusive) of subsequence. NIL indicates end of sequence. NIL
:from-end If true, the sequence will be traversed in reverse order, from end to start. NIL
:count Number indicating the number of elements to remove or substitute or NIL to indicate all (REMOVE and SUBSTITUTE only). NIL

Higher-Order Function Variants
For each of the functions just discussed, Common Lisp provides two higher-order
function variants that, in the place of the item argument, take a function to
be called on each element of the sequence. One set of variants are named the
same as the basic function with an -IF appended. These functions count, find,
remove, and substitute elements of the sequence for which the function argument
returns true. The other set of variants are named with an -IF-NOT suffix and

133

count, find, remove, and substitute elements for which the function argument
does not return true.

(count-if #’evenp #(1 2 3 4 5)) ==> 2

(count-if-not #’evenp #(1 2 3 4 5)) ==> 3

(position-if #’digit-char-p "abcd0001") ==> 4

(remove-if-not #’(lambda (x) (char= (elt x 0) #\f))
#("foo" "bar" "baz" "foom")) ==> #("foo" "foom")

According to the language standard, the -IF-NOT variants are deprecated. How-
ever, that deprecation is generally considered to have itself been ill-advised. If
the standard is ever revised, it’s more likely the deprecation will be removed
than the -IF-NOT functions. For one thing, the REMOVE-IF-NOT variant is prob-
ably used more often than REMOVE-IF. Despite its negative-sounding name,
REMOVE-IF-NOT is actually the positive variant--it returns the elements that do
satisfy the predicate. 7

The -IF and -IF-NOT variants accept all the same keyword arguments as their
vanilla counterparts except for :test, which isn’t needed since the main argument
is already a function.8 With a :key argument, the value extracted by the :key
function is passed to the function instead of the actual element.

(count-if #’evenp #((1 a) (2 b) (3 c) (4 d) (5 e)) :key #’first) ==> 2

(count-if-not #’evenp #((1 a) (2 b) (3 c) (4 d) (5 e)) :key #’first) ==> 3

(remove-if-not #’alpha-char-p
#("foo" "bar" "1baz") :key #’(lambda (x) (elt x 0))) ==> #("foo" "bar")

The REMOVE family of functions also support a fourth variant, REMOVE-DUPLICATES,
that has only one required argument, a sequence, from which it removes all but
one instance of each duplicated element. It takes the same keyword arguments
as REMOVE, except for :count, since it always removes all duplicates.

(remove-duplicates #(1 2 1 2 3 1 2 3 4)) ==> #(1 2 3 4)

Whole Sequence Manipulations
A handful of functions perform operations on a whole sequence (or sequences) at
a time. These tend to be simpler than the other functions I’ve described so far.
For instance, COPY-SEQ and REVERSE each take a single argument, a sequence,
and each returns a new sequence of the same type. The sequence returned
by COPY-SEQ contains the same elements as its argument while the sequence
returned by REVERSE contains the same elements but in reverse order. Note that
neither function copies the elements themselves--only the returned sequence is a
new object.

134

The CONCATENATE function creates a new sequence containing the concatenation
of any number of sequences. However, unlike REVERSE and COPY-SEQ, which
simply return a sequence of the same type as their single argument, CONCATENATE
must be told explicitly what kind of sequence to produce in case the arguments are
of different types. Its first argument is a type descriptor, like the :element-type
argument to MAKE-ARRAY. In this case, the type descriptors you’ll most likely
use are the symbols VECTOR, LIST, or STRING.9 For example:

(concatenate ’vector #(1 2 3) ’(4 5 6)) ==> #(1 2 3 4 5 6)
(concatenate ’list #(1 2 3) ’(4 5 6)) ==> (1 2 3 4 5 6)
(concatenate ’string "abc" ’(#\d #\e #\f)) ==> "abcdef"

Sorting and Merging
The functions SORT and STABLE-SORT provide two ways of sorting a sequence.
They both take a sequence and a two-argument predicate and return a sorted
version of the sequence.

(sort (vector "foo" "bar" "baz") #’string<) ==> #("bar" "baz" "foo")

The difference is that STABLE-SORT is guaranteed to not reorder any elements
considered equivalent by the predicate while SORT guarantees only that the result
is sorted and may reorder equivalent elements.

Both these functions are examples of what are called destructive functions.
Destructive functions are allowed--typically for reasons of efficiency--to modify
their arguments in more or less arbitrary ways. This has two implications: one,
you should always do something with the return value of these functions (such
as assign it to a variable or pass it to another function), and, two, unless you’re
done with the object you’re passing to the destructive function, you should pass
a copy instead. I’ll say more about destructive functions in the next chapter.

Typically you won’t care about the unsorted version of a sequence after you’ve
sorted it, so it makes sense to allow SORT and STABLE-SORT to destroy the
sequence in the course of sorting it. But it does mean you need to remember to
write the following:10

(setf my-sequence (sort my-sequence #’string<))

rather than just this:

(sort my-sequence #’string<)

Both these functions also take a keyword argument, :key, which, like the :key
argument in other sequence functions, should be a function and will be used
to extract the values to be passed to the sorting predicate in the place of the
actual elements. The extracted keys are used only to determine the ordering of
elements; the sequence returned will contain the actual elements of the argument
sequence.

135

The MERGE function takes two sequences and a predicate and returns a sequence
produced by merging the two sequences, according to the predicate. It’s related
to the two sorting functions in that if each sequence is already sorted by the same
predicate, then the sequence returned by MERGE will also be sorted. Like the
sorting functions, MERGE takes a :key argument. Like CONCATENATE, and for the
same reason, the first argument to MERGE must be a type descriptor specifying
the type of sequence to produce.

(merge ’vector #(1 3 5) #(2 4 6) #’<) ==> #(1 2 3 4 5 6)
(merge ’list #(1 3 5) #(2 4 6) #’<) ==> (1 2 3 4 5 6)

Subsequence Manipulations
Another set of functions allows you to manipulate subsequences of existing
sequences. The most basic of these is SUBSEQ, which extracts a subsequence
starting at a particular index and continuing to a particular ending index or the
end of the sequence. For instance:

(subseq "foobarbaz" 3) ==> "barbaz"
(subseq "foobarbaz" 3 6) ==> "bar"

SUBSEQ is also SETFable, but it won’t extend or shrink a sequence; if the new
value and the subsequence to be replaced are different lengths, the shorter of
the two determines how many characters are actually changed.

(defparameter *x* (copy-seq "foobarbaz"))

(setf (subseq *x* 3 6) "xxx") ; subsequence and new value are same length
x ==> "fooxxxbaz"

(setf (subseq *x* 3 6) "abcd") ; new value too long, extra character ignored.
x ==> "fooabcbaz"

(setf (subseq *x* 3 6) "xx") ; new value too short, only two characters changed
x ==> "fooxxcbaz"

You can use the FILL function to set multiple elements of a sequence to a single
value. The required arguments are a sequence and the value with which to fill it.
By default every element of the sequence is set to the value; :start and :end
keyword arguments can limit the effects to a given subsequence.

If you need to find a subsequence within a sequence, the SEARCH function works
like POSITION except the first argument is a sequence rather than a single item.

(position #\b "foobarbaz") ==> 3
(search "bar" "foobarbaz") ==> 3

On the other hand, to find where two sequences with a common prefix first
diverge, you can use the MISMATCH function. It takes two sequences and returns
the index of the first pair of mismatched elements.

136

(mismatch "foobarbaz" "foom") ==> 3

It returns NIL if the strings match. MISMATCH also takes many of the standard
keyword arguments: a :key argument for specifying a function to use to extract
the values to be compared; a :test argument to specify the comparison function;
and :start1, :end1, :start2, and :end2 arguments to specify subsequences
within the two sequences. And a :from-end argument of T specifies the sequences
should be searched in reverse order, causing MISMATCH to return the index, in the
first sequence, where whatever common suffix the two sequences share begins.

(mismatch "foobar" "bar" :from-end t) ==> 3

Sequence Predicates
Four other handy functions are EVERY, SOME, NOTANY, and NOTEVERY, which
iterate over sequences testing a boolean predicate. The first argument to all
these functions is the predicate, and the remaining arguments are sequences.
The predicate should take as many arguments as the number of sequences
passed. The elements of the sequences are passed to the predicate--one element
from each sequence--until one of the sequences runs out of elements or the
overall termination test is met: EVERY terminates, returning false, as soon as the
predicate fails. If the predicate is always satisfied, it returns true. SOME returns
the first non-NIL value returned by the predicate or returns false if the predicate
is never satisfied. NOTANY returns false as soon as the predicate is satisfied or
true if it never is. And NOTEVERY returns true as soon as the predicate fails or
false if the predicate is always satisfied. Here are some examples of testing just
one sequence:

(every #’evenp #(1 2 3 4 5)) ==> NIL
(some #’evenp #(1 2 3 4 5)) ==> T
(notany #’evenp #(1 2 3 4 5)) ==> NIL
(notevery #’evenp #(1 2 3 4 5)) ==> T

These calls compare elements of two sequences pairwise:

(every #’> #(1 2 3 4) #(5 4 3 2)) ==> NIL
(some #’> #(1 2 3 4) #(5 4 3 2)) ==> T
(notany #’> #(1 2 3 4) #(5 4 3 2)) ==> NIL
(notevery #’> #(1 2 3 4) #(5 4 3 2)) ==> T

Sequence Mapping Functions
Finally, the last of the sequence functions are the generic mapping functions.
MAP, like the sequence predicate functions, takes a n-argument function and n
sequences. But instead of a boolean value, MAP returns a new sequence containing
the result of applying the function to subsequent elements of the sequences. Like
CONCATENATE and MERGE, MAP needs to be told what kind of sequence to create.

(map ’vector #’* #(1 2 3 4 5) #(10 9 8 7 6)) ==> #(10 18 24 28 30)

137

MAP-INTO is like MAP except instead of producing a new sequence of a given type,
it places the results into a sequence passed as the first argument. This sequence
can be the same as one of the sequences providing values for the function. For
instance, to sum several vectors--a, b, and c--into one, you could write this:

(map-into a #’+ a b c)

If the sequences are different lengths, MAP-INTO affects only as many elements
as are present in the shortest sequence, including the sequence being mapped
into. However, if the sequence being mapped into is a vector with a fill pointer,
the number of elements affected isn’t limited by the fill pointer but rather by
the actual size of the vector. After a call to MAP-INTO, the fill pointer will be
set to the number of elements mapped. MAP-INTO won’t, however, extend an
adjustable vector.

The last sequence function is REDUCE, which does another kind of mapping: it
maps over a single sequence, applying a two-argument function first to the first
two elements of the sequence and then to the value returned by the function and
subsequent elements of the sequence. Thus, the following expression sums the
numbers from one to ten:

(reduce #’+ #(1 2 3 4 5 6 7 8 9 10)) ==> 55

REDUCE is a surprisingly useful function--whenever you need to distill a sequence
down to a single value, chances are you can write it with REDUCE, and it will
often be quite a concise way to express what you want. For instance, to find
the maximum value in a sequence of numbers, you can write (reduce #'max
numbers). REDUCE also takes a full complement of keyword arguments (:key,
:from-end, :start, and :end) and one unique to REDUCE (:initial-value).
The latter specifies a value that’s logically placed before the first element of the
sequence (or after the last if you also specify a true :from-end argument).

Hash Tables
The other general-purpose collection provided by Common Lisp is the hash table.
Where vectors provide an integer-indexed data structure, hash tables allow you
to use arbitrary objects as the indexes, or keys. When you add a value to a hash
table, you store it under a particular key. Later you can use the same key to
retrieve the value. Or you can associate a new value with the same key--each
key maps to a single value.

With no arguments MAKE-HASH-TABLE makes a hash table that considers two
keys equivalent if they’re the same object according to EQL. This is a good default
unless you want to use strings as keys, since two strings with the same contents
aren’t necessarily EQL. In that case you’ll want a so-called EQUAL hash table,
which you can get by passing the symbol EQUAL as the :test keyword argument
to MAKE-HASH-TABLE. Two other possible values for the :test argument are the
symbols EQ and EQUALP. These are, of course, the names of the standard object
comparison functions, which I discussed in Chapter 4. However, unlike the :test

138

argument passed to sequence functions, MAKE-HASH-TABLE’s :test can’t be used
to specify an arbitrary function--only the values EQ, EQL, EQUAL, and EQUALP.
This is because hash tables actually need two functions, an equivalence function
and a hash function that computes a numerical hash code from the key in a
way compatible with how the equivalence function will ultimately compare two
keys. However, although the language standard provides only for hash tables
that use the standard equivalence functions, most implementations provide some
mechanism for defining custom hash tables.

The GETHASH function provides access to the elements of a hash table. It takes
two arguments--a key and the hash table--and returns the value, if any, stored
in the hash table under that key or NIL.11 For example:

(defparameter *h* (make-hash-table))

(gethash ’foo *h*) ==> NIL

(setf (gethash ’foo *h*) ’quux)

(gethash ’foo *h*) ==> QUUX

Since GETHASH returns NIL if the key isn’t present in the table, there’s no way to
tell from the return value the difference between a key not being in a hash table
at all and being in the table with the value NIL. GETHASH solves this problem
with a feature I haven’t discussed yet--multiple return values. GETHASH actually
returns two values; the primary value is the value stored under the given key or
NIL. The secondary value is a boolean indicating whether the key is present in
the hash table. Because of the way multiple values work, the extra return value
is silently discarded unless the caller explicitly handles it with a form that can
"see" multiple values.

I’ll discuss multiple return values in greater detail in Chapter 20, but for now
I’ll give you a sneak preview of how to use the MULTIPLE-VALUE-BIND macro to
take advantage of GETHASH’s extra return value. MULTIPLE-VALUE-BIND creates
variable bindings like LET does, filling them with the multiple values returned by
a form.

The following function shows how you might use MULTIPLE-VALUE-BIND; the
variables it binds are value and present:

(defun show-value (key hash-table)
(multiple-value-bind (value present) (gethash key hash-table)
(if present
(format nil "Value ~a actually present." value)
(format nil "Value ~a because key not found." value))))

(setf (gethash ’bar *h*) nil) ; provide an explicit value of NIL

(show-value ’foo *h*) ==> "Value QUUX actually present."

139

(show-value ’bar *h*) ==> "Value NIL actually present."
(show-value ’baz *h*) ==> "Value NIL because key not found."

Since setting the value under a key to NIL leaves the key in the table, you’ll
need another function to completely remove a key/value pair. REMHASH takes
the same arguments as GETHASH and removes the specified entry. You can also
completely clear a hash table of all its key/value pairs with CLRHASH.

Hash Table Iteration
Common Lisp provides a couple ways to iterate over the entries in a hash table.
The simplest of these is via the function MAPHASH. Analogous to the MAP function,
MAPHASH takes a two-argument function and a hash table and invokes the function
once for each key/value pair in the hash table. For instance, to print all the
key/value pairs in a hash table, you could use MAPHASH like this:

(maphash #’(lambda (k v) (format t "~a => ~a~%" k v)) *h*)

The consequences of adding or removing elements from a hash table while
iterating over it aren’t specified (and are likely to be bad) with two exceptions:
you can use SETF with GETHASH to change the value of the current entry, and
you can use REMHASH to remove the current entry. For instance, to remove all
the entries whose value is less than ten, you could write this:

(maphash #’(lambda (k v) (when (< v 10) (remhash k *h*))) *h*)

The other way to iterate over a hash table is with the extended LOOP macro,
which I’ll discuss in Chapter 22.12 The LOOP equivalent of the first MAPHASH
expression would look like this:

(loop for k being the hash-keys in *h* using (hash-value v)
do (format t "~a => ~a~%" k v))

I could say a lot more about the nonlist collections supported by Common Lisp.
For instance, I haven’t discussed multidimensional arrays at all or the library of
functions for manipulating bit arrays. However, what I’ve covered in this chapter
should suffice for most of your general-purpose programming needs. Now it’s
finally time to look at Lisp’s eponymous data structure: lists.

1Once you’re familiar with all the data types Common Lisp offers, you’ll also
see that lists can be useful for prototyping data structures that will later be
replaced with something more efficient once it becomes clear how exactly the
data is to be used.
2Vectors are called vectors, not arrays as their analogs in other languages are,
because Common Lisp supports true multidimensional arrays. It’s equally correct,
though more cumbersome, to refer to them as one-dimensional arrays.

140

3Array elements "must" be set before they’re accessed in the sense that the
behavior is undefined; Lisp won’t necessarily stop you.
4While frequently used together, the :fill-pointer and :adjustable argu-
ments are independent--you can make an adjustable array without a fill pointer.
However, you can use VECTOR-PUSH and VECTOR-POP only with vectors that have
a fill pointer and VECTOR-PUSH-EXTEND only with vectors that have a fill pointer
and are adjustable. You can also use the function ADJUST-ARRAY to modify
adjustable arrays in a variety of ways beyond just extending the length of a
vector.
5Another parameter, :test-not parameter, specifies a two-argument predicate
to be used like a :test argument except with the boolean result logically reversed.
This parameter is deprecated, however, in preference for using the COMPLEMENT
function. COMPLEMENT takes a function argu-ment and returns a function that
takes the same number of arguments as the original and returns the logical
complement of the original function. Thus, you can, and should, write this:

(count x sequence :test (complement #’some-test))

rather than the following:

(count x sequence :test-not #’some-test)
6Note, however, that the effect of :start and :end on REMOVE and SUBSTITUTE
is only to limit the elements they consider for removal or substitution; elements
before :start and after :end will be passed through untouched.
7This same functionality goes by the name grep in Perl and filter in Python.
8The difference between the predicates passed as :test arguments and as the
function arguments to the -IF and -IF-NOT functions is that the :test predicates
are two-argument predicates used to compare the elements of the sequence to the
specific item while the -IF and -IF-NOT predicates are one-argument functions
that simply test the individual elements of the sequence. If the vanilla variants
didn’t exist, you could implement them in terms of the -IF versions by embedding
a specific item in the test function.

(count char string) ===
(count-if #’(lambda (c) (eql char c)) string)

(count char string :test #’CHAR-EQUAL) ===
(count-if #’(lambda (c) (char-equal char c)) string)

9If you tell CONCATENATE to return a specialized vector, such as a string, all the
elements of the argument sequences must be instances of the vector’s element
type.
10When the sequence passed to the sorting functions is a vector, the "destruction"
is actually guaranteed to entail permuting the elements in place, so you could
get away without saving the returned value. However, it’s good style to always

141

do something with the return value since the sorting functions can modify lists
in much more arbitrary ways.
11By an accident of history, the order of arguments to GETHASH is the opposite
of ELT--ELT takes the collection first and then the index while GETHASH takes
the key first and then the collection.
12LOOP’s hash table iteration is typically implemented on top of a more primitive
form, WITH-HASH-TABLE-ITERATOR, that you don’t need to worry about; it was
added to the language specifically to support implementing things such as LOOP
and is of little use unless you need to write completely new control constructs
for iterating over hash tables.

Copyright © 2003-2005, Peter Seibel

12. They Called It LISP for a Reason: List Pro-
cessing
Lists play an important role in Lisp--for reasons both historical and practical.
Historically, lists were Lisp’s original composite data type, though it has been
decades since they were its only such data type. These days, a Common Lisp
programmer is as likely to use a vector, a hash table, or a user-defined class or
structure as to use a list.

Practically speaking, lists remain in the language because they’re an excellent
solution to certain problems. One such problem--how to represent code as data
in order to support code-transforming and code-generating macros--is particular
to Lisp, which may explain why other languages don’t feel the lack of Lisp-style
lists. More generally, lists are an excellent data structure for representing any
kind of heterogeneous and/or hierarchical data. They’re also quite lightweight
and support a functional style of programming that’s another important part of
Lisp’s heritage.

Thus, you need to understand lists on their own terms; as you gain a better
understanding of how lists work, you’ll be in a better position to appreciate
when you should and shouldn’t use them.

"There Is No List"
Spoon Boy: Do not try and bend the list. That’s impossible.
Instead . . . only try to realize the truth.

Neo: What truth?

Spoon Boy: There is no list.

Neo: There is no list?

142

Spoon Boy: Then you’ll see that it is not the list that bends; it is
only yourself.1

The key to understanding lists is to understand that they’re largely an illusion
built on top of objects that are instances of a more primitive data type. Those
simpler objects are pairs of values called cons cells, after the function CONS used
to create them.

CONS takes two arguments and returns a new cons cell containing the two values.2
These values can be references to any kind of object. Unless the second value
is NIL or another cons cell, a cons is printed as the two values in parentheses
separated by a dot, a so-called dotted pair.

(cons 1 2) ==> (1 . 2)

The two values in a cons cell are called the CAR and the CDR after the names of the
functions used to access them. At the dawn of time, these names were mnemonic,
at least to the folks implementing the first Lisp on an IBM 704. But even
then they were just lifted from the assembly mnemonics used to implement the
operations. However, it’s not all bad that these names are somewhat meaningless-
-when considering individual cons cells, it’s best to think of them simply as an
arbitrary pair of values without any particular semantics. Thus:

(car (cons 1 2)) ==> 1
(cdr (cons 1 2)) ==> 2

Both CAR and CDR are also SETFable places--given an existing cons cell, it’s
possible to assign a new value to either of its values.3

(defparameter *cons* (cons 1 2))
cons ==> (1 . 2)
(setf (car *cons*) 10) ==> 10
cons ==> (10 . 2)
(setf (cdr *cons*) 20) ==> 20
cons ==> (10 . 20)

Because the values in a cons cell can be references to any kind of object, you
can build larger structures out of cons cells by linking them together. Lists are
built by linking together cons cells in a chain. The elements of the list are held
in the CARs of the cons cells while the links to subsequent cons cells are held in
the CDRs. The last cell in the chain has a CDR of NIL, which--as I mentioned in
Chapter 4--represents the empty list as well as the boolean value false.

This arrangement is by no means unique to Lisp; it’s called a singly linked list.
However, few languages outside the Lisp family provide such extensive support
for this humble data type.

So when I say a particular value is a list, what I really mean is it’s either NIL or
a reference to a cons cell. The CAR of the cons cell is the first item of the list, and
the CDR is a reference to another list, that is, another cons cell or NIL, containing

143

the remaining elements. The Lisp printer understands this convention and prints
such chains of cons cells as parenthesized lists rather than as dotted pairs.

(cons 1 nil) ==> (1)
(cons 1 (cons 2 nil)) ==> (1 2)
(cons 1 (cons 2 (cons 3 nil))) ==> (1 2 3)

When talking about structures built out of cons cells, a few diagrams can be a
big help. Box-and-arrow diagrams represent cons cells as a pair of boxes like
this:

The box on the left represents the CAR, and the box on the right is the CDR. The
values stored in a particular cons cell are either drawn in the appropriate box
or represented by an arrow from the box to a representation of the referenced
value.4 For instance, the list (1 2 3), which consists of three cons cells linked
together by their CDRs, would be diagrammed like this:

However, most of the time you work with lists you won’t have to deal with
individual cons cells--the functions that create and manipulate lists take care of
that for you. For example, the LIST function builds a cons cells under the covers
for you and links them together; the following LIST expressions are equivalent
to the previous CONS expressions:

(list 1) ==> (1)
(list 1 2) ==> (1 2)
(list 1 2 3) ==> (1 2 3)

Similarly, when you’re thinking in terms of lists, you don’t have to use the
meaningless names CAR and CDR; FIRST and REST are synonyms for CAR and CDR
that you should use when you’re dealing with cons cells as lists.

(defparameter *list* (list 1 2 3 4))
(first *list*) ==> 1
(rest *list*) ==> (2 3 4)
(first (rest *list*)) ==> 2

Because cons cells can hold any kind of values, so can lists. And a single list can
hold objects of different types.

(list "foo" (list 1 2) 10) ==> ("foo" (1 2) 10)

The structure of that list would look like this:

144

Because lists can have other lists as elements, you can also use them to represent
trees of arbitrary depth and complexity. As such, they make excellent represen-
tations for any heterogeneous, hierarchical data. Lisp-based XML processors, for
instance, usually represent XML documents internally as lists. Another obvious
example of tree-structured data is Lisp code itself. In Chapters 30 and 31 you’ll
write an HTML generation library that uses lists of lists to represent the HTML
to be generated. I’ll talk more next chapter about using cons cells to represent
other data structures.

Common Lisp provides quite a large library of functions for manipulating lists.
In the sections "List-Manipulation Functions" and "Mapping," you’ll look at
some of the more important of these functions. However, they will be easier to
understand in the context of a few ideas borrowed from functional programming.

Functional Programming and Lists
The essence of functional programming is that programs are built entirely of
functions with no side effects that compute their results based solely on the
values of their arguments. The advantage of the functional style is that it
makes programs easier to understand. Eliminating side effects eliminates almost
all possibilities for action at a distance. And since the result of a function
is determined only by the values of its arguments, its behavior is easier to
understand and test. For instance, when you see an expression such as (+ 3 4),
you know the result is uniquely determined by the definition of the + function
and the values 3 and 4. You don’t have to worry about what may have happened
earlier in the execution of the program since there’s nothing that can change the
result of evaluating that expression.

Functions that deal with numbers are naturally functional since numbers are
immutable. A list, on the other hand, can be mutated, as you’ve just seen, by
SETFing the CARs and CDRs of the cons cells that make up its backbone. However,
lists can be treated as a functional data type if you consider their value to
be determined by the elements they contain. Thus, any list of the form (1 2
3 4) is functionally equivalent to any other list containing those four values,
regardless of what cons cells are actually used to represent the list. And any
function that takes a list as an argument and returns a value based solely on
the contents of the list can likewise be considered functional. For instance,
the REVERSE sequence function, given the list (1 2 3 4), always returns a list
(4 3 2 1). Different calls to REVERSE with functionally equivalent lists as the
argument will return functionally equivalent result lists. Another aspect of

145

functional programming, which I’ll discuss in the section "Mapping," is the use
of higher-order functions: functions that treat other functions as data, taking
them as arguments or returning them as results.

Most of Common Lisp’s list-manipulation functions are written in a functional
style. I’ll discuss later how to mix functional and other coding styles, but first
you should understand a few subtleties of the functional style as applied to lists.

The reason most list functions are written functionally is it allows them to return
results that share cons cells with their arguments. To take a concrete example,
the function APPEND takes any number of list arguments and returns a new list
containing the elements of all its arguments. For instance:

(append (list 1 2) (list 3 4)) ==> (1 2 3 4)

From a functional point of view, APPEND’s job is to return the list (1 2 3 4)
without modifying any of the cons cells in the lists (1 2) and (3 4). One
obvious way to achieve that goal is to create a completely new list consisting
of four new cons cells. However, that’s more work than is necessary. Instead,
APPEND actually makes only two new cons cells to hold the values 1 and 2, linking
them together and pointing the CDR of the second cons cell at the head of the
last argument, the list (3 4). It then returns the cons cell containing the 1.
None of the original cons cells has been modified, and the result is indeed the list
(1 2 3 4). The only wrinkle is that the list returned by APPEND shares some
cons cells with the list (3 4). The resulting structure looks like this:

In general, APPEND must copy all but its last argument, but it can always return
a result that shares structure with the last argument.

Other functions take similar advantage of lists’ ability to share structure. Some,
like APPEND, are specified to always return results that share structure in a
particular way. Others are simply allowed to return shared structure at the
discretion of the implementation.

"Destructive" Operations
If Common Lisp were a purely functional language, that would be the end of
the story. However, because it’s possible to modify a cons cell after it has been

146

created by SETFing its CAR or CDR, you need to think a bit about how side effects
and structure sharing mix.

Because of Lisp’s functional heritage, operations that modify existing objects
are called destructive--in functional programming, changing an object’s state
"destroys" it since it no longer represents the same value. However, using the
same term to describe all state-modifying operations leads to a certain amount
of confusion since there are two very different kinds of destructive operations,
for-side-effect operations and recycling operations.5

For-side-effect operations are those used specifically for their side effects. All
uses of SETF are destructive in this sense, as are functions that use SETF under
the covers to change the state of an existing object such as VECTOR-PUSH or
VECTOR-POP. But it’s a bit unfair to describe these operations as destructive--
they’re not intended to be used in code written in a functional style, so they
shouldn’t be described using functional terminology. However, if you mix
nonfunctional, for-side-effect operations with functions that return structure-
sharing results, then you need to be careful not to inadvertently modify the
shared structure. For instance, consider these three definitions:

(defparameter *list-1* (list 1 2))
(defparameter *list-2* (list 3 4))
(defparameter *list-3* (append *list-1* *list-2*))

After evaluating these forms, you have three lists, but *list-3* and *list-2*
share structure just like the lists in the previous diagram.

list-1 ==> (1 2)
list-2 ==> (3 4)
list-3 ==> (1 2 3 4)

Now consider what happens when you modify *list-2*.

(setf (first *list-2*) 0) ==> 0
list-2 ==> (0 4) ; as expected
list-3 ==> (1 2 0 4) ; maybe not what you wanted

The change to *list-2* also changes *list-3* because of the shared structure:
the first cons cell in *list-2* is also the third cons cell in *list-3*. SETFing
the FIRST of *list-2* changes the value in the CAR of that cons cell, affecting
both lists.

On the other hand, the other kind of destructive operations, recycling operations,
are intended to be used in functional code. They use side effects only as an
optimization. In particular, they reuse certain cons cells from their arguments
when building their result. However, unlike functions such as APPEND that
reuse cons cells by including them, unmodified, in the list they return, recycling
functions reuse cons cells as raw material, modifying the CAR and CDR as necessary
to build the desired result. Thus, recycling functions can be used safely only

147

when the original lists aren’t going to be needed after the call to the recycling
function.

To see how a recycling function works, let’s compare REVERSE, the nondestructive
function that returns a reversed version of a sequence, to NREVERSE, a recycling
version of the same function. Because REVERSE doesn’t modify its argument, it
must allocate a new cons cell for each element in the list being reversed. But
suppose you write something like this:

(setf *list* (reverse *list*))

By assigning the result of REVERSE back to *list*, you’ve removed the reference
to the original value of *list*. Assuming the cons cells in the original list
aren’t referenced anywhere else, they’re now eligible to be garbage collected.
However, in many Lisp implementations it’d be more efficient to immediately
reuse the existing cons cells rather than allocating new ones and letting the old
ones become garbage.

NREVERSE allows you to do exactly that. The N stands for non-consing, meaning
it doesn’t need to allocate any new cons cells. The exact side effects of NREVERSE
are intentionally not specified--it’s allowed to modify any CAR or CDR of any cons
cell in the list--but a typical implementation might walk down the list changing
the CDR of each cons cell to point to the previous cons cell, eventually returning
the cons cell that was previously the last cons cell in the old list and is now the
head of the reversed list. No new cons cells need to be allocated, and no garbage
is created.

Most recycling functions, like NREVERSE, have nondestructive counterparts that
compute the same result. In general, the recycling functions have names that
are the same as their non-destructive counterparts except with a leading N.
However, not all do, including several of the more commonly used recycling
functions such as NCONC, the recycling version of APPEND, and DELETE, DELETE-IF,
DELETE-IF-NOT, and DELETE-DUPLICATES, the recycling versions of the REMOVE
family of sequence functions.

In general, you use recycling functions in the same way you use their nonde-
structive counterparts except it’s safe to use them only when you know the
arguments aren’t going to be used after the function returns. The side effects of
most recycling functions aren’t specified tightly enough to be relied upon.

However, the waters are further muddied by a handful of recycling functions
with specified side effects that can be relied upon. They are NCONC, the recycling
version of APPEND, and NSUBSTITUTE and its -IF and -IF-NOT variants, the
recycling versions of the sequence functions SUBSTITUTE and friends.

Like APPEND, NCONC returns a concatenation of its list arguments, but it builds
its result in the following way: for each nonempty list it’s passed, NCONC sets the
CDR of the list’s last cons cell to point to the first cons cell of the next nonempty
list. It then returns the first list, which is now the head of the spliced-together
result. Thus:

148

(defparameter *x* (list 1 2 3))

(nconc *x* (list 4 5 6)) ==> (1 2 3 4 5 6)

x ==> (1 2 3 4 5 6)

NSUBSTITUTE and variants can be relied on to walk down the list structure of the
list argument and to SETF the CARs of any cons cells holding the old value to the
new value and to otherwise leave the list intact. It then returns the original list,
which now has the same value as would’ve been computed by SUBSTITUTE. 6

The key thing to remember about NCONC and NSUBSTITUTE is that they’re the
exceptions to the rule that you can’t rely on the side effects of recycling functions.
It’s perfectly acceptable--and arguably good style--to ignore the reliability of
their side effects and use them, like any other recycling function, only for the
value they return.

Combining Recycling with Shared Structure
Although you can use recycling functions whenever the arguments to the recycling
function won’t be used after the function call, it’s worth noting that each recycling
function is a loaded gun pointed footward: if you accidentally use a recycling
function on an argument that is used later, you’re liable to lose some toes.

To make matters worse, shared structure and recycling functions tend to work
at cross-purposes. Nondestructive list functions return lists that share structure
under the assumption that cons cells are never modified, but recycling functions
work by violating that assumption. Or, put another way, sharing structure is
based on the premise that you don’t care exactly what cons cells make up a list
while using recycling functions requires that you know exactly what cons cells
are referenced from where.

In practice, recycling functions tend to be used in a few idiomatic ways. By far
the most common recycling idiom is to build up a list to be returned from a
function by "consing" onto the front of a list, usually by PUSHing elements onto
a list stored in a local variable and then returning the result of NREVERSEing it.7

This is an efficient way to build a list because each PUSH has to create only one
cons cell and modify a local variable and the NREVERSE just has to zip down the
list reassigning the CDRs. Because the list is created entirely within the function,
there’s no danger any code outside the function has a reference to any of its cons
cells. Here’s a function that uses this idiom to build a list of the first n numbers,
starting at zero:8

(defun upto (max)
(let ((result nil))
(dotimes (i max)
(push i result))

(nreverse result)))

149

(upto 10) ==> (0 1 2 3 4 5 6 7 8 9)

The next most common recycling idiom9 is to immediately reassign the value
returned by the recycling function back to the place containing the potentially
recycled value. For instance, you’ll often see expressions like the following, using
DELETE, the recycling version of REMOVE:

(setf foo (delete nil foo))

This sets the value of foo to its old value except with all the NILs removed.
However, even this idiom must be used with some care--if foo shares structure
with lists referenced elsewhere, using DELETE instead of REMOVE can destroy the
structure of those other lists. For example, consider the two lists *list-2* and
list-3 from earlier that share their last two cons cells.

list-2 ==> (0 4)
list-3 ==> (1 2 0 4)

You can delete 4 from *list-3* like this:

(setf *list-3* (delete 4 *list-3*)) ==> (1 2 0)

However, DELETE will likely perform the necessary deletion by setting the CDR of
the third cons cell to NIL, disconnecting the fourth cons cell, the one holding the
4, from the list. Because the third cons cell of *list-3* is also the first cons
cell in *list-2*, the following modifies *list-2* as well:

list-2 ==> (0)

If you had used REMOVE instead of DELETE, it would’ve built a list containing the
values 1, 2, and 0, creating new cons cells as necessary rather than modifying
any of the cons cells in *list-3*. In that case, *list-2* wouldn’t have been
affected.

The PUSH/NREVERSE and SETF/DELETE idioms probably account for 80 percent
of the uses of recycling functions. Other uses are possible but require keeping
careful track of which functions return shared structure and which do not.

In general, when manipulating lists, it’s best to write your own code in a
functional style--your functions should depend only on the contents of their
list arguments and shouldn’t modify them. Following that rule will, of course,
rule out using any destructive functions, recycling or otherwise. Once you have
your code working, if profiling shows you need to optimize, you can replace
nondestructive list operations with their recycling counterparts but only if you’re
certain the argument lists aren’t referenced from anywhere else.

One last gotcha to watch out for is that the sorting functions SORT, STABLE-SORT,
and MERGE mentioned in Chapter 11 are also recycling functions when applied
to lists.10 However, these functions don’t have nondestructive counterparts, so
if you need to sort a list without destroying it, you need to pass the sorting
function a copy made with COPY-LIST. In either case you need to be sure to

150

save the result of the sorting function because the original argument is likely to
be in tatters. For instance:

CL-USER> (defparameter *list* (list 4 3 2 1))
LIST
CL-USER> (sort *list* #’<)
(1 2 3 4) ; looks good
CL-USER> *list*
(4) ; whoops!

List-Manipulation Functions
With that background out of the way, you’re ready to look at the library of
functions Common Lisp provides for manipulating lists.

You’ve already seen the basic functions for getting at the elements of a list: FIRST
and REST. Although you can get at any element of a list by combining enough
calls to REST (to move down the list) with a FIRST (to extract the element),
that can be a bit tedious. So Common Lisp provides functions named for the
other ordinals from SECOND to TENTH that return the appropriate element. More
generally, the function NTH takes two arguments, an index and a list, and returns
the nth (zero-based) element of the list. Similarly, NTHCDR takes an index and
a list and returns the result of calling CDR n times. (Thus, (nthcdr 0 ...)
simply returns the original list, and (nthcdr 1 ...) is equivalent to REST.)
Note, however, that none of these functions is any more efficient, in terms of
work done by the computer, than the equivalent combinations of FIRSTs and
RESTs--there’s no way to get to the nth element of a list without following n CDR
references.11

The 28 composite CAR/CDR functions are another family of functions you may
see used from time to time. Each function is named by placing a sequence of up
to four As and Ds between a C and R, with each A representing a call to CAR and
each D a call to CDR. Thus:

(caar list) === (car (car list))
(cadr list) === (car (cdr list))
(cadadr list) === (car (cdr (car (cdr list))))

Note, however, that many of these functions make sense only when applied to
lists that contain other lists. For instance, CAAR extracts the CAR of the CAR of
the list it’s given; thus, the list it’s passed must contain another list as its first
element. In other words, these are really functions on trees rather than lists:

(caar (list 1 2 3)) ==> error
(caar (list (list 1 2) 3)) ==> 1
(cadr (list (list 1 2) (list 3 4))) ==> (3 4)
(caadr (list (list 1 2) (list 3 4))) ==> 3

These functions aren’t used as often now as in the old days. And even the most

151

die-hard old-school Lisp hackers tend to avoid the longer combinations. However,
they’re used quite a bit in older Lisp code, so it’s worth at least understanding
how they work.12

The FIRST-TENTH and CAR, CADR, and so on, functions can also be used as
SETFable places if you’re using lists nonfunctionally.

Table 12-1 summarizes some other list functions that I won’t cover in detail.

Table 12-1. Other List Functions

Function Description
LAST Returns the last cons cell in a list. With an integer, argument returns the last n cons cells.
BUTLAST Returns a copy of the list, excluding the last cons cell. With an integer argument, excludes the last n cells.
NBUTLAST The recycling version of BUTLAST; may modify and return the argument list but has no reliable side effects.
LDIFF Returns a copy of a list up to a given cons cell.
TAILP Returns true if a given object is a cons cell that’s part of the structure of a list.
LIST* Builds a list to hold all but the last of its arguments and then makes the last argument the CDR of the last cell in the list. In other words, a cross between LIST and APPEND.
MAKE-LIST Builds an n item list. The initial elements of the list are NIL or the value specified with the :initial-element keyword argument.
REVAPPEND Combination of REVERSE and APPEND; reverses first argument as with REVERSE and then appends the second argument.
NRECONC Recycling version of REVAPPEND; reverses first argument as if by NREVERSE and then appends the second argument. No reliable side effects.
CONSP Predicate to test whether an object is a cons cell.
ATOM Predicate to test whether an object is not a cons cell.
LISTP Predicate to test whether an object is either a cons cell or NIL.
NULL Predicate to test whether an object is NIL. Functionally equivalent to NOT but stylistically preferable when testing for an empty list as opposed to boolean false.

Mapping
Another important aspect of the functional style is the use of higher-order
functions, functions that take other functions as arguments or return functions
as values. You saw several examples of higher-order functions, such as MAP, in
the previous chapter. Although MAP can be used with both lists and vectors
(that is, with any kind of sequence), Common Lisp also provides six mapping
functions specifically for lists. The differences between the six functions have to
do with how they build up their result and whether they apply the function to
the elements of the list or to the cons cells of the list structure.

MAPCAR is the function most like MAP. Because it always returns a list, it doesn’t
require the result-type argument MAP does. Instead, its first argument is the
function to apply, and subsequent arguments are the lists whose elements will
provide the arguments to the function. Otherwise, it behaves like MAP: the
function is applied to successive elements of the list arguments, taking one
element from each list per application of the function. The results of each
function call are collected into a new list. For example:

(mapcar #’(lambda (x) (* 2 x)) (list 1 2 3)) ==> (2 4 6)
(mapcar #’+ (list 1 2 3) (list 10 20 30)) ==> (11 22 33)

152

MAPLIST is just like MAPCAR except instead of passing the elements of the list to
the function, it passes the actual cons cells.13 Thus, the function has access not
only to the value of each element of the list (via the CAR of the cons cell) but
also to the rest of the list (via the CDR).

MAPCAN and MAPCON work like MAPCAR and MAPLIST except for the way they build
up their result. While MAPCAR and MAPLIST build a completely new list to hold
the results of the function calls, MAPCAN and MAPCON build their result by splicing
together the results--which must be lists--as if by NCONC. Thus, each function
invocation can provide any number of elements to be included in the result.14

MAPCAN, like MAPCAR, passes the elements of the list to the mapped function while
MAPCON, like MAPLIST, passes the cons cells.

Finally, the functions MAPC and MAPL are control constructs disguised as functions-
-they simply return their first list argument, so they’re useful only when the side
effects of the mapped function do something interesting. MAPC is the cousin of
MAPCAR and MAPCAN while MAPL is in the MAPLIST/MAPCON family.

Other Structures
While cons cells and lists are typically considered to be synonymous, that’s not
quite right--as I mentioned earlier, you can use lists of lists to represent trees.
Just as the functions discussed in this chapter allow you to treat structures built
out of cons cells as lists, other functions allow you to use cons cells to represent
trees, sets, and two kinds of key/value maps. I’ll discuss some of those functions
in the next chapter.

1Adapted from The Matrix (http://us.imdb.com/Quotes?0133093)
2CONS was originally short for the verb construct.
3When the place given to SETF is a CAR or CDR, it expands into a call to the
function RPLACA or RPLACD; some old-school Lispers--the same ones who still use
SETQ--will still use RPLACA and RPLACD directly, but modern style is to use SETF
of CAR or CDR.
4Typically, simple objects such as numbers are drawn within the appropriate
box, and more complex objects will be drawn outside the box with an arrow
from the box indicating the reference. This actually corresponds well with how
many Common Lisp implementations work--although all objects are conceptually
stored by reference, certain simple immutable objects can be stored directly in a
cons cell.
5The phrase for-side-effect is used in the language standard, but recycling is my
own invention; most Lisp literature simply uses the term destructive for both
kinds of operations, leading to the confusion I’m trying to dispel.
6The string functions NSTRING-CAPITALIZE, NSTRING-DOWNCASE, and

153

NSTRING-UPCASE are similar--they return the same results as their N-less
counterparts but are specified to modify their string argument in place.
7For example, in an examination of all uses of recycling functions in the Common
Lisp Open Code Collection (CLOCC), a diverse set of libraries written by various
authors, instances of the PUSH/NREVERSE idiom accounted for nearly half of all
uses of recycling functions.
8There are, of course, other ways to do this same thing. The extended LOOP
macro, for instance, makes it particularly easy and likely generates code that’s
even more efficient than the PUSH/ NREVERSE version.
9This idiom accounts for 30 percent of uses of recycling in the CLOCC code
base.
10SORT and STABLE-SORT can be used as for-side-effect operations on vectors,
but since they still return the sorted vector, you should ignore that fact and use
them for return values for the sake of consistency.
11NTH is roughly equivalent to the sequence function ELT but works only with
lists. Also, confusingly, NTH takes the index as the first argument, the opposite
of ELT. Another difference is that ELT will signal an error if you try to access an
element at an index greater than or equal to the length of the list, but NTH will
return NIL.
12In particular, they used to be used to extract the various parts of expressions
passed to macros before the invention of destructuring parameter lists. For
example, you could take apart the following expression:

(when (> x 10) (print x))

Like this:

;; the condition
(cadr ’(when (> x 10) (print x))) ==> (> X 10)

;; the body, as a list
(cddr ’(when (> x 10) (print x))) ==> ((PRINT X))
13Thus, MAPLIST is the more primitive of the two functions--if you had only
MAPLIST, you could build MAPCAR on top of it, but you couldn’t build MAPLIST
on top of MAPCAR.
14In Lisp dialects that didn’t have filtering functions like REMOVE, the idiomatic
way to filter a list was with MAPCAN.

(mapcan #’(lambda (x) (if (= x 10) nil (list x))) list) === (remove 10 list)

Copyright © 2003-2005, Peter Seibel

154

13. Beyond Lists: Other Uses for Cons Cells
As you saw in the previous chapter, the list data type is an illusion created
by a set of functions that manipulate cons cells. Common Lisp also provides
functions that let you treat data structures built out of cons cells as trees, sets,
and lookup tables. In this chapter I’ll give you a quick tour of some of these
other data structures and the functions for manipulating them. As with the
list-manipulation functions, many of these functions will be useful when you
start writing more complicated macros and need to manipulate Lisp code as
data.

Trees
Treating structures built from cons cells as trees is just about as natural as
treating them as lists. What is a list of lists, after all, but another way of
thinking of a tree? The difference between a function that treats a bunch of cons
cells as a list and a function that treats the same bunch of cons cells as a tree has
to do with which cons cells the functions traverse to find the values of the list
or tree. The cons cells traversed by a list function, called the list structure, are
found by starting at the first cons cell and following CDR references until reaching
a NIL. The elements of the list are the objects referenced by the CARs of the
cons cells in the list structure. If a cons cell in the list structure has a CAR that
references another cons cell, the referenced cons cell is considered to be the head
of a list that’s an element of the outer list.1 Tree structure, on the other hand, is
traversed by following both CAR and CDR references for as long as they point to
other cons cells. The values in a tree are thus the atomic--non-cons-cell-values
referenced by either the CARs or the CDRs of the cons cells in the tree structure.

For instance, the following box-and-arrow diagram shows the cons cells that
make up the list of lists: ((1 2) (3 4) (5 6)). The list structure includes
only the three cons cells inside the dashed box while the tree structure includes
all the cons cells.

To see the difference between a list function and a tree function, you can consider

155

how the functions COPY-LIST and COPY-TREE will copy this bunch of cons cells.
COPY-LIST, as a list function, copies the cons cells that make up the list structure.
That is, it makes a new cons cell corresponding to each of the cons cells inside the
dashed box. The CARs of each of these new cons cells reference the same object
as the CARs of the original cons cells in the list structure. Thus, COPY-LIST
doesn’t copy the sublists (1 2), (3 4), or (5 6), as shown in this diagram:

COPY-TREE, on the other hand, makes a new cons cell for each of the cons cells
in the diagram and links them together in the same structure, as shown in this
diagram:

Where a cons cell in the original referenced an atomic value, the corresponding
cons cell in the copy will reference the same value. Thus, the only objects
referenced in common by the original tree and the copy produced by COPY-TREE
are the numbers 1-6, and the symbol NIL.

Another function that walks both the CARs and the CDRs of a tree of cons cells
is TREE-EQUAL, which compares two trees, considering them equal if the tree
structure is the same shape and if the leaves are EQL (or if they satisfy the test
supplied with the :test keyword argument).

Some other tree-centric functions are the tree analogs to the SUBSTITUTE and
NSUBSTITUTE sequence functions and their -IF and -IF-NOT variants. The
function SUBST, like SUBSTITUTE, takes a new item, an old item, and a tree (as
opposed to a sequence), along with :key and :test keyword arguments, and it
returns a new tree with the same shape as the original tree but with all instances

156

of the old item replaced with the new item. For example:

CL-USER> (subst 10 1 ’(1 2 (3 2 1) ((1 1) (2 2))))
(10 2 (3 2 10) ((10 10) (2 2)))

SUBST-IF is analogous to SUBSTITUTE-IF. Instead of an old item, it takes a
one-argument function--the function is called with each atomic value in the tree,
and whenever it returns true, the position in the new tree is filled with the
new value. SUBST-IF-NOT is the same except the values where the test returns
NIL are replaced. NSUBST, NSUBST-IF, and NSUBST-IF-NOT are the recycling
versions of the SUBST functions. As with most other recycling functions, you
should use these functions only as drop-in replacements for their nondestructive
counterparts in situations where you know there’s no danger of modifying a
shared structure. In particular, you must continue to save the return value of
these functions since you have no guarantee that the result will be EQ to the
original tree.2

Sets
Sets can also be implemented in terms of cons cells. In fact, you can treat any
list as a set--Common Lisp provides several functions for performing set-theoretic
operations on lists. However, you should bear in mind that because of the way
lists are structured, these operations get less and less efficient the bigger the sets
get.

That said, using the built-in set functions makes it easy to write set-manipulation
code. And for small sets they may well be more efficient than the alternatives.
If profiling shows you that these functions are a performance bottleneck in your
code, you can always replace the lists with sets built on top of hash tables or bit
vectors.

To build up a set, you can use the function ADJOIN. ADJOIN takes an item and
a list representing a set and returns a list representing the set containing the
item and all the items in the original set. To determine whether the item is
present, it must scan the list; if the item isn’t found, ADJOIN creates a new cons
cell holding the item and pointing to the original list and returns it. Otherwise,
it returns the original list.

ADJOIN also takes :key and :test keyword arguments, which are used when
determining whether the item is present in the original list. Like CONS, ADJOIN
has no effect on the original list--if you want to modify a particular list, you
need to assign the value returned by ADJOIN to the place where the list came
from. The modify macro PUSHNEW does this for you automatically.

CL-USER> (defparameter *set* ())
SET
CL-USER> (adjoin 1 *set*)
(1)
CL-USER> *set*

157

NIL
CL-USER> (setf *set* (adjoin 1 *set*))
(1)
CL-USER> (pushnew 2 *set*)
(2 1)
CL-USER> *set*
(2 1)
CL-USER> (pushnew 2 *set*)
(2 1)

You can test whether a given item is in a set with MEMBER and the related
functions MEMBER-IF and MEMBER-IF-NOT. These functions are similar to the
sequence functions FIND, FIND-IF, and FIND-IF-NOT except they can be used
only with lists. And instead of returning the item when it’s present, they return
the cons cell containing the item--in other words, the sublist starting with the
desired item. When the desired item isn’t present in the list, all three functions
return NIL.

The remaining set-theoretic functions provide bulk operations: INTERSECTION,
UNION, SET-DIFFERENCE, and SET-EXCLUSIVE-OR. Each of these functions takes
two lists and :key and :test keyword arguments and returns a new list repre-
senting the set resulting from performing the appropriate set-theoretic operation
on the two lists: INTERSECTION returns a list containing all the elements found
in both arguments. UNION returns a list containing one instance of each unique
element from the two arguments.3 SET-DIFFERENCE returns a list containing all
the elements from the first argument that don’t appear in the second argument.
And SET-EXCLUSIVE-OR returns a list containing those elements appearing in
only one or the other of the two argument lists but not in both. Each of these
functions also has a recycling counterpart whose name is the same except with
an N prefix.

Finally, the function SUBSETP takes two lists and the usual :key and :test
keyword arguments and returns true if the first list is a subset of the second--if
every element in the first list is also present in the second list. The order of the
elements in the lists doesn’t matter.

CL-USER> (subsetp ’(3 2 1) ’(1 2 3 4))
T
CL-USER> (subsetp ’(1 2 3 4) ’(3 2 1))
NIL

Lookup Tables: Alists and Plists
In addition to trees and sets, you can build tables that map keys to values out of
cons cells. Two flavors of cons-based lookup tables are commonly used, both of
which I’ve mentioned in passing in previous chapters. They’re association lists,
also called alists, and property lists, also known as plists. While you wouldn’t
use either alists or plists for large tables--for that you’d use a hash table--it’s

158

worth knowing how to work with them both because for small tables they can
be more efficient than hash tables and because they have some useful properties
of their own.

An alist is a data structure that maps keys to values and also supports reverse
lookups, finding the key when given a value. Alists also support adding key/value
mappings that shadow existing mappings in such a way that the shadowing
mapping can later be removed and the original mappings exposed again.

Under the covers, an alist is essentially a list whose elements are themselves
cons cells. Each element can be thought of as a key/value pair with the key
in the cons cell’s CAR and the value in the CDR. For instance, the following is a
box-and-arrow diagram of an alist mapping the symbol A to the number 1, B to
2, and C to 3:

Unless the value in the CDR is a list, cons cells representing the key/value pairs
will be dotted pairs in s-expression notation. The alist diagramed in the previous
figure, for instance, is printed like this:

((A . 1) (B . 2) (C . 3))

The main lookup function for alists is ASSOC, which takes a key and an alist and
returns the first cons cell whose CAR matches the key or NIL if no match is found.

CL-USER> (assoc ’a ’((a . 1) (b . 2) (c . 3)))
(A . 1)
CL-USER> (assoc ’c ’((a . 1) (b . 2) (c . 3)))
(C . 3)
CL-USER> (assoc ’d ’((a . 1) (b . 2) (c . 3)))
NIL

To get the value corresponding to a given key, you simply pass the result of
ASSOC to CDR.

CL-USER> (cdr (assoc ’a ’((a . 1) (b . 2) (c . 3))))
1

By default the key given is compared to the keys in the alist using EQL, but
you can change that with the standard combination of :key and :test keyword
arguments. For instance, if you wanted to use string keys, you might write this:

CL-USER> (assoc "a" ’(("a" . 1) ("b" . 2) ("c" . 3)) :test #’string=)
("a" . 1)

159

Without specifying :test to be STRING=, that ASSOC would probably return NIL
because two strings with the same contents aren’t necessarily EQL.

CL-USER> (assoc "a" ’(("a" . 1) ("b" . 2) ("c" . 3)))
NIL

Because ASSOC searches the list by scanning from the front of the list, one
key/value pair in an alist can shadow other pairs with the same key later in the
list.

CL-USER> (assoc ’a ’((a . 10) (a . 1) (b . 2) (c . 3)))
(A . 10)

You can add a pair to the front of an alist with CONS like this:

(cons (cons ’new-key ’new-value) alist)

However, as a convenience, Common Lisp provides the function ACONS, which
lets you write this:

(acons ’new-key ’new-value alist)

Like CONS, ACONS is a function and thus can’t modify the place holding the alist
it’s passed. If you want to modify an alist, you need to write either this:

(setf alist (acons ’new-key ’new-value alist))

or this:

(push (cons ’new-key ’new-value) alist)

Obviously, the time it takes to search an alist with ASSOC is a function of how
deep in the list the matching pair is found. In the worst case, determining that
no pair matches requires ASSOC to scan every element of the alist. However,
since the basic mechanism for alists is so lightweight, for small tables an alist
can outperform a hash table. Also, alists give you more flexibility in how you
do the lookup. I already mentioned that ASSOC takes :key and :test keyword
arguments. When those don’t suit your needs, you may be able to use the
ASSOC-IF and ASSOC-IF-NOT functions, which return the first key/value pair
whose CAR satisfies (or not, in the case of ASSOC-IF-NOT) the test function passed
in the place of a specific item. And three functions--RASSOC, RASSOC-IF, and
RASSOC-IF-NOT--work just like the corresponding ASSOC functions except they
use the value in the CDR of each element as the key, performing a reverse lookup.

The function COPY-ALIST is similar to COPY-TREE except, instead of copying the
whole tree structure, it copies only the cons cells that make up the list structure,
plus the cons cells directly referenced from the CARs of those cells. In other
words, the original alist and the copy will both contain the same objects as the
keys and values, even if those keys or values happen to be made up of cons cells.

Finally, you can build an alist from two separate lists of keys and values with
the function PAIRLIS. The resulting alist may contain the pairs either in the

160

same order as the original lists or in reverse order. For example, you may get
this result:

CL-USER> (pairlis ’(a b c) ’(1 2 3))
((C . 3) (B . 2) (A . 1))

Or you could just as well get this:

CL-USER> (pairlis ’(a b c) ’(1 2 3))
((A . 1) (B . 2) (C . 3))

The other kind of lookup table is the property list, or plist, which you used to
represent the rows in the database in Chapter 3. Structurally a plist is just
a regular list with the keys and values as alternating values. For instance, a
plist mapping A, B, and C, to 1, 2, and 3 is simply the list (A 1 B 2 C 3). In
boxes-and-arrows form, it looks like this:

However, plists are less flexible than alists. In fact, plists support only one
fundamental lookup operation, the function GETF, which takes a plist and a key
and returns the associated value or NIL if the key isn’t found. GETF also takes
an optional third argument, which will be returned in place of NIL if the key
isn’t found.

Unlike ASSOC, which uses EQL as its default test and allows a different test
function to be supplied with a :test argument, GETF always uses EQ to test
whether the provided key matches the keys in the plist. Consequently, you should
never use numbers or characters as keys in a plist; as you saw in Chapter 4, the
behavior of EQ for those types is essentially undefined. Practically speaking, the
keys in a plist are almost always symbols, which makes sense since plists were
first invented to implement symbolic "properties," arbitrary mappings between
names and values.

You can use SETF with GETF to set the value associated with a given key. SETF
also treats GETF a bit specially in that the first argument to GETF is treated as
the place to modify. Thus, you can use SETF of GETF to add a new key/value
pair to an existing plist.

CL-USER> (defparameter *plist* ())
PLIST
CL-USER> *plist*
NIL
CL-USER> (setf (getf *plist* :a) 1)
1
CL-USER> *plist*
(:A 1)
CL-USER> (setf (getf *plist* :a) 2)

161

2
CL-USER> *plist*
(:A 2)

To remove a key/value pair from a plist, you use the macro REMF, which sets
the place given as its first argument to a plist containing all the key/value pairs
except the one specified. It returns true if the given key was actually found.

CL-USER> (remf *plist* :a)
T
CL-USER> *plist*
NIL

Like GETF, REMF always uses EQ to compare the given key to the keys in the plist.

Since plists are often used in situations where you want to extract several prop-
erties from the same plist, Common Lisp provides a function, GET-PROPERTIES,
that makes it more efficient to extract multiple values from a single plist. It
takes a plist and a list of keys to search for and returns, as multiple values,
the first key found, the corresponding value, and the head of the list starting
with the found key. This allows you to process a property list, extracting the
desired properties, without continually rescanning from the front of the list.
For instance, the following function efficiently processes--using the hypothetical
function process-property--all the key/value pairs in a plist for a given list of
keys:

(defun process-properties (plist keys)
(loop while plist do

(multiple-value-bind (key value tail) (get-properties plist keys)
(when key (process-property key value))
(setf plist (cddr tail)))))

The last special thing about plists is the relationship they have with symbols:
every symbol object has an associated plist that can be used to store information
about the symbol. The plist can be obtained via the function SYMBOL-PLIST.
However, you rarely care about the whole plist; more often you’ll use the functions
GET, which takes a symbol and a key and is shorthand for a GETF of the same
key in the symbols SYMBOL-PLIST.

(get ’symbol ’key) === (getf (symbol-plist ’symbol) ’key)

Like GETF, GET is SETFable, so you can attach arbitrary information to a symbol
like this:

(setf (get ’some-symbol ’my-key) "information")

To remove a property from a symbol’s plist, you can use either REMF of
SYMBOL-PLIST or the convenience function REMPROP.4

(remprop ’symbol ’key) === (remf (symbol-plist ’symbol key))

162

Being able to attach arbitrary information to names is quite handy when doing
any kind of symbolic programming. For instance, one of the macros you’ll write
in Chapter 24 will attach information to names that other instances of the same
macros will extract and use when generating their expansions.

DESTRUCTURING-BIND
One last tool for slicing and dicing lists that I need to cover since you’ll need
it in later chapters is the DESTRUCTURING-BIND macro. This macro provides a
way to destructure arbitrary lists, similar to the way macro parameter lists can
take apart their argument list. The basic skeleton of a DESTRUCTURING-BIND is
as follows:

(destructuring-bind (parameter*) list
body-form*)

The parameter list can include any of the types of parameters supported in macro
parameter lists such as &optional, &rest, and &key parameters.5 And, as in
macro parameter lists, any parameter can be replaced with a nested destructuring
parameter list, which takes apart the list that would otherwise have been bound
to the replaced parameter. The list form is evaluated once and should return
a list, which is then destructured and the appropriate values are bound to the
variables in the parameter list. Then the body-forms are evaluated in order with
those bindings in effect. Some simple examples follow:

(destructuring-bind (x y z) (list 1 2 3)
(list :x x :y y :z z)) ==> (:X 1 :Y 2 :Z 3)

(destructuring-bind (x y z) (list 1 (list 2 20) 3)
(list :x x :y y :z z)) ==> (:X 1 :Y (2 20) :Z 3)

(destructuring-bind (x (y1 y2) z) (list 1 (list 2 20) 3)
(list :x x :y1 y1 :y2 y2 :z z)) ==> (:X 1 :Y1 2 :Y2 20 :Z 3)

(destructuring-bind (x (y1 &optional y2) z) (list 1 (list 2 20) 3)
(list :x x :y1 y1 :y2 y2 :z z)) ==> (:X 1 :Y1 2 :Y2 20 :Z 3)

(destructuring-bind (x (y1 &optional y2) z) (list 1 (list 2) 3)
(list :x x :y1 y1 :y2 y2 :z z)) ==> (:X 1 :Y1 2 :Y2 NIL :Z 3)

(destructuring-bind (&key x y z) (list :x 1 :y 2 :z 3)
(list :x x :y y :z z)) ==> (:X 1 :Y 2 :Z 3)

(destructuring-bind (&key x y z) (list :z 1 :y 2 :x 3)
(list :x x :y y :z z)) ==> (:X 3 :Y 2 :Z 1)

One kind of parameter you can use with DESTRUCTURING-BIND and also in
macro parameter lists, though I didn’t mention it in Chapter 8, is a &whole

163

parameter. If specified, it must be the first parameter in a parameter list, and
it’s bound to the whole list form.6 After a &whole parameter, other parameters
can appear as usual and will extract specific parts of the list just as they
would if the &whole parameter weren’t there. An example of using &whole with
DESTRUCTURING-BIND looks like this:

(destructuring-bind (&whole whole &key x y z) (list :z 1 :y 2 :x 3)
(list :x x :y y :z z :whole whole))

==> (:X 3 :Y 2 :Z 1 :WHOLE (:Z 1 :Y 2 :X 3))

You’ll use a &whole parameter in one of the macros that’s part of the HTML
generation library you’ll develop in Chapter 31. However, I have a few more
topics to cover before you can get to that. After two chapters on the rather
Lispy topic of cons cells, you can now turn to the more prosaic matter of how to
deal with files and filenames.

1It’s possible to build a chain of cons cells where the CDR of the last cons cell
isn’t NIL but some other atom. This is called a dotted list because the last cons
is a dotted pair.
2It may seem that the NSUBST family of functions can and in fact does modify
the tree in place. However, there’s one edge case: when the "tree" passed is, in
fact, an atom, it can’t be modified in place, so the result of NSUBST will be a
different object than the argument: (nsubst 'x 'y 'y) X.
3UNION takes only one element from each list, but if either list contains duplicate
elements, the result may also contain duplicates.
4It’s also possible to directly SETF SYMBOL-PLIST. However, that’s a bad idea,
as different code may have added different properties to the symbol’s plist for
different reasons. If one piece of code clobbers the symbol’s whole plist, it may
break other code that added its own properties to the plist.
5Macro parameter lists do support one parameter type, &environment param-
eters, which DESTRUCTURING-BIND doesn’t. However, I didn’t discuss that pa-
rameter type in Chapter 8, and you don’t need to worry about it now either.
6When a &whole parameter is used in a macro parameter list, the form it’s
bound to is the whole macro form, including the name of the macro.

Copyright © 2003-2005, Peter Seibel

14. Files and File I/O
Common Lisp provides a rich library of functionality for dealing with files. In
this chapter I’ll focus on a few basic file-related tasks: reading and writing
files and listing files in the file system. For these basic tasks, Common Lisp’s
I/O facilities are similar to those in other languages. Common Lisp provides

164

a stream abstraction for reading and writing data and an abstraction, called
pathnames, for manipulating filenames in an operating system-independent way.
Additionally, Common Lisp provides other bits of functionality unique to Lisp
such as the ability to read and write s-expressions.

Reading File Data
The most basic file I/O task is to read the contents of a file. You obtain a
stream from which you can read a file’s contents with the OPEN function. By
default OPEN returns a character-based input stream you can pass to a variety
of functions that read one or more characters of text: READ-CHAR reads a single
character; READ-LINE reads a line of text, returning it as a string with the
end-of-line character(s) removed; and READ reads a single s-expression, returning
a Lisp object. When you’re done with the stream, you can close it with the
CLOSE function.

The only required argument to OPEN is the name of the file to read. As you’ll see
in the section "Filenames," Common Lisp provides a couple of ways to represent
a filename, but the simplest is to use a string containing the name in the local
file-naming syntax. So assuming that /some/file/name.txt is a file, you can
open it like this:

(open "/some/file/name.txt")

You can use the object returned as the first argument to any of the read functions.
For instance, to print the first line of the file, you can combine OPEN, READ-LINE,
and CLOSE as follows:

(let ((in (open "/some/file/name.txt")))
(format t "~a~%" (read-line in))
(close in))

Of course, a number of things can go wrong while trying to open and read from
a file. The file may not exist. Or you may unexpectedly hit the end of the file
while reading. By default OPEN and the READ-* functions will signal an error in
these situations. In Chapter 19, I’ll discuss how to recover from such errors. For
now, however, there’s a lighter-weight solution: each of these functions accepts
arguments that modify its behavior in these exceptional situations.

If you want to open a possibly nonexistent file without OPEN signaling an error,
you can use the keyword argument :if-does-not-exist to specify a different
behavior. The three possible values are :error, the default; :create, which
tells it to go ahead and create the file and then proceed as if it had already
existed; and NIL, which tells it to return NIL instead of a stream. Thus, you can
change the previous example to deal with the possibility that the file may not
exist.

(let ((in (open "/some/file/name.txt" :if-does-not-exist nil)))
(when in

165

(format t "~a~%" (read-line in))
(close in)))

The reading functions--READ-CHAR, READ-LINE, and READ--all take an optional
argument, which defaults to true, that specifies whether they should signal an
error if they’re called at the end of the file. If that argument is NIL, they instead
return the value of their third argument, which defaults to NIL. Thus, you could
print all the lines in a file like this:

(let ((in (open "/some/file/name.txt" :if-does-not-exist nil)))
(when in
(loop for line = (read-line in nil)

while line do (format t "~a~%" line))
(close in)))

Of the three text-reading functions, READ is unique to Lisp. This is the same
function that provides the R in the REPL and that’s used to read Lisp source
code. Each time it’s called, it reads a single s-expression, skipping whitespace
and comments, and returns the Lisp object denoted by the s-expression. For
instance, suppose /some/file/name.txt has the following contents:

(1 2 3)
456
"a string" ; this is a comment
((a b)
(c d))

In other words, it contains four s-expressions: a list of numbers, a number, a
string, and a list of lists. You can read those expressions like this:

CL-USER> (defparameter *s* (open "/some/file/name.txt"))
S
CL-USER> (read *s*)
(1 2 3)
CL-USER> (read *s*)
456
CL-USER> (read *s*)
"a string"
CL-USER> (read *s*)
((A B) (C D))
CL-USER> (close *s*)
T

As you saw in Chapter 3, you can use PRINT to print Lisp objects in "readable"
form. Thus, whenever you need to store a bit of data in a file, PRINT and READ
provide an easy way to do it without having to design a data format or write a
parser. They even--as the previous example demonstrated--give you comments
for free. And because s-expressions were designed to be human editable, it’s also
a fine format for things like configuration files.1

166

Reading Binary Data
By default OPEN returns character streams, which translate the underlying
bytes to characters according to a particular character-encoding scheme.2 To
read the raw bytes, you need to pass OPEN an :element-type argument of
'(unsigned-byte 8).3 You can pass the resulting stream to the function
READ-BYTE, which will return an integer between 0 and 255 each time it’s
called. READ-BYTE, like the character-reading functions, also accepts optional
arguments to specify whether it should signal an error if called at the end of the
file and what value to return if not. In Chapter 24 you’ll build a library that
allows you to conveniently read structured binary data using READ-BYTE.4

Bulk Reads
One last reading function, READ-SEQUENCE, works with both character and binary
streams. You pass it a sequence (typically a vector) and a stream, and it attempts
to fill the sequence with data from the stream. It returns the index of the first
element of the sequence that wasn’t filled or the length of the sequence if it
was able to completely fill it. You can also pass :start and :end keyword
arguments to specify a subsequence that should be filled instead. The sequence
argument must be a type that can hold elements of the stream’s element type.
Since most operating systems support some form of block I/O, READ-SEQUENCE
is likely to be quite a bit more efficient than filling a sequence by repeatedly
calling READ-BYTE or READ-CHAR.

File Output
To write data to a file, you need an output stream, which you obtain by calling
OPEN with a :direction keyword argument of :output. When opening a file
for output, OPEN assumes the file shouldn’t already exist and will signal an error
if it does. However, you can change that behavior with the :if-exists keyword
argument. Passing the value :supersede tells OPEN to replace the existing file.
Passing :append causes OPEN to open the existing file such that new data will
be written at the end of the file, while :overwrite returns a stream that will
overwrite existing data starting from the beginning of the file. And passing NIL
will cause OPEN to return NIL instead of a stream if the file already exists. A
typical use of OPEN for output looks like this:

(open "/some/file/name.txt" :direction :output :if-exists :supersede)

Common Lisp also provides several functions for writing data: WRITE-CHAR
writes a single character to the stream. WRITE-LINE writes a string followed
by a newline, which will be output as the appropriate end-of-line character or
characters for the platform. Another function, WRITE-STRING, writes a string
without adding any end-of-line characters. Two different functions can print
just a newline: TERPRI--short for "terminate print"--unconditionally prints a
newline character, and FRESH-LINE prints a newline character unless the stream

167

is at the beginning of a line. FRESH-LINE is handy when you want to avoid
spurious blank lines in textual output generated by different functions called in
sequence. For example, suppose you have one function that generates output
that should always be followed by a line break and another that should start on
a new line. But assume that if the functions are called one after the other, you
don’t want a blank line between the two bits of output. If you use FRESH-LINE
at the beginning of the second function, its output will always start on a new
line, but if it’s called right after the first, it won’t emit an extra line break.

Several functions output Lisp data as s-expressions: PRINT prints an s-expression
preceded by an end-of-line and followed by a space. PRIN1 prints just the s-
expression. And the function PPRINT prints s-expressions like PRINT and PRIN1
but using the "pretty printer," which tries to print its output in an aesthetically
pleasing way.

However, not all objects can be printed in a form that READ will understand.
The variable *PRINT-READABLY* controls what happens if you try to print such
an object with PRINT, PRIN1, or PPRINT. When it’s NIL, these functions will
print the object in a special syntax that’s guaranteed to cause READ to signal an
error if it tries to read it; otherwise they will signal an error rather than print
the object.

Another function, PRINC, also prints Lisp objects, but in a way designed for human
consumption. For instance, PRINC prints strings without quotation marks. You
can generate more elaborate text output with the incredibly flexible if somewhat
arcane FORMAT function. I’ll discuss some of the more important details of
FORMAT, which essentially defines a mini-language for emitting formatted output,
in Chapter 18.

To write binary data to a file, you have to OPEN the file with the same
:element-type argument as you did to read it: '(unsigned-byte 8). You can
then write individual bytes to the stream with WRITE-BYTE.

The bulk output function WRITE-SEQUENCE accepts both binary and character
streams as long as all the elements of the sequence are of an appropriate type for
the stream, either characters or bytes. As with READ-SEQUENCE, this function is
likely to be quite a bit more efficient than writing the elements of the sequence
one at a time.

Closing Files
As anyone who has written code that deals with lots of files knows, it’s important
to close files when you’re done with them, because file handles tend to be a
scarce resource. If you open files and don’t close them, you’ll soon discover you
can’t open any more files.5 It might seem straightforward enough to just be sure
every OPEN has a matching CLOSE. For instance, you could always structure your
file using code like this:

(let ((stream (open "/some/file/name.txt")))

168

;; do stuff with stream
(close stream))

However, this approach suffers from two problems. One is simply that it’s error
prone--if you forget the CLOSE, the code will leak a file handle every time it runs.
The other--and more significant--problem is that there’s no guarantee you’ll get
to the CLOSE. For instance, if the code prior to the CLOSE contains a RETURN or
RETURN-FROM, you could leave the LET without closing the stream. Or, as you’ll
see in Chapter 19, if any of the code before the CLOSE signals an error, control
may jump out of the LET to an error handler and never come back to close the
stream.

Common Lisp provides a general solution to the problem of how to ensure that
certain code always runs: the special operator UNWIND-PROTECT, which I’ll discuss
in Chapter 20. However, because the pattern of opening a file, doing something
with the resulting stream, and then closing the stream is so common, Common
Lisp provides a macro, WITH-OPEN-FILE, built on top of UNWIND-PROTECT, to
encapsulate this pattern. This is the basic form:

(with-open-file (stream-var open-argument*)
body-form*)

The forms in body-forms are evaluated with stream-var bound to a file stream
opened by a call to OPEN with open-arguments as its arguments. WITH-OPEN-FILE
then ensures the stream in stream-var is closed before the WITH-OPEN-FILE form
returns. Thus, you can write this to read a line from a file:

(with-open-file (stream "/some/file/name.txt")
(format t "~a~%" (read-line stream)))

To create a new file, you can write something like this:

(with-open-file (stream "/some/file/name.txt" :direction :output)
(format stream "Some text."))

You’ll probably use WITH-OPEN-FILE for 90-99 percent of the file I/O you do--the
only time you need to use raw OPEN and CLOSE calls is if you need to open a file
in a function and keep the stream around after the function returns. In that
case, you must take care to eventually close the stream yourself, or you’ll leak
file descriptors and may eventually end up unable to open any more files.

Filenames
So far you’ve used strings to represent filenames. However, using strings as
filenames ties your code to a particular operating system and file system. Likewise,
if you programmatically construct names according to the rules of a particular
naming scheme (separating directories with /, say), you also tie your code to a
particular file system.

169

To avoid this kind of nonportability, Common Lisp provides another represen-
tation of filenames: pathname objects. Pathnames represent filenames in a
structured way that makes them easy to manipulate without tying them to
a particular filename syntax. And the burden of translating back and forth
between strings in the local syntax--called namestrings--and pathnames is placed
on the Lisp implementation.

Unfortunately, as with many abstractions designed to hide the details of funda-
mentally different underlying systems, the pathname abstraction introduces its
own complications. When pathnames were designed, the set of file systems in
general use was quite a bit more variegated than those in common use today.
Consequently, some nooks and crannies of the pathname abstraction make little
sense if all you’re concerned about is representing Unix or Windows filenames.
However, once you understand which parts of the pathname abstraction you
can ignore as artifacts of pathnames’ evolutionary history, they do provide a
convenient way to manipulate filenames.6

Most places a filename is called for, you can use either a namestring or a pathname.
Which to use depends mostly on where the name originated. Filenames provided
by the user--for example, as arguments or as values in configuration files--
will typically be namestrings, since the user knows what operating system
they’re running on and shouldn’t be expected to care about the details of how
Lisp represents filenames. But programmatically generated filenames will be
pathnames because you can create them portably. A stream returned by OPEN
also represents a filename, namely, the filename that was originally used to open
the stream. Together these three types are collectively referred to as pathname
designators. All the built-in functions that expect a filename argument accept all
three types of pathname designator. For instance, all the places in the previous
section where you used a string to represent a filename, you could also have
passed a pathname object or a stream.

How We Got Here

The historical diversity of file systems in existence during the 70s and 80s
can be easy to forget. Kent Pitman, one of the principal technical editors
of the Common Lisp standard, described the situation once in comp.lang.lisp
(Message-ID: sfwzo74np6w.fsf@world.std.com) thusly:

The dominant file systems at the time the design [of Common Lisp]
was done were TOPS-10, TENEX, TOPS-20, VAX VMS, AT&T Unix,
MIT Multics, MIT ITS, not to mention a bunch of mainframe [OSs].
Some were uppercase only, some mixed, some were case-sensitive but
case- translating (like CL). Some had dirs as files, some not. Some
had quote chars for funny file chars, some not. Some had wildcards,
some didn’t. Some had :up in relative pathnames, some didn’t. Some
had namable root dirs, some didn’t. There were file systems with no
directories, file systems with non-hierarchical directories, file systems
with no file types, file systems with no versions, file systems with no

170

devices, and so on.

If you look at the pathname abstraction from the point of view of any single
file system, it seems baroque. However, if you take even two such similar file
systems as Windows and Unix, you can already begin to see differences the
pathname system can help abstract away--Windows filenames contain a drive
letter, for instance, while Unix filenames don’t. The other advantage of having
the pathname abstraction designed to handle the wide variety of file systems
that existed in the past is that it’s more likely to be able to handle file systems
that may exist in the future. If, say, versioning file systems come back into vogue,
Common Lisp will be ready.

How Pathnames Represent Filenames
A pathname is a structured object that represents a filename using six compo-
nents: host, device, directory, name, type, and version. Most of these components
take on atomic values, usually strings; only the directory component is further
structured, containing a list of directory names (as strings) prefaced with the
keyword :absolute or :relative. However, not all pathname components are
needed on all platforms--this is one of the reasons pathnames strike many new
Lispers as gratuitously complex. On the other hand, you don’t really need to
worry about which components may or may not be used to represent names on
a particular file system unless you need to create a new pathname object from
scratch, which you’ll almost never need to do. Instead, you’ll usually get hold of
pathname objects either by letting the implementation parse a file system-specific
namestring into a pathname object or by creating a new pathname that takes
most of its components from an existing pathname.

For instance, to translate a namestring to a pathname, you use the PATHNAME
function. It takes a pathname designator and returns an equivalent pathname
object. When the designator is already a pathname, it’s simply returned. When
it’s a stream, the original filename is extracted and returned. When the designator
is a namestring, however, it’s parsed according to the local filename syntax.
The language standard, as a platform-neutral document, doesn’t specify any
particular mapping from namestring to pathname, but most implementations
follow the same conventions on a given operating system.

On Unix file systems, only the directory, name, and type components are typically
used. On Windows, one more component--usually the device or host--holds the
drive letter. On these platforms, a namestring is parsed by first splitting it into
elements on the path separator--a slash on Unix and a slash or backslash on
Windows. The drive letter on Windows will be placed into either the device or
the host component. All but the last of the other name elements are placed in
a list starting with :absolute or :relative depending on whether the name
(ignoring the drive letter, if any) began with a path separator. This list becomes
the directory component of the pathname. The last element is then split on the
rightmost dot, if any, and the two parts put into the name and type components

171

of the pathname.7

You can examine these individual components of a pathname with the functions
PATHNAME-DIRECTORY, PATHNAME-NAME, and PATHNAME-TYPE.

(pathname-directory (pathname "/foo/bar/baz.txt")) ==> (:ABSOLUTE "foo" "bar")
(pathname-name (pathname "/foo/bar/baz.txt")) ==> "baz"
(pathname-type (pathname "/foo/bar/baz.txt")) ==> "txt"

Three other functions--PATHNAME-HOST, PATHNAME-DEVICE, and PATHNAME-VERSION-
-allow you to get at the other three pathname components, though they’re
unlikely to have interesting values on Unix. On Windows either PATHNAME-HOST
or PATHNAME-DEVICE will return the drive letter.

Like many other built-in objects, pathnames have their own read syntax, #p
followed by a double-quoted string. This allows you to print and read back
s-expressions containing pathname objects, but because the syntax depends on
the namestring parsing algorithm, such data isn’t necessarily portable between
operating systems.

(pathname "/foo/bar/baz.txt") ==> #p"/foo/bar/baz.txt"

To translate a pathname back to a namestring--for instance, to present to the
user--you can use the function NAMESTRING, which takes a pathname designator
and returns a namestring. Two other functions, DIRECTORY-NAMESTRING and
FILE-NAMESTRING, return a partial namestring. DIRECTORY-NAMESTRING com-
bines the elements of the directory component into a local directory name, and
FILE-NAMESTRING combines the name and type components.8

(namestring #p"/foo/bar/baz.txt") ==> "/foo/bar/baz.txt"
(directory-namestring #p"/foo/bar/baz.txt") ==> "/foo/bar/"
(file-namestring #p"/foo/bar/baz.txt") ==> "baz.txt"

Constructing New Pathnames
You can construct arbitrary pathnames using the MAKE-PATHNAME function.
It takes one keyword argument for each pathname component and returns a
pathname with any supplied components filled in and the rest NIL.9

(make-pathname
:directory ’(:absolute "foo" "bar")
:name "baz"
:type "txt") ==> #p"/foo/bar/baz.txt"

However, if you want your programs to be portable, you probably don’t want to
make pathnames completely from scratch: even though the pathname abstraction
protects you from unportable filename syntax, filenames can be unportable in
other ways. For instance, the filename /home/peter/foo.txt is no good on an
OS X box where /home/ is called /Users/.

172

Another reason not to make pathnames completely from scratch is that different
implementations use the pathname components slightly differently. For instance,
as mentioned previously, some Windows-based Lisp implementations store the
drive letter in the device component while others store it in the host component.
If you write code like this:

(make-pathname :device "c" :directory ’(:absolute "foo" "bar") :name "baz")

it will be correct on some implementations but not on others.

Rather than making names from scratch, you can build a new pathname based
on an existing pathname with MAKE-PATHNAME’s keyword parameter :defaults.
With this parameter you can provide a pathname designator, which will supply
the values for any components not specified by other arguments. For example,
the following expression creates a pathname with an .html extension and all
other components the same as the pathname in the variable input-file:

(make-pathname :type "html" :defaults input-file)

Assuming the value in input-file was a user-provided name, this code will
be robust in the face of operating system and implementation differences such
as whether filenames have drive letters in them and where they’re stored in a
pathname if they do.10

You can use the same technique to create a pathname with a different directory
component.

(make-pathname :directory ’(:relative "backups") :defaults input-file)

However, this will create a pathname whose whole directory component is the
relative directory backups/, regardless of any directory component input-file
may have had. For example:

(make-pathname :directory ’(:relative "backups")
:defaults #p"/foo/bar/baz.txt") ==> #p"backups/baz.txt"

Sometimes, though, you want to combine two pathnames, at least one of which
has a relative directory component, by combining their directory components.
For instance, suppose you have a relative pathname such as #p"foo/bar.html"
that you want to combine with an absolute pathname such as #p"/www/html/"
to get #p"/www/html/foo/bar.html". In that case, MAKE-PATHNAME won’t do;
instead, you want MERGE-PATHNAMES.

MERGE-PATHNAMES takes two pathnames and merges them, filling in any NIL
components in the first pathname with the corresponding value from the second
pathname, much like MAKE-PATHNAME fills in any unspecified components with
components from the :defaults argument. However, MERGE-PATHNAMES treats
the directory component specially: if the first pathname’s directory is relative,
the directory component of the resulting pathname will be the first pathname’s
directory relative to the second pathname’s directory. Thus:

(merge-pathnames #p"foo/bar.html" #p"/www/html/") ==> #p"/www/html/foo/bar.html"

173

The second pathname can also be relative, in which case the resulting pathname
will also be relative.

(merge-pathnames #p"foo/bar.html" #p"html/") ==> #p"html/foo/bar.html"

To reverse this process and obtain a filename relative to a particular root directory,
you can use the handy function ENOUGH-NAMESTRING.

(enough-namestring #p"/www/html/foo/bar.html" #p"/www/") ==> "html/foo/bar.html"

You can then combine ENOUGH-NAMESTRING with MERGE-PATHNAMES to create a
pathname representing the same name but in a different root.

(merge-pathnames
(enough-namestring #p"/www/html/foo/bar/baz.html" #p"/www/")
#p"/www-backups/") ==> #p"/www-backups/html/foo/bar/baz.html"

MERGE-PATHNAMES is also used internally by the standard functions that actually
access files in the file system to fill in incomplete pathnames. For instance,
suppose you make a pathname with just a name and a type.

(make-pathname :name "foo" :type "txt") ==> #p"foo.txt"

If you try to use this pathname as an argument to OPEN, the missing
components, such as the directory, must be filled in before Lisp will be
able to translate the pathname to an actual filename. Common Lisp will
obtain values for the missing components by merging the given pathname
with the value of the variable *DEFAULT-PATHNAME-DEFAULTS*. The initial
value of this variable is determined by the implementation but is usually a
pathname with a directory component representing the directory where Lisp
was started and appropriate values for the host and device components, if
needed. If invoked with just one argument, MERGE-PATHNAMES will merge the
argument with the value of *DEFAULT-PATHNAME-DEFAULTS*. For instance,
if *DEFAULT-PATHNAME-DEFAULTS* is #p"/home/peter/", then you’d get the
following:

(merge-pathnames #p"foo.txt") ==> #p"/home/peter/foo.txt"

Two Representations of Directory Names
When dealing with pathnames that name directories, you need to be aware of one
wrinkle. Pathnames separate the directory and name components, but Unix and
Windows consider directories just another kind of file. Thus, on those systems,
every directory has two different pathname representations.

One representation, which I’ll call file form, treats a directory like any other file
and puts the last element of the namestring into the name and type components.
The other representation, directory form, places all the elements of the name
in the directory component, leaving the name and type components NIL. If
/foo/bar/ is a directory, then both of the following pathnames name it.

174

(make-pathname :directory ’(:absolute "foo") :name "bar") ; file form
(make-pathname :directory ’(:absolute "foo" "bar")) ; directory form

When you create pathnames with MAKE-PATHNAME, you can control which form
you get, but you need to be careful when dealing with namestrings. All current
implementations create file form pathnames unless the namestring ends with
a path separator. But you can’t rely on user-supplied namestrings necessarily
being in one form or another. For instance, suppose you’ve prompted the user
for a directory to save a file in and they entered "/home/peter". If you pass
that value as the :defaults argument of MAKE-PATHNAME like this:

(make-pathname :name "foo" :type "txt" :defaults user-supplied-name)

you’ll end up saving the file in /home/foo.txt rather than the intended
/home/peter/foo.txt because the "peter" in the namestring will be placed in
the name component when user-supplied-name is converted to a pathname.
In the pathname portability library I’ll discuss in the next chapter, you’ll write a
function called pathname-as-directory that converts a pathname to directory
form. With that function you can reliably save the file in the directory indicated
by the user.

(make-pathname
:name "foo" :type "txt" :defaults (pathname-as-directory user-supplied-name))

Interacting with the File System
While the most common interaction with the file system is probably OPENing files
for reading and writing, you’ll also occasionally want to test whether a file exists,
list the contents of a directory, delete and rename files, create directories, and
get information about a file such as who owns it, when it was last modified, and
its length. This is where the generality of the pathname abstraction begins to
cause a bit of pain: because the language standard doesn’t specify how functions
that interact with the file system map to any specific file system, implementers
are left with a fair bit of leeway.

That said, most of the functions that interact with the file system are still pretty
straightforward. I’ll discuss the standard functions here and point out the ones
that suffer from nonportability between implementations. In the next chapter
you’ll develop a pathname portability library to smooth over some of those
nonportability issues.

To test whether a file exists in the file system corresponding to a pathname
designator--a pathname, namestring, or file stream--you can use the function
PROBE-FILE. If the file named by the pathname designator exists, PROBE-FILE
returns the file’s truename, a pathname with any file system-level translations
such as resolving symbolic links performed. Otherwise, it returns NIL. However,
not all implementations support using this function to test whether a directory
exists. Also, Common Lisp doesn’t provide a portable way to test whether a
given file that exists is a regular file or a directory. In the next chapter you’ll wrap

175

PROBE-FILE with a new function, file-exists-p, that can both test whether
a directory exists and tell you whether a given name is the name of a file or
directory.

Similarly, the standard function for listing files in the file system, DIRECTORY,
works fine for simple cases, but the differences between implementations make
it tricky to use portably. In the next chapter you’ll define a list-directory
function that smoothes over some of these differences.

DELETE-FILE and RENAME-FILE do what their names suggest. DELETE-FILE
takes a pathname designator and deletes the named file, returning true if it
succeeds. Otherwise it signals a FILE-ERROR.11

RENAME-FILE takes two pathname designators and renames the file named by
the first name to the second name.

You can create directories with the function ENSURE-DIRECTORIES-EXIST. It
takes a pathname designator and ensures that all the elements of the directory
component exist and are directories, creating them as necessary. It returns the
pathname it was passed, which makes it convenient to use inline.

(with-open-file (out (ensure-directories-exist name) :direction :output)
...
)

Note that if you pass ENSURE-DIRECTORIES-EXIST a directory name, it should
be in directory form, or the leaf directory won’t be created.

The functions FILE-WRITE-DATE and FILE-AUTHOR both take a pathname desig-
nator. FILE-WRITE-DATE returns the time in number of seconds since midnight
January 1, 1900, Greenwich mean time (GMT), that the file was last written,
and FILE-AUTHOR returns, on Unix and Windows, the file owner.12

To find the length of a file, you can use the function FILE-LENGTH. For historical
reasons FILE-LENGTH takes a stream as an argument rather than a pathname.
In theory this allows FILE-LENGTH to return the length in terms of the element
type of the stream. However, since on most present-day operating systems, the
only information available about the length of a file, short of actually reading the
whole file to measure it, is its length in bytes, that’s what most implementations
return, even when FILE-LENGTH is passed a character stream. However, the
standard doesn’t require this behavior, so for predictable results, the best way
to get the length of a file is to use a binary stream.13

(with-open-file (in filename :element-type ’(unsigned-byte 8))
(file-length in))

A related function that also takes an open file stream as its argument is
FILE-POSITION. When called with just a stream, this function returns the
current position in the file--the number of elements that have been read from
or written to the stream. When called with two arguments, the stream and a
position designator, it sets the position of the stream to the designated position.

176

The position designator must be the keyword :start, the keyword :end, or
a non-negative integer. The two keywords set the position of the stream to
the start or end of the file while an integer moves to the indicated position in
the file. With a binary stream the position is simply a byte offset into the file.
However, for character streams things are a bit more complicated because of
character-encoding issues. Your best bet, if you need to jump around within a file
of textual data, is to only ever pass, as a second argument to the two-argument
version of FILE-POSITION, a value previously returned by the one-argument
version of FILE-POSITION with the same stream argument.

Other Kinds of I/O
In addition to file streams, Common Lisp supports other kinds of streams,
which can also be used with the various reading, writing, and printing
I/O functions. For instance, you can read data from, or write data to,
a string using STRING-STREAMs, which you can create with the functions
MAKE-STRING-INPUT-STREAM and MAKE-STRING-OUTPUT-STREAM.

MAKE-STRING-INPUT-STREAM takes a string and optional start and end indices
to bound the area of the string from which data should be read and returns a
character stream that you can pass to any of the character-based input functions
such as READ-CHAR, READ-LINE, or READ. For example, if you have a string
containing a floating-point literal in Common Lisp’s syntax, you can convert it
to a float like this:

(let ((s (make-string-input-stream "1.23")))
(unwind-protect (read s)
(close s)))

Similarly, MAKE-STRING-OUTPUT-STREAM creates a stream you can use with
FORMAT, PRINT, WRITE-CHAR, WRITE-LINE, and so on. It takes no arguments.
Whatever you write, a string output stream will be accumulated into a string
that can then be obtained with the function GET-OUTPUT-STREAM-STRING. Each
time you call GET-OUTPUT-STREAM-STRING, the stream’s internal string is cleared
so you can reuse an existing string output stream.

However, you’ll rarely use these functions directly, because the macros
WITH-INPUT-FROM-STRING and WITH-OUTPUT-TO-STRING provide a more con-
venient interface. WITH-INPUT-FROM-STRING is similar to WITH-OPEN-FILE--it
creates a string input stream from a given string and then executes the forms
in its body with the stream bound to the variable you provide. For instance,
instead of the LET form with the explicit UNWIND-PROTECT, you’d probably write
this:

(with-input-from-string (s "1.23")
(read s))

The WITH-OUTPUT-TO-STRING macro is similar: it binds a newly created string
output stream to a variable you name and then executes its body. After all the

177

body forms have been executed, WITH-OUTPUT-TO-STRING returns the value that
would be returned by GET-OUTPUT-STREAM-STRING.

CL-USER> (with-output-to-string (out)
(format out "hello, world ")
(format out "~s" (list 1 2 3)))

"hello, world (1 2 3)"

The other kinds of streams defined in the language standard provide various
kinds of stream "plumbing," allowing you to plug together streams in almost any
configuration. A BROADCAST-STREAM is an output stream that sends any data
written to it to a set of output streams provided as arguments to its constructor
function, MAKE-BROADCAST-STREAM.14 Conversely, a CONCATENATED-STREAM is
an input stream that takes its input from a set of input streams, moving from
stream to stream as it hits the end of each stream. CONCATENATED-STREAMs
are constructed with the function MAKE-CONCATENATED-STREAM, which takes any
number of input streams as arguments.

Two kinds of bidirectional streams that can plug together streams in a cou-
ple ways are TWO-WAY-STREAM and ECHO-STREAM. Their constructor functions,
MAKE-TWO-WAY-STREAM and MAKE-ECHO-STREAM, both take two arguments, an
input stream and an output stream, and return a stream of the appropriate type,
which you can use with both input and output functions.

In a TWO-WAY-STREAM every read you perform will return data read from the
underlying input stream, and every write will send data to the underlying output
stream. An ECHO-STREAM works essentially the same way except that all the
data read from the underlying input stream is also echoed to the output stream.
Thus, the output stream of an ECHO-STREAM stream will contain a transcript of
both sides of the conversation.

Using these five kinds of streams, you can build almost any topology of stream
plumbing you want.

Finally, although the Common Lisp standard doesn’t say anything about net-
working APIs, most implementations support socket programming and typically
implement sockets as another kind of stream, so you can use all the regular I/O
functions with them.15

Now you’re ready to move on to building a library that smoothes over some of
the differences between how the basic pathname functions behave in different
Common Lisp implementations.

1Note, however, that while the Lisp reader knows how to skip comments, it
completely skips them. Thus, if you use READ to read in a configuration file
containing comments and then use PRINT to save changes to the data, you’ll lose
the comments.

178

2By default OPEN uses the default character encoding for the operating system,
but it also accepts a keyword parameter, :external-format, that can pass
implementation-defined values that specify a different encoding. Character
streams also translate the platform-specific end-of-line sequence to the single
character #\Newline.
3The type (unsigned-byte 8) indicates an 8-bit byte; Common Lisp "byte"
types aren’t a fixed size since Lisp has run at various times on architectures with
byte sizes from 6 to 9 bits, to say nothing of the PDP-10, which had individually
addressable variable-length bit fields of 1 to 36 bits.
4In general, a stream is either a character stream or a binary stream, so you can’t
mix calls to READ-BYTE and READ-CHAR or other character-based read functions.
However, some implementations, such as Allegro, support so-called bivalent
streams, which support both character and binary I/O.
5Some folks expect this wouldn’t be a problem in a garbage-collected language
such as Lisp. It is the case in most Lisp implementations that a stream that
becomes garbage will automatically be closed. However, this isn’t something to
rely on--the problem is that garbage collectors usually run only when memory is
low; they don’t know about other scarce resources such as file handles. If there’s
plenty of memory available, it’s easy to run out of file handles long before the
garbage collector runs.
6Another reason the pathname system is considered somewhat baroque is because
of the inclusion of logical pathnames. However, you can use the rest of the
pathname system perfectly well without knowing anything more about logical
pathnames than that you can safely ignore them. Briefly, logical pathnames allow
Common Lisp programs to contain references to pathnames without naming
specific files. Logical pathnames could then be mapped to specific locations in an
actual file system when the program was installed by defining a "logical pathname
translation" that translates logical pathnames matching certain wildcards to
pathnames representing files in the file system, so-called physical pathnames.
They have their uses in certain situations, but you can get pretty far without
worrying about them.
7Many Unix-based implementations treat filenames whose last element starts
with a dot and don’t contain any other dots specially, putting the whole element,
with the dot, in the name component and leaving the type component NIL.

(pathname-name (pathname "/foo/.emacs")) ==> ".emacs"
(pathname-type (pathname "/foo/.emacs")) ==> NIL

However, not all implementations follow this convention; some will create a
pathname with "" as the name and emacs as the type.
8The name returned by FILE-NAMESTRING also includes the version component
on file systems that use it.
9The host component may not default to NIL, but if not, it will be an opaque

179

implementation-defined value.
10For absolutely maximum portability, you should really write this:

(make-pathname :type "html" :version :newest :defaults input-file)

Without the :version argument, on a file system with built-in versioning, the
output pathname would inherit its version number from the input file which
isn’t likely to be right--if the input file has been saved many times it will have a
much higher version number than the generated HTML file. On implementations
without file versioning, the :version argument should be ignored. It’s up to
you if you care that much about portability.
11See Chapter 19 for more on handling errors.
12For applications that need access to other file attributes on a particular operat-
ing system or file system, libraries provide bindings to underlying C system calls.
The Osicat library at http://common-lisp.net/project/osicat/ provides a
simple API built using the Universal Foreign Function Interface (UFFI), which
should run on most Common Lisps that run on a POSIX operating system.
13The number of bytes and characters in a file can differ even if you’re not
using a multibyte character encoding. Because character streams also translate
platform-specific line endings to a single #\Newline character, on Windows
(which uses CRLF as its line ending) the number of characters will typically be
smaller than the number of bytes. If you really have to know the number of
characters in a file, you have to bite the bullet and write something like this:

(with-open-file (in filename)
(loop while (read-char in nil) count t))

or maybe something more efficient like this:

(with-open-file (in filename)
(let ((scratch (make-string 4096)))
(loop for read = (read-sequence scratch in)

while (plusp read) sum read)))
14MAKE-BROADCAST-STREAM can make a data black hole by calling it with no
arguments.
15The biggest missing piece in Common Lisp’s standard I/O facilities is a way for
users to define new stream classes. There are, however, two de facto standards
for user-defined streams. During the Common Lisp standardization, David
Gray of Texas Instruments wrote a draft proposal for an API to allow users to
define new stream classes. Unfortunately, there wasn’t time to work out all the
issues raised by his draft to include it in the language standard. However, many
implementations support some form of so-called Gray Streams, basing their API
on Gray’s draft proposal. Another, newer API, called Simple Streams, has been
developed by Franz and included in Allegro Common Lisp. It was designed to

180

improve the performance of user-defined streams relative to Gray Streams and
has been adopted by some of the open-source Common Lisp implementations.

Copyright © 2003-2005, Peter Seibel

15. Practical: A Portable Pathname Library
As I discussed in the previous chapter, Common Lisp provides an abstraction,
the pathname, that’s supposed to insulate you from the details of how different
operating systems and file systems name files. Pathnames provide a useful API
for manipulating names as names, but when it comes to the functions that
actually interact with the file system, things get a bit hairy.

The root of the problem, as I mentioned, is that the pathname abstraction
was designed to represent filenames on a much wider variety of file systems
than are commonly used now. Unfortunately, by making pathnames abstract
enough to account for a wide variety of file systems, Common Lisp’s designers left
implementers with a fair number of choices to make about how exactly to map
the pathname abstraction onto any particular file system. Consequently, different
implementers, each implementing the pathname abstraction for the same file
system, just by making different choices at a few key junctions, could end up
with conforming implementations that nonetheless provide different behavior for
several of the main pathname-related functions.

However, one way or another, all implementations provide the same basic
functionality, so it’s not too hard to write a library that provides a consistent
interface for the most common operations across different implementations.
That’s your task for this chapter. In addition to giving you several useful functions
that you’ll use in future chapters, writing this library will give you a chance to
learn how to write code that deals with differences between implementations.

The API
The basic operations the library will support will be getting a list of files in a
directory and determining whether a file or directory with a given name exists.
You’ll also write a function for recursively walking a directory hierarchy, calling
a given function for each pathname in the tree.

In theory, these directory listing and file existence operations are already provided
by the standard functions DIRECTORY and PROBE-FILE. However, as you’ll see,
there are enough different ways to implement these functions--all within the
bounds of valid interpretations of the language standard--that you’ll want to
write new functions that provide a consistent behavior across implementations.

181

FEATURES and Read-Time Conditionalization
Before you can implement this API in a library that will run correctly on multiple
Common Lisp implementations, I need to show you the mechanism for writing
implementation-specific code.

While most of the code you write can be "portable" in the sense that it will run
the same on any conforming Common Lisp implementation, you may occasionally
need to rely on implementation-specific functionality or to write slightly different
bits of code for different implementations. To allow you to do so without totally
destroying the portability of your code, Common Lisp provides a mechanism,
called read-time conditionalization, that allows you to conditionally include code
based on various features such as what implementation it’s being run in.

The mechanism consists of a variable *FEATURES* and two extra bits of syntax
understood by the Lisp reader. *FEATURES* is a list of symbols; each symbol
represents a "feature" that’s present in the implementation or on the underlying
platform. These symbols are then used in feature expressions that evaluate to
true or false depending on whether the symbols in the expression are present in
FEATURES. The simplest feature expression is a single symbol; the expression is
true if the symbol is in *FEATURES* and false if it isn’t. Other feature expressions
are boolean expressions built out of NOT, AND, and OR operators. For instance, if
you wanted to conditionalize some code to be included only if the features foo
and bar were present, you could write the feature expression (and foo bar).

The reader uses feature expressions in conjunction with two bits of syntax, #+
and #-. When the reader sees either of these bits of syntax, it first reads a
feature expression and then evaluates it as I just described. When a feature
expression following a #+ is true, the reader reads the next expression normally.
Otherwise it skips the next expression, treating it as whitespace. #- works the
same way except it reads the form if the feature expression is false and skips it
if it’s true.

The initial value of *FEATURES* is implementation dependent, and what func-
tionality is implied by the presence of any given symbol is likewise defined by
the implementation. However, all implementations include at least one symbol
that indicates what implementation it is. For instance, Allegro Common Lisp
includes the symbol :allegro, CLISP includes :clisp, SBCL includes :sbcl,
and CMUCL includes :cmu. To avoid dependencies on packages that may or may
not exist in different implementations, the symbols in *FEATURES* are usually
keywords, and the reader binds *PACKAGE* to the KEYWORD package while reading
feature expressions. Thus, a name with no package qualification will be read as a
keyword symbol. So, you could write a function that behaves slightly differently
in each of the implementations just mentioned like this:

(defun foo ()
#+allegro (do-one-thing)
#+sbcl (do-another-thing)

182

#+clisp (something-else)
#+cmu (yet-another-version)
#-(or allegro sbcl clisp cmu) (error "Not implemented"))

In Allegro that code will be read as if it had been written like this:

(defun foo ()
(do-one-thing))

while in SBCL the reader will read this:

(defun foo ()
(do-another-thing))

while in an implementation other than one of the ones specifically conditionalized,
it will read this:

(defun foo ()
(error "Not implemented"))

Because the conditionalization happens in the reader, the compiler doesn’t even
see expressions that are skipped.1 This means you pay no runtime cost for having
different versions for different implementations. Also, when the reader skips
conditionalized expressions, it doesn’t bother interning symbols, so the skipped
expressions can safely contain symbols from packages that may not exist in other
implementations.

Packaging the Library

Speaking of packages, if you download the complete code for this library, you’ll
see that it’s defined in a new package, com.gigamonkeys.pathnames. I’ll discuss
the details of defining and using packages in Chapter 21. For now you should note
that some implementations provide their own packages that contain functions
with some of the same names as the ones you’ll define in this chapter and make
those names available in the CL-USER package. Thus, if you try to define the
functions from this library while in the CL-USER package, you may get errors
or warnings about clobbering existing definitions. To avoid this possibility, you
can create a file called packages.lisp with the following contents:

(in-package :cl-user)

(defpackage :com.gigamonkeys.pathnames
(:use :common-lisp)
(:export
:list-directory
:file-exists-p
:directory-pathname-p
:file-pathname-p
:pathname-as-directory
:pathname-as-file
:walk-directory

183

:directory-p
:file-p))

and LOAD it. Then at the REPL or at the top of the file where you type the
definitions from this chapter, type the following expression:

(in-package :com.gigamonkeys.pathnames)

In addition to avoiding name conflicts with symbols already available in CL-USER,
packaging the library this way also makes it easier to use in other code, as you’ll
see in several future chapters.

Listing a Directory
You can implement the function for listing a single directory, list-directory,
as a thin wrapper around the standard function DIRECTORY. DIRECTORY takes
a special kind of pathname, called a wild pathname, that has one or more
components containing the special value :wild and returns a list of pathnames
representing files in the file system that match the wild pathname.2 The matching
algorithm--like most things having to do with the interaction between Lisp
and a particular file system--isn’t defined by the language standard, but most
implementations on Unix and Windows follow the same basic scheme.

The DIRECTORY function has two problems that you need to address with
list-directory. The main one is that certain aspects of its behavior dif-
fer fairly significantly between different Common Lisp implementations, even
on the same operating system. The other is that while DIRECTORY provides a
powerful interface for listing files, to use it properly requires understanding some
rather subtle points about the pathname abstraction. Between these subtleties
and the idiosyncrasies of different implementations, actually writing portable
code that uses DIRECTORY to do something as simple as listing all the files
and subdirectories in a single directory can be a frustrating experience. You
can deal with those subtleties and idiosyncrasies once and for all, by writing
list-directory, and forget them thereafter.

One subtlety I discussed in Chapter 14 is the two ways to represent the name of
a directory as a pathname: directory form and file form.

To get DIRECTORY to return a list of files in /home/peter/, you need to pass it
a wild pathname whose directory component is the directory you want to list
and whose name and type components are :wild. Thus, to get a listing of the
files in /home/peter/, it might seem you could write this:

(directory (make-pathname :name :wild :type :wild :defaults home-dir))

where home-dir is a pathname representing /home/peter/. This would work
if home-dir were in directory form. But if it were in file form--for example, if
it had been created by parsing the namestring "/home/peter"--then that same
expression would list all the files in /home since the name component "peter"
would be replaced with :wild.

184

To avoid having to worry about explicitly converting between representations,
you can define list-directory to accept a nonwild pathname in either form,
which it will then convert to the appropriate wild pathname.

To help with this, you should define a few helper functions. One,
component-present-p, will test whether a given component of a path-
name is "present," meaning neither NIL nor the special value :unspecific.3
Another, directory-pathname-p, tests whether a pathname is already in
directory form, and the third, pathname-as-directory, converts any pathname
to a directory form pathname.

(defun component-present-p (value)
(and value (not (eql value :unspecific))))

(defun directory-pathname-p (p)
(and
(not (component-present-p (pathname-name p)))
(not (component-present-p (pathname-type p)))
p))

(defun pathname-as-directory (name)
(let ((pathname (pathname name)))
(when (wild-pathname-p pathname)
(error "Can’t reliably convert wild pathnames."))

(if (not (directory-pathname-p name))
(make-pathname
:directory (append (or (pathname-directory pathname) (list :relative))

(list (file-namestring pathname)))
:name nil
:type nil
:defaults pathname)
pathname)))

Now it seems you could generate a wild pathname to pass to DIRECTORY
by calling MAKE-PATHNAME with a directory form name returned by
pathname-as-directory. Unfortunately, it’s not quite that simple, thanks to a
quirk in CLISP’s implementation of DIRECTORY. In CLISP, DIRECTORY won’t
return files with no extension unless the type component of the wildcard is
NIL rather than :wild. So you can define a function, directory-wildcard,
that takes a pathname in either directory or file form and returns a proper
wildcard for the given implementation using read-time conditionalization to
make a pathname with a :wild type component in all implementations except
for CLISP and NIL in CLISP.

(defun directory-wildcard (dirname)
(make-pathname
:name :wild
:type #-clisp :wild #+clisp nil

185

:defaults (pathname-as-directory dirname)))

Note how each read-time conditional operates at the level of a single expression
After #-clisp, the expression :wild is either read or skipped; likewise, after
#+clisp, the NIL is read or skipped.

Now you can take a first crack at the list-directory function.

(defun list-directory (dirname)
(when (wild-pathname-p dirname)
(error "Can only list concrete directory names."))

(directory (directory-wildcard dirname)))

As it stands, this function would work in SBCL, CMUCL, and LispWorks.
Unfortunately, a couple more implementation differences remain to be smoothed
over. One is that not all implementations will return subdirectories of the given
directory. Allegro, SBCL, CMUCL, and LispWorks do. OpenMCL doesn’t by
default but will if you pass DIRECTORY a true value via the implementation-specific
keyword argument :directories. CLISP’s DIRECTORY returns subdirectories
only when it’s passed a wildcard pathname with :wild as the last element of
the directory component and NIL name and type components. In this case, it
returns only subdirectories, so you’ll need to call DIRECTORY twice with different
wildcards and combine the results.

Once you get all the implementations returning directories, you’ll discover they
can also differ in whether they return the names of directories in directory
or file form. You want list-directory to always return directory names in
directory form so you can differentiate subdirectories from regular files based
on just the name. Except for Allegro, all the implementations this library will
support do that. Allegro, on the other hand, requires you to pass DIRECTORY
the implementation-specific keyword argument :directories-are-files NIL
to get it to return directories in file form.

Once you know how to make each implementation do what you want, actually
writing list-directory is simply a matter of combining the different versions
using read-time conditionals.

(defun list-directory (dirname)
(when (wild-pathname-p dirname)
(error "Can only list concrete directory names."))

(let ((wildcard (directory-wildcard dirname)))

#+(or sbcl cmu lispworks)
(directory wildcard)

#+openmcl
(directory wildcard :directories t)

#+allegro

186

(directory wildcard :directories-are-files nil)

#+clisp
(nconc
(directory wildcard)
(directory (clisp-subdirectories-wildcard wildcard)))

#-(or sbcl cmu lispworks openmcl allegro clisp)
(error "list-directory not implemented")))

The function clisp-subdirectories-wildcard isn’t actually specific to CLISP,
but since it isn’t needed by any other implementation, you can guard its definition
with a read-time conditional. In this case, since the expression following the
#+ is the whole DEFUN, the whole function definition will be included or not,
depending on whether clisp is present in *FEATURES*.

#+clisp
(defun clisp-subdirectories-wildcard (wildcard)
(make-pathname
:directory (append (pathname-directory wildcard) (list :wild))
:name nil
:type nil
:defaults wildcard))

Testing a File’s Existence
To replace PROBE-FILE, you can define a function called file-exists-p. It
should accept a pathname and return an equivalent pathname if the file exists
and NIL if it doesn’t. It should be able to accept the name of a directory in
either directory or file form but should always return a directory form pathname
if the file exists and is a directory. This will allow you to use file-exists-p,
along with directory-pathname-p, to test whether an arbitrary name is the
name of a file or directory.

In theory, file-exists-p is quite similar to the standard function PROBE-FILE;
indeed, in several implementations--SBCL, LispWorks, and OpenMCL--
PROBE-FILE already gives you the behavior you want for file-exists-p. But
not all implementations of PROBE-FILE behave quite the same.

Allegro and CMUCL’s PROBE-FILE functions are close to what you need--they
will accept the name of a directory in either form but, instead of returning a
directory form name, simply return the name in the same form as the argument
it was passed. Luckily, if passed the name of a nondirectory in directory form,
they return NIL. So with those implementations you can get the behavior you
want by first passing the name to PROBE-FILE in directory form--if the file exists
and is a directory, it will return the directory form name. If that call returns
NIL, then you try again with a file form name.

187

CLISP, on the other hand, once again has its own way of doing things. Its
PROBE-FILE immediately signals an error if passed a name in directory form,
regardless of whether a file or directory exists with that name. It also signals
an error if passed a name in file form that’s actually the name of a direc-
tory. For testing whether a directory exists, CLISP provides its own function:
probe-directory (in the ext package). This is almost the mirror image of
PROBE-FILE: it signals an error if passed a name in file form or if passed a name
in directory form that happens to name a file. The only difference is it returns T
rather than a pathname when the named directory exists.

But even in CLISP you can implement the desired semantics by wrapping the
calls to PROBE-FILE and probe-directory in IGNORE-ERRORS.4

(defun file-exists-p (pathname)
#+(or sbcl lispworks openmcl)
(probe-file pathname)

#+(or allegro cmu)
(or (probe-file (pathname-as-directory pathname))

(probe-file pathname))

#+clisp
(or (ignore-errors

(probe-file (pathname-as-file pathname)))
(ignore-errors
(let ((directory-form (pathname-as-directory pathname)))
(when (ext:probe-directory directory-form)
directory-form))))

#-(or sbcl cmu lispworks openmcl allegro clisp)
(error "file-exists-p not implemented"))

The function pathname-as-file that you need for the CLISP implementation of
file-exists-p is the inverse of the previously defined pathname-as-directory,
returning a pathname that’s the file form equivalent of its argument. This
function, despite being needed here only by CLISP, is generally useful, so define
it for all implementations and make it part of the library.

(defun pathname-as-file (name)
(let ((pathname (pathname name)))
(when (wild-pathname-p pathname)
(error "Can’t reliably convert wild pathnames."))

(if (directory-pathname-p name)
(let* ((directory (pathname-directory pathname))

(name-and-type (pathname (first (last directory)))))
(make-pathname
:directory (butlast directory)
:name (pathname-name name-and-type)

188

:type (pathname-type name-and-type)
:defaults pathname))

pathname)))

Walking a Directory Tree
Finally, to round out this library, you can implement a function called
walk-directory. Unlike the functions defined previously, this function doesn’t
need to do much of anything to smooth over implementation differences; it just
needs to use the functions you’ve already defined. However, it’s quite handy,
and you’ll use it several times in subsequent chapters. It will take the name of
a directory and a function and call the function on the pathnames of all the
files under the directory, recursively. It will also take two keyword arguments:
:directories and :test. When :directories is true, it will call the function
on the pathnames of directories as well as regular files. The :test argument, if
provided, specifies another function that’s invoked on each pathname before
the main function is; the main function will be called only if the test function
returns true.

(defun walk-directory (dirname fn &key directories (test (constantly t)))
(labels

((walk (name)
(cond
((directory-pathname-p name)
(when (and directories (funcall test name))
(funcall fn name))

(dolist (x (list-directory name)) (walk x)))
((funcall test name) (funcall fn name)))))

(walk (pathname-as-directory dirname))))

Now you have a useful library of functions for dealing with pathnames. As I
mentioned, these functions will come in handy in later chapters, particularly
Chapters 23 and 27, where you’ll use walk-directory to crawl through directory
trees containing spam messages and MP3 files. But before we get to that, though,
I need to talk about object orientation, the topic of the next two chapters.

1One slightly annoying consequence of the way read-time conditionalization
works is that there’s no easy way to write a fall-through case. For example, if you
add support for another implementation to foo by adding another expression
guarded with #+, you need to remember to also add the same feature to the or
feature expression after the #- or the ERROR form will be evaluated after your
new code runs.
2Another special value, :wild-inferiors, can appear as part of the directory
component of a wild pathname, but you won’t need it in this chapter.
3Implementations are allowed to return :unspecific instead of NIL as the value

189

of pathname components in certain situations such as when the component isn’t
used by that implementation.
4This is slightly broken in the sense that if PROBE-FILE signals an error for some
other reason, this code will interpret it incorrectly. Unfortunately, the CLISP
documentation doesn’t specify what errors might be signaled by PROBE-FILE
and probe-directory, and experimentation seems to show that they signal
simple-file-errors in most erroneous situations.

Copyright © 2003-2005, Peter Seibel

16. Object Reorientation: Generic Functions
Because the invention of Lisp predated the rise of object-oriented programming
by a couple decades,1 new Lispers are sometimes surprised to discover what a
thoroughly object-oriented language Common Lisp is. Common Lisp’s immediate
predecessors were developed at a time when object orientation was an exciting
new idea and there were many experiments with ways to incorporate the ideas
of object orientation, especially as manifested in Smalltalk, into Lisp. As part of
the Common Lisp standardization, a synthesis of several of these experiments
emerged under the name Common Lisp Object System, or CLOS. The ANSI
standard incorporated CLOS into the language, so it no longer really makes
sense to speak of CLOS as a separate entity.

The features CLOS contributed to Common Lisp range from those that can
hardly be avoided to relatively esoteric manifestations of Lisp’s language-as-
language-building-tool philosophy. Complete coverage of all these features is
beyond the scope of this book, but in this chapter and the next I’ll describe the
bread-and-butter features and give an overview of Common Lisp’s approach to
objects.

You should note at the outset that Common Lisp’s object system offers a fairly
different embodiment of the principles of object orientation than many other
languages. If you have a deep understanding of the fundamental ideas behind
object orientation, you’ll likely appreciate the particularly powerful and general
way Common Lisp manifests those ideas. On the other hand, if your experience
with object orientation has been largely with a single language, you may find
Common Lisp’s approach somewhat foreign; you should try to avoid assuming
that there’s only one way for a language to support object orientation.2 If you
have little object-oriented programming experience, you should have no trouble
understanding the explanations here, though it may help to ignore the occasional
comparisons to the way other languages do things.

Generic Functions and Classes
The fundamental idea of object orientation is that a powerful way to organize
a program is to define data types and then associate operations with those

190

data types. In particular, you want to be able to invoke an operation and
have the exact behavior determined by the type of the object or objects on
which the operation was invoked. The classic example used, seemingly by all
introductions to object orientation, is an operation draw that can be applied to
objects representing various geometric shapes. Different implementations of the
draw operation can be provided for drawing circles, triangles, and squares, and a
call to draw will actually result in drawing a circle, triangle, or square, depending
on the type of the object to which the draw operation is applied. The different
implementations of draw are defined separately, and new versions can be defined
that draw other shapes without having to change the code of either the caller
or any of the other draw implementations. This feature of object orientation
goes by the fancy Greek name polymorphism, meaning "many forms," because a
single conceptual operation, such as drawing an object, can take many different
concrete forms.

Common Lisp, like most object-oriented languages today, is class-based; all
objects are instances of a particular class.3 The class of an object determines
its representation--built-in classes such as NUMBER and STRING have opaque
representations accessible only via the standard functions for manipulating those
types, while instances of user-defined classes, as you’ll see in the next chapter,
consist of named parts called slots.

Classes are arranged in a hierarchy, a taxonomy for all objects. A class can be
defined as a subclass of other classes, called its superclasses. A class inherits part
of its definition from its superclasses and instances of a class are also considered
instances of the superclasses. In Common Lisp, the hierarchy of classes has a
single root, the class T, which is a direct or indirect superclass of every other class.
Thus, every datum in Common Lisp is an instance of T.4 Common Lisp also
supports multiple inheritance--a single class can have multiple direct superclasses.

Outside the Lisp family, almost all object-oriented languages follow the basic
pattern established by Simula of having behavior associated with classes through
methods or member functions that belong to a particular class. In these languages,
a method is invoked on a particular object, and the class of that object determines
what code runs. This model of method invocation is called--after the Smalltalk
terminology--message passing. Conceptually, method invocation in a message-
passing system starts by sending a message containing the name of the method
to run and any arguments to the object on which the method is being invoked.
The object then uses its class to look up the method associated with the name in
the message and runs it. Because each class can have its own method for a given
name, the same message, sent to different objects, can invoke different methods.

Early Lisp object systems worked in a similar way, providing a special function
SEND that could be used to send a message to a particular object. However, this
wasn’t entirely satisfactory, as it made method invocations different from normal
function calls. Syntactically method invocations were written like this:

(send object ’foo)

191

rather than like this:

(foo object)

More significantly, because methods weren’t functions, they couldn’t be passed
as arguments to higher-order functions such as MAPCAR; if one wanted to call a
method on all the elements of a list with MAPCAR, one had to write this:

(mapcar #’(lambda (object) (send object ’foo)) objects)

rather than this:

(mapcar #’foo objects)

Eventually the folks working on Lisp object systems unified methods with
functions by creating a new kind of function called a generic function. In
addition to solving the problems just described, generic functions opened up new
possibilities for the object system, including many features that simply don’t
make sense in a message-passing object system.

Generic functions are the heart of Common Lisp’s object system and the topic of
the rest of this chapter. While I can’t talk about generic functions without some
mention of classes, for now I’ll focus on how to define and use generic functions.
In the next chapter I’ll show you how to define your own classes.

Generic Functions and Methods
A generic function defines an abstract operation, specifying its name and a
parameter list but no implementation. Here, for example, is how you might
define a generic function, draw, that will be used to draw different kinds of
shapes on the screen:

(defgeneric draw (shape)
(:documentation "Draw the given shape on the screen."))

I’ll discuss the syntax of DEFGENERIC in the next section; for now just note that
this definition doesn’t contain any actual code.

A generic function is generic in the sense that it can--at least in theory--accept
any objects as arguments.5 However, by itself a generic function can’t actually
do anything; if you just define a generic function, no matter what arguments
you call it with, it will signal an error. The actual implementation of a generic
function is provided by methods. Each method provides an implementation of
the generic function for particular classes of arguments. Perhaps the biggest
difference between a generic function-based system and a message-passing system
is that methods don’t belong to classes; they belong to the generic function,
which is responsible for determining what method or methods to run in response
to a particular invocation.

Methods indicate what kinds of arguments they can handle by specializing the
required parameters defined by the generic function. For instance, on the generic

192

function draw, you might define one method that specializes the shape parameter
for objects that are instances of the class circle while another method specializes
shape for objects that are instances of the class triangle. They would look like
this, eliding the actual drawing code:

(defmethod draw ((shape circle))
...)

(defmethod draw ((shape triangle))
...)

When a generic function is invoked, it compares the actual arguments it was
passed with the specializers of each of its methods to find the applicable methods-
-those methods whose specializers are compatible with the actual arguments. If
you invoke draw, passing an instance of circle, the method that specialized
shape on the class circle is applicable, while if you pass it a triangle, then
the method that specializes shape on the class triangle applies. In simple
cases, only one method will be applicable, and it will handle the invocation. In
more complex cases, there may be multiple methods that apply; they’re then
combined, as I’ll discuss in the section "Method Combination," into a single
effective method that handles the invocation.

You can specialize a parameter in two ways--usually you’ll specify a class that
the argument must be an instance of. Because instances of a class are also
considered instances of that class’s superclasses, a method with a parameter
specialized on a particular class can be applicable whenever the corresponding
argument is a direct instance of the specializing class or of any of its subclasses.
The other kind of specializer is a so-called EQL specializer, which specifies a
particular object to which the method applies.

When a generic function has only methods specialized on a single parameter
and all the specializers are class specializers, the result of invoking a generic
function is quite similar to the result of invoking a method in a message-passing
system--the combination of the name of the operation and the class of the object
on which it’s invoked determines what method to run.

However, reversing the order of lookup opens up possibilities not found in
message-passing systems. Generic functions support methods that specialize
on multiple parameters, provide a framework that makes multiple inheritance
much more manageable, and let you use declarative constructs to control how
methods are combined into an effective method, supporting several common
usage patterns without a lot of boilerplate code. I’ll discuss those topics in a
moment. But first you need to look at the basics of the two macros used to
define the generic functions DEFGENERIC and DEFMETHOD.

193

DEFGENERIC
To give you a feel for these macros and the various facilities they support, I’ll
show you some code you might write as part of a banking application--or, rather,
a toy banking application; the point is to look at a few language features, not to
learn how to really write banking software. For instance, this code doesn’t even
pretend to deal with such issues as multiple currencies let alone audit trails and
transactional integrity.

Because I’m not going to discuss how to define new classes until the next chapter,
for now you can just assume that certain classes already exist: for starters, assume
there’s a class bank-account and that it has two subclasses, checking-account
and savings-account. The class hierarchy looks like this:

The first generic function will be withdraw, which decreases the account balance
by a specified amount. If the balance is less than the amount, it should signal
an error and leave the balance unchanged. You can start by defining the generic
function with DEFGENERIC.

The basic form of DEFGENERIC is similar to DEFUN except with no body. The
parameter list of DEFGENERIC specifies the parameters that must be accepted by
all the methods that will be defined on the generic function. In the place of the
body, a DEFGENERIC can contain various options. One option you should always
include is :documentation, which you use to provide a string describing the
purpose of the generic function. Because a generic function is purely abstract,
it’s important to be clear to both users and implementers what it’s for. Thus,
you might define withdraw like this:

(defgeneric withdraw (account amount)
(:documentation "Withdraw the specified amount from the account.

Signal an error if the current balance is less than amount."))

194

DEFMETHOD
Now you’re ready to use DEFMETHOD to define methods that implement
withdraw.6

A method’s parameter list must be congruent with its generic function’s. In
this case, that means all methods defined on withdraw must have exactly two
required parameters. More generally, methods must have the same number
of required and optional parameters and must be capable of accepting any
arguments corresponding to any &rest or &key parameters specified by the
generic function.7

Since the basics of withdrawing are the same for all accounts, you can define a
method that specializes the account parameter on the bank-account class. You
can assume the function balance returns the current balance of the account and
can be used with SETF--and thus with DECF--to set the balance. The function
ERROR is a standard function used to signal an error, which I’ll discuss in greater
detail in Chapter 19. Using those two functions, you can define a basic withdraw
method that looks like this:

(defmethod withdraw ((account bank-account) amount)
(when (< (balance account) amount)
(error "Account overdrawn."))

(decf (balance account) amount))

As this code suggests, the form of DEFMETHOD is even more like that of DEFUN
than DEFGENERIC’s is. The only difference is that the required parameters can be
specialized by replacing the parameter name with a two-element list. The first
element is the name of the parameter, and the second element is the specializer,
either the name of a class or an EQL specializer, the form of which I’ll discuss in
a moment. The parameter name can be anything--it doesn’t have to match the
name used in the generic function, though it often will.

This method will apply whenever the first argument to withdraw is an instance
of bank-account. The second parameter, amount, is implicitly specialized on T,
and since all objects are instances of T, it doesn’t affect the applicability of the
method.

Now suppose all checking accounts have overdraft protection. That is, each
checking account is linked to another bank account that’s drawn upon when the
balance of the checking account itself can’t cover a withdrawal. You can assume
that the function overdraft-account takes a checking-account object and
returns a bank-account object representing the linked account.

Thus, withdrawing from a checking-account object requires a few extra steps
compared to withdrawing from a standard bank-account object. You must first
check whether the amount being withdrawn is greater than the account’s current
balance and, if it is, transfer the difference from the overdraft account. Then
you can proceed as with a standard bank-account object.

195

So what you’d like to do is define a method on withdraw that specializes on
checking-account to handle the transfer and then lets the method specialized
on bank-account take control. Such a method might look like this:

(defmethod withdraw ((account checking-account) amount)
(let ((overdraft (- amount (balance account))))
(when (plusp overdraft)
(withdraw (overdraft-account account) overdraft)
(incf (balance account) overdraft)))

(call-next-method))

The function CALL-NEXT-METHOD is part of the generic function machinery used
to combine applicable methods. It indicates that control should be passed from
this method to the method specialized on bank-account.8 When it’s called
with no arguments, as it is here, the next method is invoked with whatever
arguments were originally passed to the generic function. It can also be called
with arguments, which will then be passed onto the next method.

You aren’t required to invoke CALL-NEXT-METHOD in every method. However,
if you don’t, the new method is then responsible for completely implementing
the desired behavior of the generic function. For example, if you had a subclass
of bank-account, proxy-account, that didn’t actually keep track of its own
balance but instead delegated withdrawals to another account, you might write
a method like this (assuming a function, proxied-account, that returns the
proxied account):

(defmethod withdraw ((proxy proxy-account) amount)
(withdraw (proxied-account proxy) amount))

Finally, DEFMETHOD also allows you to create methods specialized on a partic-
ular object with an EQL specializer. For example, suppose the banking app
is going to be deployed in a particularly corrupt bank. Suppose the variable
account-of-bank-president holds a reference to a particular bank account
that belongs--as the name suggests--to the bank’s president. Further suppose
the variable *bank* represents the bank as a whole, and the function embezzle
steals money from the bank. The bank president might ask you to "fix" withdraw
to handle his account specially.

(defmethod withdraw ((account (eql *account-of-bank-president*)) amount)
(let ((overdraft (- amount (balance account))))
(when (plusp overdraft)
(incf (balance account) (embezzle *bank* overdraft)))

(call-next-method)))

Note, however, that the form in the EQL specializer that provides the object to
specialize on--*account-of-bank-president* in this case--is evaluated once,
when the DEFMETHOD is evaluated. This method will be specialized on the value
of *account-of-bank-president* at the time the method is defined; changing
the variable later won’t change the method.

196

Method Combination
Outside the body of a method, CALL-NEXT-METHOD has no meaning. Within a
method, it’s given a meaning by the generic function machinery that builds an
effective method each time the generic function is invoked using all the methods
applicable to that particular invocation. This notion of building an effective
method by combining applicable methods is the heart of the generic function
concept and is the thing that allows generic functions to support facilities not
found in message-passing systems. So it’s worth taking a closer look at what’s
really happening. Folks with the message-passing model deeply ingrained in
their consciousness should pay particular attention because generic functions
turn method dispatching inside out compared to message passing, making the
generic function, rather than the class, the prime mover.

Conceptually, the effective method is built in three steps: First, the generic
function builds a list of applicable methods based on the actual arguments it
was passed. Second, the list of applicable methods is sorted according to the
specificity of their parameter specializers. Finally, methods are taken in order
from the sorted list and their code combined to produce the effective method.9

To find applicable methods, the generic function compares the actual argu-
ments with the corresponding parameter specializers in each of its methods. A
method is applicable if, and only if, all the specializers are compatible with the
corresponding arguments.

When the specializer is the name of a class, it’s compatible if it names the actual
class of the argument or one of its superclasses. (Recall that parameters without
explicit specializers are implicitly specialized on the class T so will be compatible
with any argument.) An EQL specializer is compatible only when the argument
is the same object as was specified in the specializer.

Because all the arguments are checked against the corresponding specializers,
they all affect whether a method is applicable. Methods that explicitly specialize
more than one parameter are called multimethods; I’ll discuss them in the section
"Multimethods."

After the applicable methods have been found, the generic function machinery
needs to sort them before it can combine them into an effective method. To
order two applicable methods, the generic function compares their parameter
specializers from left to right,10 and the first specializer that’s different between
the two methods determines their ordering, with the method with the more
specific specializer coming first.

Because only applicable methods are being sorted, you know all class specializers
will name classes that the corresponding argument is actually an instance of. In
the typical case, if two class specializers differ, one will be a subclass of the other.
In that case, the specializer naming the subclass is considered more specific.
This is why the method that specialized account on checking-account was
considered more specific than the method that specialized it on bank-account.

197

Multiple inheritance slightly complicates the notion of specificity since the actual
argument may be an instance of two classes, neither of which is a subclass of
the other. If such classes are used as parameter specializers, the generic function
can’t order them using only the rule that subclasses are more specific than their
superclasses. In the next chapter I’ll discuss how the notion of specificity is
extended to deal with multiple inheritance. For now, suffice it to say that there’s
a deterministic algorithm for ordering class specializers.

Finally, an EQL specializer is always more specific than any class specializer, and
because only applicable methods are being considered, if more than one method
has an EQL specializer for a particular parameter, they must all have the same
EQL specializer. The comparison of those methods will thus be decided based on
other parameters.

The Standard Method Combination
Now that you understand how the applicable methods are found and sorted,
you’re ready to take a closer look at the last step--how the sorted list of methods is
combined into a single effective method. By default, generic functions use what’s
called the standard method combination. The standard method combination
combines methods so that CALL-NEXT-METHOD works as you’ve already seen--the
most specific method runs first, and each method can pass control to the next
most specific method via CALL-NEXT-METHOD.

However, there’s a bit more to it than that. The methods I’ve been discussing
so far are called primary methods. Primary methods, as their name suggests, are
responsible for providing the primary implementation of a generic function. The
standard method combination also supports three kinds of auxiliary methods:
:before, :after, and :around methods. An auxiliary method definition is
written with DEFMETHOD like a primary method but with a method qualifier,
which names the type of method, between the name of the method and the
parameter list. For instance, a :before method on withdraw that specializes
the account parameter on the class bank-account would start like this:

(defmethod withdraw :before ((account bank-account) amount) ...)

Each kind of auxiliary method is combined into the effective method in a different
way. All the applicable :before methods--not just the most specific--are run
as part of the effective method. They run, as their name suggests, before the
most specific primary method and are run in most-specific-first order. Thus,
:before methods can be used to do any preparation needed to ensure that the
primary method can run. For instance, you could’ve used a :before method
specialized on checking-account to implement the overdraft protection on
checking accounts like this:

(defmethod withdraw :before ((account checking-account) amount)
(let ((overdraft (- amount (balance account))))
(when (plusp overdraft)

198

(withdraw (overdraft-account account) overdraft)
(incf (balance account) overdraft))))

This :before method has three advantages over a primary method. One is that
it makes it immediately obvious how the method changes the overall behavior
of the withdraw function--it’s not going to interfere with the main behavior or
change the result returned.

The next advantage is that a primary method specialized on a class more specific
than checking-account won’t interfere with this :before method, making it
easier for an author of a subclass of checking-account to extend the behavior
of withdraw while keeping part of the old behavior.

Lastly, since a :before method doesn’t have to call CALL-NEXT-METHOD to pass
control to the remaining methods, it’s impossible to introduce a bug by forgetting
to.

The other auxiliary methods also fit into the effective method in ways suggested
by their names. All the :after methods run after the primary methods in
most-specific-last order, that is, the reverse of the :before methods. Thus,
the :before and :after methods combine to create a sort of nested wrapping
around the core functionality provided by the primary methods--each more-
specific :before method will get a chance to set things up so the less-specific
:before methods and primary methods can run successfully, and each more-
specific :after method will get a chance to clean up after all the primary
methods and less-specific :after methods.

Finally, :around methods are combined much like primary methods except
they’re run "around" all the other methods. That is, the code from the most
specific :around method is run before anything else. Within the body of
an :around method, CALL-NEXT-METHOD will lead to the code of the next most
specific :around method or, in the least specific :around method, to the complex
of :before, primary, and :after methods. Almost all :around methods will
contain such a call to CALL-NEXT-METHOD because an :around method that
doesn’t will completely hijack the implementation of the generic function from
all the methods except for more-specific :around methods.

Occasionally that kind of hijacking is called for, but typically :around methods
are used to establish some dynamic context in which the rest of the methods will
run--to bind a dynamic variable, for example, or to establish an error handler (as
I’ll discuss in Chapter 19). About the only time it’s appropriate for an :around
method to not call CALL-NEXT-METHOD is when it returns a result cached from
a previous call to CALL-NEXT-METHOD. At any rate, an :around method that
doesn’t call CALL-NEXT-METHOD is responsible for correctly implementing the
semantics of the generic function for all classes of arguments to which the method
may apply, including future subclasses.

Auxiliary methods are just a convenient way to express certain common patterns
more concisely and concretely. They don’t actually allow you to do anything

199

you couldn’t do by combining primary methods with diligent adherence to a
few coding conventions and some extra typing. Perhaps their biggest benefit is
that they provide a uniform framework for extending generic functions. Often
a library will define a generic function and provide a default primary method,
allowing users of the library to customize its behavior by defining appropriate
auxiliary methods.

Other Method Combinations
In addition to the standard method combination, the language specifies nine other
built-in method combinations known as the simple built-in method combinations.
You can also define custom method combinations, though that’s a fairly esoteric
feature and beyond the scope of this book. I’ll briefly cover how to use the
simple built-in combinations to give you a sense of the possibilities.

All the simple combinations follow the same pattern: instead of invoking the
most specific primary method and letting it invoke less-specific primary methods
via CALL-NEXT-METHOD, the simple method combinations produce an effective
method that contains the code of all the primary methods, one after another,
all wrapped in a call to the function, macro, or special operator that gives
the method combination its name. The nine combinations are named for the
operators: +, AND, OR, LIST, APPEND, NCONC, MIN, MAX, and PROGN. The simple
combinations also support only two kinds of methods, primary methods, which
are combined as just described, and :around methods, which work like :around
methods in the standard method combination.

For example, a generic function that uses the + method combination will return
the sum of all the results returned by its primary methods. Note that the AND
and OR method combinations won’t necessarily run all the primary methods
because of those macros’ short-circuiting behavior--a generic function using the
AND combination will return NIL as soon as one of the methods does and will
return the value of the last method otherwise. Similarly, the OR combination will
return the first non-NIL value returned by any of the methods.

To define a generic function that uses a particular method combination, you
include a :method-combination option in the DEFGENERIC form. The value
supplied with this option is the name of the method combination you want to
use. For example, to define a generic function, priority, that returns the sum
of values returned by individual methods using the + method combination, you
might write this:

(defgeneric priority (job)
(:documentation "Return the priority at which the job should be run.")
(:method-combination +))

By default all these method combinations combine the primary methods in
most-specific-first order. However, you can reverse the order by including the
keyword :most-specific-last after the name of the method combination in

200

the DEFGENERIC form. The order probably doesn’t matter if you’re using the +
combination unless the methods have side effects, but for demonstration purposes
you can change priority to use most-specific-last order like this:

(defgeneric priority (job)
(:documentation "Return the priority at which the job should be run.")
(:method-combination + :most-specific-last))

The primary methods on a generic function that uses one of these combinations
must be qualified with the name of the method combination. Thus, a primary
method defined on priority might look like this:

(defmethod priority + ((job express-job)) 10)

This makes it obvious when you see a method definition that it’s part of a
particular kind of generic function.

All the simple built-in method combinations also support :around methods
that work like :around methods in the standard method combination: the most
specific :around method runs before any other methods, and CALL-NEXT-METHOD
is used to pass control to less-and-less-specific :around methods until it reaches
the combined primary methods. The :most-specific-last option doesn’t
affect the order of :around methods. And, as I mentioned before, the built-in
method combinations don’t support :before or :after methods.

Like the standard method combination, these method combinations don’t allow
you to do anything you couldn’t do "by hand." Rather, they allow you to express
what you want and let the language take care of wiring everything together for
you, making your code both more concise and more expressive.

That said, probably 99 percent of the time, the standard method combination
will be exactly what you want. Of the remaining 1 percent, probably 99 percent
of them will be handled by one of the simple built-in method combinations. If
you run into one of the 1 percent of 1 percent of cases where none of the built-in
combinations suffices, you can look up DEFINE-METHOD-COMBINATION in your
favorite Common Lisp reference.

Multimethods
Methods that explicitly specialize more than one of the generic function’s required
parameters are called multimethods. Multimethods are where generic functions
and message passing really part ways. Multimethods don’t fit into message-
passing languages because they don’t belong to a particular class; instead, each
multimethod defines a part of the implementations of a given generic function
that applies when the generic function is invoked with arguments that match all
the method’s specialized parameters.

Multimethods vs. Method Overloading

Programmers used to statically typed message-passing languages such as Java

201

and C++ may think multimethods sound similar to a feature of those languages
called method overloading. However, these two language features are actually
quite different since overloaded methods are chosen at compile time, based on
the compile-time type of the arguments, not at runtime. To see how this works,
consider the following two Java classes:

public class A {
public void foo(A a) { System.out.println("A/A"); }
public void foo(B b) { System.out.println("A/B"); }

}

public class B extends A {
public void foo(A a) { System.out.println("B/A"); }
public void foo(B b) { System.out.println("B/B"); }

}

Now consider what happens when you run the main method from this class.

public class Main {
public static void main(String[] argv) {
A obj = argv[0].equals("A") ? new A() : new B();
obj.foo(obj);

}
}

When you tell Main to instantiate an A, it prints "A/A" as you’d probably expect.

bash$ java com.gigamonkeys.Main A
A/A

However, if you tell Main to instantiate a B, then the true type of obj is taken
into account for only half the dispatching.

bash$ java com.gigamonkeys.Main B
B/A

If overloaded methods worked like Common Lisp’s multimethods, then that
would print "B/B" instead. It is possible to implement multiple dispatch by hand
in message-passing languages, but this runs against the grain of the message-
passing model since the code in a multiply dispatched method doesn’t belong to
any one class.

Multimethods are perfect for all those situations where, in a message-passing
language, you struggle to decide to which class a certain behavior ought to
belong. Is the sound a drum makes when it’s hit with a drumstick a function of
what kind of drum it is or what kind of stick you use to hit it? Both, of course.
To model this situation in Common Lisp, you simply define a generic function
beat that takes two arguments.

(defgeneric beat (drum stick)
(:documentation

202

"Produce a sound by hitting the given drum with the given stick."))

Then you can define various multimethods to implement beat for the combina-
tions you care about. For example:

(defmethod beat ((drum snare-drum) (stick wooden-drumstick)) ...)
(defmethod beat ((drum snare-drum) (stick brush)) ...)
(defmethod beat ((drum snare-drum) (stick soft-mallet)) ...)
(defmethod beat ((drum tom-tom) (stick wooden-drumstick)) ...)
(defmethod beat ((drum tom-tom) (stick brush)) ...)
(defmethod beat ((drum tom-tom) (stick soft-mallet)) ...)

Multimethods don’t help with the combinatorial explosion--if you need to model
five kinds of drums and six kinds of sticks, and every combination makes a different
sound, there’s no way around it; you need thirty different methods to implement
all the combinations, with or without multimethods. What multimethods do
save you from is having to write a bunch of dispatching code by letting you use
the same built-in polymorphic dispatching that’s so useful when dealing with
methods specialized on a single parameter.11

Multimethods also save you from having to tightly couple one set of classes with
the other. In the drum/stick example, nothing requires the implementation of
the drum classes to know about the various classes of drumstick, and nothing
requires the drumstick classes to know anything about the various classes of drum.
The multimethods connect the otherwise independent classes to describe their
joint behavior without requiring any cooperation from the classes themselves.

To Be Continued . . .
I’ve covered the basics--and a bit beyond--of generic functions, the verbs of
Common Lisp’s object system. In the next chapter I’ll show you how to define
your own classes.

1The language now generally considered the first object-oriented language, Simula,
was invented in the early 1960s, only a few years after McCarthy’s first Lisp.
However, object orientation didn’t really take off until the 1980s when the first
widely available version of Smalltalk was released, followed by the release of
C++ a few years later. Smalltalk took quite a bit of inspiration from Lisp
and combined it with ideas from Simula to produce a dynamic object-oriented
language, while C++ combined Simula with C, another fairly static language, to
yield a static object-oriented language. This early split has led to much confusion
in the definition of object orientation. Folks who come from the C++ tradition
tend to consider certain aspects of C++, such as strict data encapsulation, to
be key characteristics of object orientation. Folks from the Smalltalk tradition,
however, consider many features of C++ to be just that, features of C++, and
not core to object orientation. Indeed, Alan Kay, the inventor of Smalltalk, is

203

reported to have said, "I invented the term object oriented, and I can tell you
that C++ wasn’t what I had in mind."
2There are those who reject the notion that Common Lisp is in fact object
oriented at all. In particular, folks who consider strict data encapsulation a
key characteristic of object orientation--usually advocates of relatively static
languages such as C++, Eiffel, or Java--don’t consider Common Lisp to be
properly object oriented. Of course, by that definition, Smalltalk, arguably one
of the original and purest object-oriented languages, isn’t object oriented either.
On the other hand, folks who consider message passing to be the key to object
orientation will also not be happy with the claim that Common Lisp is object
oriented since Common Lisp’s generic function orientation provides degrees of
freedom not offered by pure message passing.
3Prototype-based languages are the other style of object-oriented language. In
these languages, JavaScript being perhaps the most famous example, objects are
created by cloning a prototypical object. The clone can then be modified and
used as a prototype for other objects.
4T the constant value and T the class have no particular relationship except they
happen to have the same name. T the value is a direct instance of the class
SYMBOL and only indirectly an instance of T the class.
5Here, as elsewhere, object means any Lisp datum--Common Lisp doesn’t dis-
tinguish, as some languages do, between objects and "primitive" data types; all
data in Common Lisp are objects, and every object is an instance of a class.
6Technically you could skip the DEFGENERIC altogether--if you define a method
with DEFMETHOD and no such generic function has been defined, one is automati-
cally created. But it’s good form to define generic functions explicitly, if only
because it gives you a good place to document the intended behavior.
7A method can "accept" &key and &rest arguments defined in its generic function
by having a &rest parameter, by having the same &key parameters, or by
specifying &allow-other-keys along with &key. A method can also specify
&key parameters not found in the generic function’s parameter list--when the
generic function is called, any &key parameter specified by the generic function
or any applicable method will be accepted.
8CALL-NEXT-METHOD is roughly analogous to invoking a method on super in
Java or using an explicitly class-qualified method or function name in Python or
C++.
9While building the effective method sounds time-consuming, quite a bit of the
effort in developing fast Common Lisp implementations has gone into making it
efficient. One strategy is to cache the effective method so future calls with the
same argument types will be able to proceed directly.
10Actually, the order in which specializers are compared is customizable via the
DEFGENERIC option :argument-precedence-order, though that option is rarely

204

used.
11In languages without multimethods, you must write dispatching code yourself
to implement behavior that depends on the class of more than one object. The
purpose of the popular Visitor design pattern is to structure a series of singly
dispatched method calls so as to provide multiple dispatch. However, it requires
one set of classes to know about the other. The Visitor pattern also quickly
bogs down in a combinatorial explosion of dispatching methods if it’s used to
dispatch on more than two objects.

Copyright © 2003-2005, Peter Seibel

17. Object Reorientation: Classes
If generic functions are the verbs of the object system, classes are the nouns.
As I mentioned in the previous chapter, all values in a Common Lisp program
are instances of some class. Furthermore, all classes are organized into a single
hierarchy rooted at the class T.

The class hierarchy consists of two major families of classes, built-in and user-
defined classes. Classes that represent the data types you’ve been learning about
up until now, classes such as INTEGER, STRING, and LIST, are all built-in. They
live in their own section of the class hierarchy, arranged into appropriate sub-
and superclass relationships, and are manipulated by the functions I’ve been
discussing for much of the book up until now. You can’t subclass these classes,
but, as you saw in the previous chapter, you can define methods that specialize
on them, effectively extending the behavior of those classes.1

But when you want to create new nouns--for instance, the classes used in the
previous chapter for representing bank accounts--you need to define your own
classes. That’s the subject of this chapter.

DEFCLASS
You create user-defined classes with the DEFCLASS macro. Because behaviors are
associated with a class by defining generic functions and methods specialized on
the class, DEFCLASS is responsible only for defining the class as a data type.

The three facets of the class as a data type are its name, its relation to other
classes, and the names of the slots that make up instances of the class.2 The
basic form of a DEFCLASS is quite simple.

(defclass name (direct-superclass-name*)
(slot-specifier*))

What Are "User-Defined Classes"?

The term user-defined classes isn’t a term from the language standard--technically
what I’m talking about when I say user-defined classes are classes that sub-

205

class STANDARD-OBJECT and whose metaclass is STANDARD-CLASS. But since I’m
not going to talk about the ways you can define classes that don’t subclass
STANDARD-OBJECT and whose metaclass isn’t STANDARD-CLASS, you don’t really
have to worry about that. User-defined isn’t a perfect term for these classes since
the implementation may define certain classes the same way. However, to call
them standard classes would be even more confusing since the built-in classes,
such as INTEGER and STRING, are just as standard, if not more so, because they’re
defined by the language standard but they don’t extend STANDARD-OBJECT. To
further complicate matters, it’s also possible for users to define new classes
that don’t subclass STANDARD-OBJECT. In particular, the macro DEFSTRUCT also
defines new classes. But that’s largely for backward compatibility--DEFSTRUCT
predated CLOS and was retrofitted to define classes when CLOS was integrated
into the language. But the classes it creates are fairly limited compared to
DEFCLASSed classes. So in this chapter I’ll be discussing only classes defined
with DEFCLASS that use the default metaclass of STANDARD-CLASS, and I’ll refer
to them as user-defined for lack of a better term.

As with functions and variables, you can use any symbol as the name of a
new class.3 Class names are in a separate namespace from both functions and
variables, so you can have a class, function, and variable all with the same name.
You’ll use the class name as the argument to MAKE-INSTANCE, the function that
creates new instances of user-defined classes.

The direct-superclass-names specify the classes of which the new class is a
subclass. If no superclasses are listed, the new class will directly subclass
STANDARD-OBJECT. Any classes listed must be other user-defined classes, which
ensures that each new class is ultimately descended from STANDARD-OBJECT.
STANDARD-OBJECT in turn subclasses T, so all user-defined classes are part of the
single class hierarchy that also contains all the built-in classes.

Eliding the slot specifiers for a moment, the DEFCLASS forms of some of the
classes you used in the previous chapter might look like this:

(defclass bank-account () ...)

(defclass checking-account (bank-account) ...)

(defclass savings-account (bank-account) ...)

I’ll discuss in the section "Multiple Inheritance" what it means to list more than
one direct superclass in direct-superclass-names.

Slot Specifiers
The bulk of a DEFCLASS form consists of the list of slot specifiers. Each slot
specifier defines a slot that will be part of each instance of the class. Each slot
in an instance is a place that can hold a value, which can be accessed using the
SLOT-VALUE function. SLOT-VALUE takes an object and the name of a slot as

206

arguments and returns the value of the named slot in the given object. It can
be used with SETF to set the value of a slot in an object.

A class also inherits slot specifiers from its superclasses, so the set of slots actually
present in any object is the union of all the slots specified in a class’s DEFCLASS
form and those specified in all its superclasses.

At the minimum, a slot specifier names the slot, in which case the slot specifier
can be just a name. For instance, you could define a bank-account class with
two slots, customer-name and balance, like this:

(defclass bank-account ()
(customer-name
balance))

Each instance of this class will contain two slots, one to hold the name of the
customer the account belongs to and another to hold the current balance. With
this definition, you can create new bank-account objects using MAKE-INSTANCE.

(make-instance ’bank-account) ==> #<BANK-ACCOUNT @ #x724b93ba>

The argument to MAKE-INSTANCE is the name of the class to instantiate, and
the value returned is the new object.4 The printed representation of an ob-
ject is determined by the generic function PRINT-OBJECT. In this case, the
applicable method will be one provided by the implementation, specialized on
STANDARD-OBJECT. Since not every object can be printed so that it can be read
back, the STANDARD-OBJECT print method uses the #<> syntax, which will cause
the reader to signal an error if it tries to read it. The rest of the representation
is implementation-defined but will typically be something like the output just
shown, including the name of the class and some distinguishing value such as
the address of the object in memory. In Chapter 23 you’ll see an example of
how to define a method on PRINT-OBJECT to make objects of a certain class be
printed in a more informative form.

Using the definition of bank-account just given, new objects will be created
with their slots unbound. Any attempt to get the value of an unbound slot
signals an error, so you must set a slot before you can read it.

(defparameter *account* (make-instance ’bank-account)) ==> *ACCOUNT*
(setf (slot-value *account* ’customer-name) "John Doe") ==> "John Doe"
(setf (slot-value *account* ’balance) 1000) ==> 1000

Now you can access the value of the slots.

(slot-value *account* ’customer-name) ==> "John Doe"
(slot-value *account* ’balance) ==> 1000

Object Initialization
Since you can’t do much with an object with unbound slots, it’d be nice to
be able to create objects with their slots already initialized. Common Lisp

207

provides three ways to control the initial value of slots. The first two involve
adding options to the slot specifier in the DEFCLASS form: with the :initarg
option, you can specify a name that can then be used as a keyword parameter to
MAKE-INSTANCE and whose argument will be stored in the slot. A second option,
:initform, lets you specify a Lisp expression that will be used to compute a
value for the slot if no :initarg argument is passed to MAKE-INSTANCE. Finally,
for complete control over the initialization, you can define a method on the
generic function INITIALIZE-INSTANCE, which is called by MAKE-INSTANCE.5

A slot specifier that includes options such as :initarg or :initform is writ-
ten as a list starting with the name of the slot followed by the options. For
example, if you want to modify the definition of bank-account to allow callers
of MAKE-INSTANCE to pass the customer name and the initial balance and to
provide a default value of zero dollars for the balance, you’d write this:

(defclass bank-account ()
((customer-name
:initarg :customer-name)

(balance
:initarg :balance
:initform 0)))

Now you can create an account and specify the slot values at the same time.

(defparameter *account*
(make-instance ’bank-account :customer-name "John Doe" :balance 1000))

(slot-value *account* ’customer-name) ==> "John Doe"
(slot-value *account* ’balance) ==> 1000

If you don’t supply a :balance argument to MAKE-INSTANCE, the SLOT-VALUE
of balance will be computed by evaluating the form specified with the
:initform option. But if you don’t supply a :customer-name argument, the
customer-name slot will be unbound, and an attempt to read it before you set
it will signal an error.

(slot-value (make-instance ’bank-account) ’balance) ==> 0
(slot-value (make-instance ’bank-account) ’customer-name) ==> error

If you want to ensure that the customer name is supplied when the account is
created, you can signal an error in the initform since it will be evaluated only if
an initarg isn’t supplied. You can also use initforms that generate a different
value each time they’re evaluated--the initform is evaluated anew for each object.
To experiment with these techniques, you can modify the customer-name slot
specifier and add a new slot, account-number, that’s initialized with the value
of an ever-increasing counter.

(defvar *account-numbers* 0)

(defclass bank-account ()

208

((customer-name
:initarg :customer-name
:initform (error "Must supply a customer name."))

(balance
:initarg :balance
:initform 0)

(account-number
:initform (incf *account-numbers*))))

Most of the time the combination of :initarg and :initform options will be
sufficient to properly initialize an object. However, while an initform can be
any Lisp expression, it has no access to the object being initialized, so it can’t
initialize one slot based on the value of another. For that you need to define a
method on the generic function INITIALIZE-INSTANCE.

The primary method on INITIALIZE-INSTANCE specialized on STANDARD-OBJECT
takes care of initializing slots based on their :initarg and :initform options.
Since you don’t want to disturb that, the most common way to add custom
initialization code is to define an :after method specialized on your class.6
For instance, suppose you want to add a slot account-type that needs to be
set to one of the values :gold, :silver, or :bronze based on the account’s
initial balance. You might change your class definition to this, adding the
account-type slot with no options:

(defclass bank-account ()
((customer-name
:initarg :customer-name
:initform (error "Must supply a customer name."))

(balance
:initarg :balance
:initform 0)

(account-number
:initform (incf *account-numbers*))

account-type))

Then you can define an :after method on INITIALIZE-INSTANCE that sets the
account-type slot based on the value that has been stored in the balance slot.7

(defmethod initialize-instance :after ((account bank-account) &key)
(let ((balance (slot-value account ’balance)))
(setf (slot-value account ’account-type)

(cond
((>= balance 100000) :gold)
((>= balance 50000) :silver)
(t :bronze)))))

The &key in the parameter list is required to keep the method’s parameter
list congruent with the generic function’s--the parameter list specified for the
INITIALIZE-INSTANCE generic function includes &key in order to allow individual

209

methods to supply their own keyword parameters but doesn’t require any
particular ones. Thus, every method must specify &key even if it doesn’t
specify any &key parameters.

On the other hand, if an INITIALIZE-INSTANCE method specialized on a par-
ticular class does specify a &key parameter, that parameter becomes a legal
parameter to MAKE-INSTANCE when creating an instance of that class. For in-
stance, if the bank sometimes pays a percentage of the initial balance as a
bonus when an account is opened, you could implement that using a method on
INITIALIZE-INSTANCE that takes a keyword argument to specify the percentage
of the bonus like this:

(defmethod initialize-instance :after ((account bank-account)
&key opening-bonus-percentage)

(when opening-bonus-percentage
(incf (slot-value account ’balance)

(* (slot-value account ’balance) (/ opening-bonus-percentage 100)))))

By defining this INITIALIZE-INSTANCEmethod, you make :opening-bonus-percentage
a legal argument to MAKE-INSTANCE when creating a bank-account object.

CL-USER> (defparameter *acct* (make-instance
’bank-account
:customer-name "Sally Sue"
:balance 1000
:opening-bonus-percentage 5))

ACCT
CL-USER> (slot-value *acct* ’balance)
1050

Accessor Functions
Between MAKE-INSTANCE and SLOT-VALUE, you have all the tools you need for
creating and manipulating instances of your classes. Everything else you might
want to do can be implemented in terms of those two functions. However,
as anyone familiar with the principles of good object-oriented programming
practices knows, directly accessing the slots (or fields or member variables) of
an object can lead to fragile code. The problem is that directly accessing slots
ties your code too tightly to the concrete structure of your class. For example,
suppose you decide to change the definition of bank-account so that, instead
of storing the current balance as a number, you store a list of time-stamped
withdrawals and deposits. Code that directly accesses the balance slot will
likely break if you change the class definition to remove the slot or to store the
new list in the old slot. On the other hand, if you define a function, balance,
that accesses the slot, you can redefine it later to preserve its behavior even if
the internal representation changes. And code that uses such a function will
continue to work without modification.

210

Another advantage to using accessor functions rather than direct access to slots
via SLOT-VALUE is that they let you limit the ways outside code can modify
a slot.8 It may be fine for users of the bank-account class to get the current
balance, but you may want all modifications to the balance to go through other
functions you’ll provide, such as deposit and withdraw. If clients know they’re
supposed to manipulate objects only through the published functional API, you
can provide a balance function but not make it SETFable if you want the balance
to be read-only.

Finally, using accessor functions makes your code tidier since it helps you avoid
lots of uses of the rather verbose SLOT-VALUE function.

It’s trivial to define a function that reads the value of the balance slot.

(defun balance (account)
(slot-value account ’balance))

However, if you know you’re going to define subclasses of bank-account, it
might be a good idea to define balance as a generic function. That way, you
can provide different methods on balance for those subclasses or extend its
definition with auxiliary methods. So you might write this instead:

(defgeneric balance (account))

(defmethod balance ((account bank-account))
(slot-value account ’balance))

As I just discussed, you don’t want callers to be able to directly set the balance,
but for other slots, such as customer-name, you may also want to provide a
function to set them. The cleanest way to define such a function is as a SETF
function.

A SETF function is a way to extend SETF, defining a new kind of place that it
knows how to set. The name of a SETF function is a two-item list whose first
element is the symbol setf and whose second element is a symbol, typically the
name of a function used to access the place the SETF function will set. A SETF
function can take any number of arguments, but the first argument is always
the value to be assigned to the place.9 You could, for instance, define a SETF
function to set the customer-name slot in a bank-account like this:

(defun (setf customer-name) (name account)
(setf (slot-value account ’customer-name) name))

After evaluating that definition, an expression like the following one:

(setf (customer-name my-account) "Sally Sue")

will be compiled as a call to the SETF function you just defined with "Sally Sue"
as the first argument and the value of my-account as the second argument.

Of course, as with reader functions, you’ll probably want your SETF function to
be generic, so you’d actually define it like this:

211

(defgeneric (setf customer-name) (value account))

(defmethod (setf customer-name) (value (account bank-account))
(setf (slot-value account ’customer-name) value))

And of course you’ll also want to define a reader function for customer-name.

(defgeneric customer-name (account))

(defmethod customer-name ((account bank-account))
(slot-value account ’customer-name))

This allows you to write the following:

(setf (customer-name *account*) "Sally Sue") ==> "Sally Sue"

(customer-name *account*) ==> "Sally Sue"

There’s nothing hard about writing these accessor functions, but it wouldn’t
be in keeping with The Lisp Way to have to write them all by hand. Thus,
DEFCLASS supports three slot options that allow you to automatically create
reader and writer functions for a specific slot.

The :reader option specifies a name to be used as the name of a generic function
that accepts an object as its single argument. When the DEFCLASS is evaluated,
the generic function is created, if it doesn’t already exist. Then a method
specializing its single argument on the new class and returning the value of the
slot is added to the generic function. The name can be anything, but it’s typical
to name it the same as the slot itself. Thus, instead of explicitly writing the
balance generic function and method as shown previously, you could change
the slot specifier for the balance slot in the definition of bank-account to this:

(balance
:initarg :balance
:initform 0
:reader balance)

The :writer option is used to create a generic function and method for setting
the value of a slot. The function and method created follow the requirements for
a SETF function, taking the new value as the first argument and returning it as
the result, so you can define a SETF function by providing a name such as (setf
customer-name). For instance, you could provide reader and writer methods
for customer-name equivalent to the ones you just wrote by changing the slot
specifier to this:

(customer-name
:initarg :customer-name
:initform (error "Must supply a customer name.")
:reader customer-name
:writer (setf customer-name))

212

Since it’s quite common to want both reader and writer functions, DEFCLASS
also provides an option, :accessor, that creates both a reader function and the
corresponding SETF function. So instead of the slot specifier just shown, you’d
typically write this:

(customer-name
:initarg :customer-name
:initform (error "Must supply a customer name.")
:accessor customer-name)

Finally, one last slot option you should know about is the :documentation
option, which you can use to provide a string that documents the purpose of the
slot. Putting it all together and adding a reader method for the account-number
and account-type slots, the DEFCLASS form for the bank-account class would
look like this:

(defclass bank-account ()
((customer-name
:initarg :customer-name
:initform (error "Must supply a customer name.")
:accessor customer-name
:documentation "Customer’s name")

(balance
:initarg :balance
:initform 0
:reader balance
:documentation "Current account balance")

(account-number
:initform (incf *account-numbers*)
:reader account-number
:documentation "Account number, unique within a bank.")

(account-type
:reader account-type
:documentation "Type of account, one of :gold, :silver, or :bronze.")))

WITH-SLOTS and WITH-ACCESSORS
While using accessor functions will make your code easier to maintain, they
can still be a bit verbose. And there will be times, when writing methods that
implement the low-level behaviors of a class, that you may specifically want to
access slots directly to set a slot that has no writer function or to get at the slot
value without causing any auxiliary methods defined on the reader function to
run.

This is what SLOT-VALUE is for; however, it’s still quite verbose. To make matters
worse, a function or method that accesses the same slot several times can become
clogged with calls to accessor functions and SLOT-VALUE. For example, even
a fairly simple method such as the following, which assesses a penalty on a

213

bank-account if its balance falls below a certain minimum, is cluttered with
calls to balance and SLOT-VALUE:

(defmethod assess-low-balance-penalty ((account bank-account))
(when (< (balance account) *minimum-balance*)
(decf (slot-value account ’balance) (* (balance account) .01))))

And if you decide you want to directly access the slot value in order to avoid
running auxiliary methods, it gets even more cluttered.

(defmethod assess-low-balance-penalty ((account bank-account))
(when (< (slot-value account ’balance) *minimum-balance*)
(decf (slot-value account ’balance) (* (slot-value account ’balance) .01))))

Two standard macros, WITH-SLOTS and WITH-ACCESSORS, can help tidy up this
clutter. Both macros create a block of code in which simple variable names can
be used to refer to slots on a particular object. WITH-SLOTS provides direct access
to the slots, as if by SLOT-VALUE, while WITH-ACCESSORS provides a shorthand
for accessor methods.

The basic form of WITH-SLOTS is as follows:

(with-slots (slot*) instance-form
body-form*)

Each element of slots can be either the name of a slot, which is also used as
a variable name, or a two-item list where the first item is a name to use as a
variable and the second is the name of the slot. The instance-form is evaluated
once to produce the object whose slots will be accessed. Within the body, each
occurrence of one of the variable names is translated to a call to SLOT-VALUE
with the object and the appropriate slot name as arguments.10 Thus, you can
write assess-low-balance-penalty like this:

(defmethod assess-low-balance-penalty ((account bank-account))
(with-slots (balance) account
(when (< balance *minimum-balance*)
(decf balance (* balance .01)))))

or, using the two-item list form, like this:

(defmethod assess-low-balance-penalty ((account bank-account))
(with-slots ((bal balance)) account
(when (< bal *minimum-balance*)
(decf bal (* bal .01)))))

If you had defined balance with an :accessor rather than just a :reader, then
you could also use WITH-ACCESSORS. The form of WITH-ACCESSORS is the same
as WITH-SLOTS except each element of the slot list is a two-item list containing
a variable name and the name of an accessor function. Within the body of
WITH-ACCESSORS, a reference to one of the variables is equivalent to a call to the

214

corresponding accessor function. If the accessor function is SETFable, then so is
the variable.

(defmethod assess-low-balance-penalty ((account bank-account))
(with-accessors ((balance balance)) account
(when (< balance *minimum-balance*)
(decf balance (* balance .01)))))

The first balance is the name of the variable, and the second is the name of
the accessor function; they don’t have to be the same. You could, for instance,
write a method to merge two accounts using two calls to WITH-ACCESSORS, one
for each account.

(defmethod merge-accounts ((account1 bank-account) (account2 bank-account))
(with-accessors ((balance1 balance)) account1
(with-accessors ((balance2 balance)) account2
(incf balance1 balance2)
(setf balance2 0))))

The choice of whether to use WITH-SLOTS versus WITH-ACCESSORS is the same
as the choice between SLOT-VALUE and an accessor function: low-level code that
provides the basic functionality of a class may use SLOT-VALUE or WITH-SLOTS
to directly manipulate slots in ways not supported by accessor functions or to
explicitly avoid the effects of auxiliary methods that may have been defined
on the accessor functions. But you should generally use accessor functions or
WITH-ACCESSORS unless you have a specific reason not to.

Class-Allocated Slots
The last slot option you need to know about is :allocation. The value of
:allocation can be either :instance or :class and defaults to :instance if
not specified. When a slot has :class allocation, the slot has only a single value,
which is stored in the class and shared by all instances.

However, :class slots are accessed the same as :instance slots--they’re accessed
with SLOT-VALUE or an accessor function, which means you can access the slot
value only through an instance of the class even though it isn’t actually stored in
the instance. The :initform and :initarg options have essentially the same
effect except the initform is evaluated once when the class is defined rather
than each time an instance is created. On the other hand, passing an initarg to
MAKE-INSTANCE will set the value, affecting all instances of the class.

Because you can’t get at a class-allocated slot without an instance of the class,
class-allocated slots aren’t really equivalent to static or class fields in languages
such as Java, C++, and Python.11 Rather, class-allocated slots are used primarily
to save space; if you’re going to create many instances of a class and all instances
are going to have a reference to the same object--say, a pool of shared resources-
-you can save the cost of each instance having its own reference by making the
slot class-allocated.

215

Slots and Inheritance
As I discussed in the previous chapter, classes inherit behavior from their
superclasses thanks to the generic function machinery--a method specialized on
class A is applicable not only to direct instances of A but also to instances of A’s
subclasses. Classes also inherit slots from their superclasses, but the mechanism
is slightly different.

In Common Lisp a given object can have only one slot with a particular name.
However, it’s possible that more than one class in the inheritance hierarchy of a
given class will specify a slot with a particular name. This can happen either
because a subclass includes a slot specifier with the same name as a slot specified
in a superclass or because multiple superclasses specify slots with the same name.

Common Lisp resolves these situations by merging all the specifiers with the
same name from the new class and all its superclasses to create a single specifier
for each unique slot name. When merging specifiers, different slot options are
treated differently. For instance, since a slot can have only a single default value,
if multiple classes specify an :initform, the new class uses the one from the
most specific class. This allows a subclass to specify a different default value
than the one it would otherwise inherit.

On the other hand, :initargs needn’t be exclusive--each :initarg option in a
slot specifier creates a keyword parameter that can be used to initialize the slot;
multiple parameters don’t create a conflict, so the new slot specifier contains
all the :initargs. Callers of MAKE-INSTANCE can use any of the :initargs to
initialize the slot. If a caller passes multiple keyword arguments that initialize
the same slot, then the leftmost argument in the call to MAKE-INSTANCE is used.

Inherited :reader, :writer, and :accessor options aren’t included in the
merged slot specifier since the methods created by the superclass’s DEFCLASS
will already apply to the new class. The new class can, however, create its
own accessor functions by supplying its own :reader, :writer, or :accessor
options.

Finally, the :allocation option is, like :initform, determined by the most
specific class that specifies the slot. Thus, it’s possible for all instances of one
class to share a :class slot while instances of a subclass may each have their
own :instance slot of the same name. And a sub-subclass may then redefine it
back to :class slot, so all instances of that class will again share a single slot.
In the latter case, the slot shared by instances of the sub-subclass is different
than the slot shared by the original superclass.

For instance, suppose you have these classes:

(defclass foo ()
((a :initarg :a :initform "A" :accessor a)
(b :initarg :b :initform "B" :accessor b)))

216

(defclass bar (foo)
((a :initform (error "Must supply a value for a"))
(b :initarg :the-b :accessor the-b :allocation :class)))

When instantiating the class bar, you can use the inherited initarg, :a, to specify
a value for the slot a and, in fact, must do so to avoid an error, since the
:initform supplied by bar supersedes the one inherited from foo. To initialize
the b slot, you can use either the inherited initarg :b or the new initarg :the-b.
However, because of the :allocation option on the b slot in bar, the value
specified will be stored in the slot shared by all instances of bar. That same slot
can be accessed either with the method on the generic function b that specializes
on foo or with the new method on the generic function the-b that specializes
directly on bar. To access the a slot on either a foo or a bar, you’ll continue to
use the generic function a.

Usually merging slot definitions works quite nicely. However, it’s important to
be aware when using multiple inheritance that two unrelated slots that happen
to have the same name can be merged into a single slot in the new class. Thus,
methods specialized on different classes could end up manipulating the same slot
when applied to a class that extends those classes. This isn’t much of a problem
in practice since, as you’ll see in Chapter 21, you can use the package system to
avoid collisions between names in independently developed pieces of code.

Multiple Inheritance
All the classes you’ve seen so far have had only a single direct superclass.
Common Lisp also supports multiple inheritance--a class can have multiple direct
superclasses, inheriting applicable methods and slot specifiers from all of them.

Multiple inheritance doesn’t dramatically change any of the mechanisms of
inheritance I’ve discussed so far--every user-defined class already has multiple
superclasses since they all extend STANDARD-OBJECT, which extends T, and so
have at least two superclasses. The wrinkle that multiple inheritance adds is
that a class can have more than one direct superclass. This complicates the
notion of class specificity that’s used both when building the effective methods
for a generic function and when merging inherited slot specifiers.

That is, if classes could have only a single direct superclass, ordering classes by
specificity would be trivial--a class and all its superclasses could be ordered in a
straight line starting from the class itself, followed by its single direct superclass,
followed by its direct superclass, all the way up to T. But when a class has
multiple direct superclasses, those superclasses are typically not related to each
other--indeed, if one was a subclass of another, you wouldn’t need to subclass
both directly. In that case, the rule that subclasses are more specific than their
superclasses isn’t enough to order all the superclasses. So Common Lisp uses a
second rule that sorts unrelated superclasses according to the order they’re listed
in the DEFCLASS’s direct superclass list--classes earlier in the list are considered
more specific than classes later in the list. This rule is admittedly somewhat

217

arbitrary but does allow every class to have a linear class precedence list, which
can be used to determine which superclasses should be considered more specific
than others. Note, however, there’s no global ordering of classes--each class has
its own class precedence list, and the same classes can appear in different orders
in different classes’ class precedence lists.

To see how this works, let’s add a class to the banking app: money-market-account.
A money market account combines the characteristics of a checking account
and a savings account: a customer can write checks against it, but it also earns
interest. You might define it like this:

(defclass money-market-account (checking-account savings-account) ())

The class precedence list for money-market-account will be as follows:

(money-market-account
checking-account
savings-account
bank-account
standard-object
t)

Note how this list satisfies both rules: every class appears before all its su-
perclasses, and checking-account and savings-account appear in the order
specified in DEFCLASS.

This class defines no slots of its own but will inherit slots from both of its direct
superclasses, including the slots they inherit from their superclasses. Likewise,
any method that’s applicable to any class in the class precedence list will be
applicable to a money-market-account object. Because all slot specifiers for the
same slot are merged, it doesn’t matter that money-market-account inherits
the same slot specifiers from bank-account twice. 12

Multiple inheritance is easiest to understand when the different super-
classes provide completely independent slots and behaviors. For instance,
money-market-account will inherit slots and behaviors for dealing with checks
from checking-account and slots and behaviors for computing interest from
savings-account. You don’t have to worry about the class precedence list for
methods and slots inherited from only one superclass or another.

However, it’s also possible to inherit different methods for the same generic
function from different superclasses. In that case, the class precedence list
does come into play. For instance, suppose the banking application defined a
generic function print-statement used to generate monthly statements. Pre-
sumably there would already be methods for print-statement specialized
on both checking-account and savings-account. Both of these methods
will be applicable to instances of money-market-account, but the one special-
ized on checking-account will be considered more specific than the one on
savings-account because checking-account precedes savings-account in
money-market-account’s class precedence list.

218

Assuming the inherited methods are all primary methods and you haven’t defined
any other methods, the method specialized on checking-account will be used if
you invoke print-statement on money-market-account. However, that won’t
necessarily give you the behavior you want since you probably want a money
market account’s statement to contain elements of both a checking account and
a savings account statement.

You can modify the behavior of print-statement for money-market-accounts
in a couple ways. One straightforward way is to define a new primary method
specialized on money-market-account. This gives you the most control over
the new behavior but will probably require more new code than some other
options I’ll discuss in a moment. The problem is that while you can use
CALL-NEXT-METHOD to call "up" to the next most specific method, namely, the
one specialized on checking-account, there’s no way to invoke a particular less-
specific method, such as the one specialized on savings-account. Thus, if you
want to be able to reuse the code that prints the savings-account part of the
statement, you’ll need to break that code into a separate function, which you can
then call directly from both the money-market-account and savings-account
print-statement methods.

Another possibility is to write the primary methods of all three classes to call
CALL-NEXT-METHOD. Then the method specialized on money-market-account
will use CALL-NEXT-METHOD to invoke the method specialized on checking-account.
When that method calls CALL-NEXT-METHOD, it will result in running the
savings-account method since it will be the next most specific method
according to money-market-account’s class precedence list.

Of course, if you’re going to rely on a coding convention--that every method
calls CALL-NEXT-METHOD--to ensure all the applicable methods run at some point,
you should think about using auxiliary methods instead. In this case, instead
of defining primary methods on print-statement for checking-account and
savings-account, you can define those methods as :after methods, defining a
single primary method on bank-account. Then, print-statement, called on
a money-market-account, will print a basic account statement, output by the
primary method specialized on bank-account, followed by details output by the
:after methods specialized on savings-account and checking-account. And
if you want to add details specific to money-market-accounts, you can define
an :after method specialized on money-market-account, which will run last
of all.

The advantage of using auxiliary methods is that it makes it quite clear which
methods are primarily responsible for implementing the generic function and
which ones are only contributing additional bits of functionality. The disad-
vantage is that you don’t get fine-grained control over the order in which the
auxiliary methods run--if you wanted the checking-account part of the state-
ment to print before the savings-account part, you’d have to change the order
in which the money-market-account subclasses those classes. But that’s a fairly
dramatic change that could affect other methods and inherited slots. In general,

219

if you find yourself twiddling the order of the direct superclass list as a way of
fine-tuning the behavior of specific methods, you probably need to step back
and rethink your approach.

On the other hand, if you don’t care exactly what the order is but want it
to be consistent across several generic functions, then using auxiliary methods
may be just the thing. For example, if in addition to print-statement you
have a print-detailed-statement generic function, you can implement both
functions using :after methods on the various subclasses of bank-account, and
the order of the parts of both a regular and a detailed statement will be the
same.

Good Object-Oriented Design
That’s about it for the main features of Common Lisp’s object system. If you have
lots of experience with object-oriented programming, you can probably see how
Common Lisp’s features can be used to implement good object-oriented designs.
However, if you have less experience with object orientation, you may need to
spend some time absorbing the object-oriented way of thinking. Unfortunately,
that’s a fairly large topic and beyond the scope of this book. Or, as the man
page for Perl’s object system puts it, "Now you need just to go off and buy a
book about object-oriented design methodology and bang your forehead with it
for the next six months or so." Or you can wait for some of the practical chapters,
later in this book, where you’ll see several examples of how these features are
used in practice. For now, however, you’re ready to take a break from all this
theory of object orientation and turn to the rather different topic of how to make
good use of Common Lisp’s powerful, but sometimes cryptic, FORMAT function.

1Defining new methods for an existing class may seem strange to folks used to
statically typed languages such as C++ and Java in which all the methods of
a class must be defined as part of the class definition. But programmers with
experience in dynamically typed object-oriented languages such as Smalltalk and
Objective C will find nothing strange about adding new behaviors to existing
classes.
2In other object-oriented languages, slots might be called fields, member variables,
or attributes.
3As when naming functions and variables, it’s not quite true that you can use any
symbol as a class name--you can’t use names defined by the language standard.
You’ll see in Chapter 21 how to avoid such name conflicts.
4The argument to MAKE-INSTANCE can actually be either the name of the class
or a class object returned by the function CLASS-OF or FIND-CLASS.
5Another way to affect the values of slots is with the :default-initargs option
to DEFCLASS. This option is used to specify forms that will be evaluated to

220

provide arguments for specific initialization parameters that aren’t given a
value in a particular call to MAKE-INSTANCE. You don’t need to worry about
:default-initargs for now.
6Adding an :after method to INITIALIZE-INSTANCE is the Common Lisp
analog to defining a constructor in Java or C++ or an __init__ method in
Python.
7One mistake you might make until you get used to using auxiliary methods is to
define a method on INITIALIZE-INSTANCE but without the :after qualifier. If
you do that, you’ll get a new primary method that shadows the default one. You
can remove the unwanted primary method using the functions REMOVE-METHOD
and FIND-METHOD. Certain development environments may provide a graphical
user interface to do the same thing.

(remove-method #’initialize-instance
(find-method #’initialize-instance () (list (find-class ’bank-account))))

8Of course, providing an accessor function doesn’t really limit anything since
other code can still use SLOT-VALUE to get at slots directly. Common Lisp doesn’t
provide strict encapsulation of slots the way some languages such as C++ and
Java do; however, if the author of a class provides accessor functions and you
ignore them, using SLOT-VALUE instead, you had better know what you’re doing.
It’s also possible to use the package system, which I’ll discuss in Chapter 21, to
make it even more obvious that certain slots aren’t to be accessed directly, by
not exporting the names of the slots.
9One consequence of defining a SETF function--say, (setf foo)--is that if you
also define the corresponding accessor function, foo in this case, you can use all
the modify macros built upon SETF, such as INCF, DECF, PUSH, and POP, on the
new kind of place.
10The "variable" names provided by WITH-SLOTS and WITH-ACCESSORS aren’t
true variables; they’re implemented using a special kind of macro, called a symbol
macro, that allows a simple name to expand into arbitrary code. Symbol macros
were introduced into the language to support WITH-SLOTS and WITH-ACCESSORS,
but you can also use them for your own purposes. I’ll discuss them in a bit more
detail in Chapter 20.
11The Meta Object Protocol (MOP), which isn’t part of the language standard
but is supported by most Common Lisp implementations, provides a function,
class-prototype, that returns an instance of a class that can be used to access
class slots. If you’re using an implementation that supports the MOP and
happen to be translating some code from another language that makes heavy
use of static or class fields, this may give you a way to ease the translation. But
it’s not all that idiomatic.
12In other words, Common Lisp doesn’t suffer from the diamond inheritance
problem the way, say, C++ does. In C++, when one class subclasses two classes

221

that both inherit a member variable from a common superclass, the bottom
class inherits the member variable twice, leading to no end of confusion.

Copyright © 2003-2005, Peter Seibel

18. A Few FORMAT Recipes
Common Lisp’s FORMAT function is--along with the extended LOOP macro--one of
the two Common Lisp features that inspires a strong emotional response in a lot
of Common Lisp users. Some love it; others hate it.1

FORMAT’s fans love it for its great power and concision, while its detractors
hate it because of the potential for misuse and its opacity. Complex FORMAT
control strings sometimes bear a suspicious resemblance to line noise, but FORMAT
remains popular with Common Lispers who like to be able to generate little
bits of human-readable output without having to clutter their code with lots of
output-generating code. While FORMAT’s control strings can be cryptic, at least
a single FORMAT expression doesn’t clutter things up too badly. For instance,
suppose you want to print the values in a list delimited with commas. You could
write this:

(loop for cons on list
do (format t "~a" (car cons))
when (cdr cons) do (format t ", "))

That’s not too bad, but anyone reading this code has to mentally parse it just to
figure out that all it’s doing is printing the contents of list to standard output.
On the other hand, you can tell at a glance that the following expression is
printing list, in some form, to standard output:

(format t "~{~a~^, ~}" list)

If you care exactly what form the output will take, then you’ll have to examine
the control string, but if all you want is a first-order approximation of what this
line of code is doing, that’s immediately available.

At any rate, you should have at least a reading knowledge of FORMAT, and it’s
worth getting a sense of what it can do before you affiliate yourself with the
pro- or anti-FORMAT camp. It’s also important to understand at least the basics
of FORMAT because other standard functions, such as the condition-signaling
functions discussed in the next chapter, use FORMAT-style control strings to
generate output.

To further complicate matters, FORMAT supports three quite different kinds of
formatting: printing tables of data, pretty-printing s-expressions, and generating
human-readable messages with interpolated values. Printing tables of data as
text is a bit pass

Copyright © 2003-2005, Peter Seibel

222

19. Beyond Exception Handling: Conditions and
Restarts
One of Lisp’s great features is its condition system. It serves a similar purpose
to the exception handling systems in Java, Python, and C++ but is more
flexible. In fact, its flexibility extends beyond error handling--conditions are
more general than exceptions in that a condition can represent any occurrence
during a program’s execution that may be of interest to code at different levels
on the call stack. For example, in the section "Other Uses for Conditions," you’ll
see that conditions can be used to emit warnings without disrupting execution
of the code that emits the warning while allowing code higher on the call stack
to control whether the warning message is printed. For the time being, however,
I’ll focus on error handling.

The condition system is more flexible than exception systems because instead
of providing a two-part division between the code that signals an error1 and
the code that handles it,2 the condition system splits the responsibilities into
three parts--signaling a condition, handling it, and restarting. In this chapter,
I’ll describe how you could use conditions in part of a hypothetical application
for analyzing log files. You’ll see how you could use the condition system to
allow a low-level function to detect a problem while parsing a log file and signal
an error, to allow mid-level code to provide several possible ways of recovering
from such an error, and to allow code at the highest level of the application to
define a policy for choosing which recovery strategy to use.

To start, I’ll introduce some terminology: errors, as I’ll use the term, are the
consequences of Murphy’s law. If something can go wrong, it will: a file that
your program needs to read will be missing, a disk that you need to write to will
be full, the server you’re talking to will crash, or the network will go down. If
any of these things happen, it may stop a piece of code from doing what you
want. But there’s no bug; there’s no place in the code that you can fix to make
the nonexistent file exist or the disk not be full. However, if the rest of the
program is depending on the actions that were going to be taken, then you’d
better deal with the error somehow or you will have introduced a bug. So, errors
aren’t caused by bugs, but neglecting to handle an error is almost certainly a
bug.

So, what does it mean to handle an error? In a well-written program, each
function is a black box hiding its inner workings. Programs are then built out
of layers of functions: high-level functions are built on top of the lower-level
functions, and so on. This hierarchy of functionality manifests itself at runtime
in the form of the call stack: if high calls medium, which calls low, when the
flow of control is in low, it’s also still in medium and high, that is, they’re still
on the call stack.

Because each function is a black box, function boundaries are an excellent place
to deal with errors. Each function--low, for example--has a job to do. Its direct

223

caller--medium in this case--is counting on it to do its job. However, an error
that prevents it from doing its job puts all its callers at risk: medium called
low because it needs the work done that low does; if that work doesn’t get
done, medium is in trouble. But this means that medium’s caller, high, is also
in trouble--and so on up the call stack to the very top of the program. On the
other hand, because each function is a black box, if any of the functions in the
call stack can somehow do their job despite underlying errors, then none of the
functions above it needs to know there was a problem--all those functions care
about is that the function they called somehow did the work expected of it.

In most languages, errors are handled by returning from a failing function and
giving the caller the choice of either recovering or failing itself. Some languages
use the normal function return mechanism, while languages with exceptions
return control by throwing or raising an exception. Exceptions are a vast
improvement over using normal function returns, but both schemes suffer from a
common flaw: while searching for a function that can recover, the stack unwinds,
which means code that might recover has to do so without the context of what
the lower-level code was trying to do when the error actually occurred.

Consider the hypothetical call chain of high, medium, low. If low fails and
medium can’t recover, the ball is in high’s court. For high to handle the error, it
must either do its job without any help from medium or somehow change things
so calling medium will work and call it again. The first option is theoretically
clean but implies a lot of extra code--a whole extra implementation of whatever
it was medium was supposed to do. And the further the stack unwinds, the
more work that needs to be redone. The second option--patching things up
and retrying--is tricky; for high to be able to change the state of the world so
a second call into medium won’t end up causing an error in low, it’d need an
unseemly knowledge of the inner workings of both medium and low, contrary to
the notion that each function is a black box.

The Lisp Way
Common Lisp’s error handling system gives you a way out of this conundrum
by letting you separate the code that actually recovers from an error from the
code that decides how to recover. Thus, you can put recovery code in low-level
functions without committing to actually using any particular recovery strategy,
leaving that decision to code in high-level functions.

To get a sense of how this works, let’s suppose you’re writing an application
that reads some sort of textual log file, such as a Web server’s log. Somewhere
in your application you’ll have a function to parse the individual log entries.
Let’s assume you’ll write a function, parse-log-entry, that will be passed a
string containing the text of a single log entry and that is supposed to return
a log-entry object representing the entry. This function will be called from a
function, parse-log-file, that reads a complete log file and returns a list of
objects representing all the entries in the file.

224

To keep things simple, the parse-log-entry function will not be required to
parse incorrectly formatted entries. It will, however, be able to detect when its
input is malformed. But what should it do when it detects bad input? In C
you’d return a special value to indicate there was a problem. In Java or Python
you’d throw or raise an exception. In Common Lisp, you signal a condition.

Conditions
A condition is an object whose class indicates the general nature of the
condition and whose instance data carries information about the details of
the particular circumstances that lead to the condition being signaled.3 In
this hypothetical log analysis program, you might define a condition class,
malformed-log-entry-error, that parse-log-entry will signal if it’s given
data it can’t parse.

Condition classes are defined with the DEFINE-CONDITION macro, which works
essentially the same as DEFCLASS except that the default superclass of classes
defined with DEFINE-CONDITION is CONDITION rather than STANDARD-OBJECT.
Slots are specified in the same way, and condition classes can singly and multiply
inherit from other classes that descend from CONDITION. But for historical
reasons, condition classes aren’t required to be instances of STANDARD-OBJECT,
so some of the functions you use with DEFCLASSed classes aren’t required to
work with conditions. In particular, a condition’s slots can’t be accessed using
SLOT-VALUE; you must specify either a :reader option or an :accessor option
for any slot whose value you intend to use. Likewise, new condition objects are
created with MAKE-CONDITION rather than MAKE-INSTANCE. MAKE-CONDITION
initializes the slots of the new condition based on the :initargs it’s passed, but
there’s no way to further customize a condition’s initialization, equivalent to
INITIALIZE-INSTANCE.4

When using the condition system for error handling, you should define your
conditions as subclasses of ERROR, a subclass of CONDITION. Thus, you might
define malformed-log-entry-error, with a slot to hold the argument that was
passed to parse-log-entry, like this:

(define-condition malformed-log-entry-error (error)
((text :initarg :text :reader text)))

Condition Handlers
In parse-log-entry you’ll signal a malformed-log-entry-error if you can’t
parse the log entry. You signal errors with the function ERROR, which calls the
lower-level function SIGNAL and drops into the debugger if the condition isn’t
handled. You can call ERROR two ways: you can pass it an already instantiated
condition object, or you can pass it the name of the condition class and any
initargs needed to construct a new condition, and it will instantiate the condition
for you. The former is occasionally useful for resignaling an existing condition

225

object, but the latter is more concise. Thus, you could write parse-log-entry
like this, eliding the details of actually parsing a log entry:

(defun parse-log-entry (text)
(if (well-formed-log-entry-p text)
(make-instance ’log-entry ...)
(error ’malformed-log-entry-error :text text)))

What happens when the error is signaled depends on the code above
parse-log-entry on the call stack. To avoid landing in the debugger, you
must establish a condition handler in one of the functions leading to the call to
parse-log-entry. When a condition is signaled, the signaling machinery looks
through a list of active condition handlers, looking for a handler that can handle
the condition being signaled based on the condition’s class. Each condition
handler consists of a type specifier indicating what types of conditions it can
handle and a function that takes a single argument, the condition. At any given
moment there can be many active condition handlers established at various
levels of the call stack. When a condition is signaled, the signaling machinery
finds the most recently established handler whose type specifier is compatible
with the condition being signaled and calls its function, passing it the condition
object.

The handler function can then choose whether to handle the condition. The
function can decline to handle the condition by simply returning normally, in
which case control returns to the SIGNAL function, which will search for the next
most recently established handler with a compatible type specifier. To handle
the condition, the function must transfer control out of SIGNAL via a nonlocal
exit. In the next section, you’ll see how a handler can choose where to transfer
control. However, many condition handlers simply want to unwind the stack
to the place where they were established and then run some code. The macro
HANDLER-CASE establishes this kind of condition handler. The basic form of a
HANDLER-CASE is as follows:

(handler-case expression
error-clause*)

where each error-clause is of the following form:

(condition-type ([var]) code)

If the expression returns normally, then its value is returned by the HANDLER-CASE.
The body of a HANDLER-CASE must be a single expression; you can use PROGN
to combine several expressions into a single form. If, however, the expression
signals a condition that’s an instance of any of the condition-types specified in
any error-clause, then the code in the appropriate error clause is executed and
its value returned by the HANDLER-CASE. The var, if included, is the name of the
variable that will hold the condition object when the handler code is executed. If
the code doesn’t need to access the condition object, you can omit the variable
name.

226

For instance, one way to handle the malformed-log-entry-error signaled
by parse-log-entry in its caller, parse-log-file, would be to skip the
malformed entry. In the following function, the HANDLER-CASE expression
will either return the value returned by parse-log-entry or return NIL if a
malformed-log-entry-error is signaled. (The it in the LOOP clause collect
it is another LOOP keyword, which refers to the value of the most recently
evaluated conditional test, in this case the value of entry.)

(defun parse-log-file (file)
(with-open-file (in file :direction :input)
(loop for text = (read-line in nil nil) while text

for entry = (handler-case (parse-log-entry text)
(malformed-log-entry-error () nil))

when entry collect it)))

When parse-log-entry returns normally, its value will be assigned to
entry and collected by the LOOP. But if parse-log-entry signals a
malformed-log-entry-error, then the error clause will return NIL, which
won’t be collected.

JAVA-STYLE EXCEPTON HANDLING

HANDLER-CASE is the nearest analog in Common Lisp to Java- or Python-style
exception handling. Where you might write this in Java:

try {
doStuff();
doMoreStuff();

} catch (SomeException se) {
recover(se);

}

or this in Python:

try:
doStuff()
doMoreStuff()

except SomeException, se:
recover(se)

in Common Lisp you’d write this:

(handler-case
(progn
(do-stuff)
(do-more-stuff))

(some-exception (se) (recover se)))

This version of parse-log-file has one serious deficiency: it’s doing too much.
As its name suggests, the job of parse-log-file is to parse the file and produce
a list of log-entry objects; if it can’t, it’s not its place to decide what to

227

do instead. What if you want to use parse-log-file in an application that
wants to tell the user that the log file is corrupted or one that wants to recover
from malformed entries by fixing them up and re-parsing them? Or maybe
an application is fine with skipping them but only until a certain number of
corrupted entries have been seen.

You could try to fix this problem by moving the HANDLER-CASE to a higher-level
function. However, then you’d have no way to implement the current policy
of skipping individual entries--when the error was signaled, the stack would be
unwound all the way to the higher-level function, abandoning the parsing of
the log file altogether. What you want is a way to provide the current recovery
strategy without requiring that it always be used.

Restarts
The condition system lets you do this by splitting the error handling code into
two parts. You place code that actually recovers from errors into restarts, and
condition handlers can then handle a condition by invoking an appropriate
restart. You can place restart code in mid- or low-level functions, such as
parse-log-file or parse-log-entry, while moving the condition handlers
into the upper levels of the application.

To change parse-log-file so it establishes a restart instead of a condition
handler, you can change the HANDLER-CASE to a RESTART-CASE. The form of
RESTART-CASE is quite similar to a HANDLER-CASE except the names of restarts
are just names, not necessarily the names of condition types. In general, a restart
name should describe the action the restart takes. In parse-log-file, you can
call the restart skip-log-entry since that’s what it does. The new version will
look like this:

(defun parse-log-file (file)
(with-open-file (in file :direction :input)
(loop for text = (read-line in nil nil) while text

for entry = (restart-case (parse-log-entry text)
(skip-log-entry () nil))

when entry collect it)))

If you invoke this version of parse-log-file on a log file containing corrupted
entries, it won’t handle the error directly; you’ll end up in the debugger. However,
there among the various restarts presented by the debugger will be one called
skip-log-entry, which, if you choose it, will cause parse-log-file to continue
on its way as before. To avoid ending up in the debugger, you can establish a
condition handler that invokes the skip-log-entry restart automatically.

The advantage of establishing a restart rather than having parse-log-file
handle the error directly is it makes parse-log-file usable in more situations.
The higher-level code that invokes parse-log-file doesn’t have to invoke the
skip-log-entry restart. It can choose to handle the error at a higher level. Or,

228

as I’ll show in the next section, you can add restarts to parse-log-entry to
provide other recovery strategies, and then condition handlers can choose which
strategy they want to use.

But before I can talk about that, you need to see how to set up a condition
handler that will invoke the skip-log-entry restart. You can set up the handler
anywhere in the chain of calls leading to parse-log-file. This may be quite
high up in your application, not necessarily in parse-log-file’s direct caller.
For instance, suppose the main entry point to your application is a function,
log-analyzer, that finds a bunch of logs and analyzes them with the function
analyze-log, which eventually leads to a call to parse-log-file. Without any
error handling, it might look like this:

(defun log-analyzer ()
(dolist (log (find-all-logs))
(analyze-log log)))

The job of analyze-log is to call, directly or indirectly, parse-log-file and
then do something with the list of log entries returned. An extremely simple
version might look like this:

(defun analyze-log (log)
(dolist (entry (parse-log-file log))
(analyze-entry entry)))

where the function analyze-entry is presumably responsible for extracting
whatever information you care about from each log entry and stashing it away
somewhere.

Thus, the path from the top-level function, log-analyzer, to parse-log-entry,
which actually signals an error, is as follows:

Assuming you always want to skip malformed log entries, you could change
this function to establish a condition handler that invokes the skip-log-entry
restart for you. However, you can’t use HANDLER-CASE to establish the condi-

229

tion handler because then the stack would be unwound to the function where
the HANDLER-CASE appears. Instead, you need to use the lower-level macro
HANDLER-BIND. The basic form of HANDLER-BIND is as follows:

(handler-bind (binding*) form*)

where each binding is a list of a condition type and a handler function of one
argument. After the handler bindings, the body of the HANDLER-BIND can
contain any number of forms. Unlike the handler code in HANDLER-CASE, the
handler code must be a function object, and it must accept a single argument.
A more important difference between HANDLER-BIND and HANDLER-CASE is that
the handler function bound by HANDLER-BIND will be run without unwinding
the stack--the flow of control will still be in the call to parse-log-entry when
this function is called. The call to INVOKE-RESTART will find and invoke the
most recently bound restart with the given name. So you can add a handler
to log-analyzer that will invoke the skip-log-entry restart established in
parse-log-file like this:5

(defun log-analyzer ()
(handler-bind ((malformed-log-entry-error

#’(lambda (c)
(invoke-restart ’skip-log-entry))))

(dolist (log (find-all-logs))
(analyze-log log))))

In this HANDLER-BIND, the handler function is an anonymous function that
invokes the restart skip-log-entry. You could also define a named function
that does the same thing and bind it instead. In fact, a common practice when
defining a restart is to define a function, with the same name and taking a single
argument, the condition, that invokes the eponymous restart. Such functions are
called restart functions. You could define a restart function for skip-log-entry
like this:

(defun skip-log-entry (c)
(invoke-restart ’skip-log-entry))

Then you could change the definition of log-analyzer to this:

(defun log-analyzer ()
(handler-bind ((malformed-log-entry-error #’skip-log-entry))
(dolist (log (find-all-logs))
(analyze-log log))))

As written, the skip-log-entry restart function assumes that a skip-log-entry
restart has been established. If a malformed-log-entry-error is ever signaled
by code called from log-analyzer without a skip-log-entry having been
established, the call to INVOKE-RESTART will signal a CONTROL-ERROR when
it fails to find the skip-log-entry restart. If you want to allow for the
possibility that a malformed-log-entry-error might be signaled from code

230

that doesn’t have a skip-log-entry restart established, you could change the
skip-log-entry function to this:

(defun skip-log-entry (c)
(let ((restart (find-restart ’skip-log-entry)))
(when restart (invoke-restart restart))))

FIND-RESTART looks for a restart with a given name and returns an object
representing the restart if the restart is found and NIL if not. You can in-
voke the restart by passing the restart object to INVOKE-RESTART. Thus, when
skip-log-entry is bound with HANDLER-BIND, it will handle the condition by
invoking the skip-log-entry restart if one is available and otherwise will return
normally, giving other condition handlers, bound higher on the stack, a chance
to handle the condition.

Providing Multiple Restarts
Since restarts must be explicitly invoked to have any effect, you can define
multiple restarts, each providing a different recovery strategy. As I mentioned
earlier, not all log-parsing applications will necessarily want to skip malformed
entries. Some applications might want parse-log-file to include a special
kind of object representing malformed entries in the list of log-entry objects;
other applications may have some way to repair a malformed entry and may
want a way to pass the fixed entry back to parse-log-entry.

To allow more complex recovery protocols, restarts can take arbitrary arguments,
which are passed in the call to INVOKE-RESTART. You can provide support
for both the recovery strategies I just mentioned by adding two restarts to
parse-log-entry, each of which takes a single argument. One simply returns
the value it’s passed as the return value of parse-log-entry, while the other
tries to parse its argument in the place of the original log entry.

(defun parse-log-entry (text)
(if (well-formed-log-entry-p text)
(make-instance ’log-entry ...)
(restart-case (error ’malformed-log-entry-error :text text)
(use-value (value) value)
(reparse-entry (fixed-text) (parse-log-entry fixed-text)))))

The name USE-VALUE is a standard name for this kind of restart. Common Lisp
defines a restart function for USE-VALUE similar to the skip-log-entry function
you just defined. So, if you wanted to change the policy on malformed entries
to one that created an instance of malformed-log-entry, you could change
log-analyzer to this (assuming the existence of a malformed-log-entry class
with a :text initarg):

(defun log-analyzer ()
(handler-bind ((malformed-log-entry-error

#’(lambda (c)

231

(use-value
(make-instance ’malformed-log-entry :text (text c))))))

(dolist (log (find-all-logs))
(analyze-log log))))

You could also have put these new restarts into parse-log-file instead
of parse-log-entry. However, you generally want to put restarts in the
lowest-level code possible. It wouldn’t, though, be appropriate to move
the skip-log-entry restart into parse-log-entry since that would cause
parse-log-entry to sometimes return normally with NIL, the very thing you
started out trying to avoid. And it’d be an equally bad idea to remove the
skip-log-entry restart on the theory that the condition handler could get
the same effect by invoking the use-value restart with NIL as the argument;
that would require the condition handler to have intimate knowledge of how
the parse-log-file works. As it stands, the skip-log-entry is a properly
abstracted part of the log-parsing API.

Other Uses for Conditions
While conditions are mainly used for error handling, they can be used for other
purposes--you can use conditions, condition handlers, and restarts to build a
variety of protocols between low- and high-level code. The key to understanding
the potential of conditions is to understand that merely signaling a condition
has no effect on the flow of control.

The primitive signaling function SIGNAL implements the mechanism of searching
for an applicable condition handler and invoking its handler function. The reason
a handler can decline to handle a condition by returning normally is because
the call to the handler function is just a regular function call--when the handler
returns, control passes back to SIGNAL, which then looks for another, less recently
bound handler that can handle the condition. If SIGNAL runs out of condition
handlers before the condition is handled, it also returns normally.

The ERROR function you’ve been using calls SIGNAL. If the error is handled by
a condition handler that transfers control via HANDLER-CASE or by invoking a
restart, then the call to SIGNAL never returns. But if SIGNAL returns, ERROR
invokes the debugger by calling the function stored in *DEBUGGER-HOOK*. Thus,
a call to ERROR can never return normally; the condition must be handled either
by a condition handler or in the debugger.

Another condition signaling function, WARN, provides an example of a different
kind of protocol built on the condition system. Like ERROR, WARN calls SIGNAL to
signal a condition. But if SIGNAL returns, WARN doesn’t invoke the debugger--it
prints the condition to *ERROR-OUTPUT* and returns NIL, allowing its caller to
proceed. WARN also establishes a restart, MUFFLE-WARNING, around the call to
SIGNAL that can be used by a condition handler to make WARN return without
printing anything. The restart function MUFFLE-WARNING finds and invokes its
eponymous restart, signaling a CONTROL-ERROR if no such restart is available.

232

Of course, a condition signaled with WARN could also be handled in some other
way--a condition handler could "promote" a warning to an error by handling it
as if it were an error.

For instance, in the log-parsing application, if there were ways a log entry could
be slightly malformed but still parsable, you could write parse-log-entry to
go ahead and parse the slightly defective entries but to signal a condition with
WARN when it did. Then the larger application could choose to let the warning
print, to muffle the warning, or to treat the warning like an error, recovering the
same way it would from a malformed-log-entry-error.

A third error-signaling function, CERROR, provides yet another protocol. Like
ERROR, CERROR will drop you into the debugger if the condition it signals isn’t
handled. But like WARN, it establishes a restart before it signals the condition. The
restart, CONTINUE, causes CERROR to return normally--if the restart is invoked by
a condition handler, it will keep you out of the debugger altogether. Otherwise,
you can use the restart once you’re in the debugger to resume the computation
immediately after the call to CERROR. The function CONTINUE finds and invokes
the CONTINUE restart if it’s available and returns NIL otherwise.

You can also build your own protocols on SIGNAL--whenever low-level code needs
to communicate information back up the call stack to higher-level code, the
condition mechanism is a reasonable mechanism to use. But for most purposes,
one of the standard error or warning protocols should suffice.

You’ll use the condition system in future practical chapters, both for regular
error handling and, in Chapter 25, to help in handling a tricky corner case of
parsing ID3 files. Unfortunately, it’s the fate of error handling to always get
short shrift in programming texts--proper error handling, or lack thereof, is often
the biggest difference between illustrative code and hardened, production-quality
code. The trick to writing the latter has more to do with adopting a particularly
rigorous way of thinking about software than with the details of any particular
programming language constructs. That said, if your goal is to write that kind
of software, you’ll find the Common Lisp condition system is an excellent tool for
writing robust code and one that fits quite nicely into Common Lisp’s incremental
development style.

Writing Robust Software

For information on writing robust software, you could do worse than to start by
finding a copy of Software Reliability (John Wiley & Sons, 1976) by Glenford J.
Meyers. Bertrand Meyer’s writings on Design By Contract also provide a useful
way of thinking about software correctness. For instance, see Chapters 11 and
12 of his Object-Oriented Software Construction (Prentice Hall, 1997). Keep in
mind, however, that Bertrand Meyer is the inventor of Eiffel, a statically typed
bondage and discipline language in the Algol/Ada school. While he has a lot of
smart things to say about object orientation and software reliability, there’s a
fairly wide gap between his view of programming and The Lisp Way. Finally,
for an excellent overview of the larger issues surrounding building fault-tolerant

233

systems, see Chapter 3 of the classic Transaction Processing: Concepts and
Techniques (Morgan Kaufmann, 1993) by Jim Gray and Andreas Reuter.

In the next chapter I’ll give a quick overview of some of the 25 special operators
you haven’t had a chance to use yet, at least not directly.

1Throws or raises an exception in Java/Python terms
2Catches the exception in Java/Python terms
3In this respect, a condition is a lot like an exception in Java or Python except
not all conditions represent an error or exceptional situation.
4In some Common Lisp implementations, conditions are defined as sub-
classes of STANDARD-OBJECT, in which case SLOT-VALUE, MAKE-INSTANCE, and
INITIALIZE-INSTANCE will work, but it’s not portable to rely on it.
5The compiler may complain if the parameter is never used. You can silence that
warning by adding a declaration (declare (ignore c)) as the first expression
in the LAMBDA body.

Copyright © 2003-2005, Peter Seibel

20. The Special Operators
In a way, the most impressive aspect of the condition system covered in the
previous chapter is that if it wasn’t already part of the language, it could be
written entirely as a user-level library. This is possible because Common Lisp’s
special operators--while none touches directly on signaling or handling conditions-
-provide enough access to the underlying machinery of the language to be able
to do things such as control the unwinding of the stack.

In previous chapters I’ve discussed the most frequently used special operators,
but it’s worth being familiar with the others for two reasons. First, some of
the infrequently used special operators are used infrequently simply because
whatever need they address doesn’t arise that often. It’s good to be familiar with
these special operators so when one of them is called for, you’ll at least know it
exists. Second, because the 25 special operators--along with the basic rule for
evaluating function calls and the built-in data types--provide the foundation for
the rest of the language, a passing familiarity with them will help you understand
how the language works.

In this chapter, I’ll discuss all the special operators, some briefly and some at
length, so you can see how they fit together. I’ll point out which ones you can
expect to use directly in your own code, which ones serve as the basis for other
constructs that you use all the time, and which ones you’ll rarely use directly
but which can be handy in macro-generated code.

234

Controlling Evaluation
The first category of special operators contains the three operators that provide
basic control over the evaluation of forms. They’re QUOTE, IF, and PROGN, and
I’ve discussed them all already. However, it’s worth noting how each of these
special operators provides one fundamental kind of control over the evaluation of
one or more forms. QUOTE prevents evaluation altogether and allows you to get
at s-expressions as data. IF provides the fundamental boolean choice operation
from which all other conditional execution constructs can be built.1 And PROGN
provides the ability to sequence a number of forms.

Manipulating the Lexical Environment
The largest class of special operators contains the operators that manipulate and
access the lexical environment. LET and LET*, which I’ve already discussed, are
examples of special operators that manipulate the lexical environment since they
can introduce new lexical bindings for variables. Any construct, such as a DO or
DOTIMES, that binds lexical variables will have to expand into a LET or LET*.2
The SETQ special operator is one that accesses the lexical environment since it
can be used to set variables whose bindings were created by LET and LET*.

Variables, however, aren’t the only thing that can be named within a lexical
scope. While most functions are defined globally with DEFUN, it’s also possible
to create local functions with the special operators FLET and LABELS, local
macros with MACROLET, and a special kind of macro, called a symbol macro, with
SYMBOL-MACROLET.

Much like LET allows you to introduce a lexical variable whose scope is the body
of the LET, FLET and LABELS let you define a function that can be referred to
only within the scope of the FLET or LABELS form. These special operators are
handy when you need a local function that’s a bit too complex to define inline
as a LAMBDA expression or that you need to use more than once. Both have the
same basic form, which looks like this:

(flet (function-definition*)
body-form*)

and like this:

(labels (function-definition*)
body-form*)

where each function-definition has the following form:

(name (parameter*) form*)

The difference between FLET and LABELS is that the names of the functions
defined with FLET can be used only in the body of the FLET, while the names
introduced by LABELS can be used immediately, including in the bodies of the
functions defined by the LABELS. Thus, LABELS can define recursive functions,

235

while FLET can’t. It might seem limiting that FLET can’t be used to define
recursive functions, but Common Lisp provides both FLET and LABELS because
sometimes it’s useful to be able to write local functions that can call another
function of the same name, either a globally defined function or a local function
from an enclosing scope.

Within the body of a FLET or LABELS, you can use the names of the functions
defined just like any other function, including with the FUNCTION special operator.
Since you can use FUNCTION to get the function object representing a function
defined with FLET or LABELS, and since a FLET or LABELS can be in the scope of
other binding forms such as LETs, these functions can be closures.

Because the local functions can refer to variables from the enclosing scope, they
can often be written to take fewer parameters than the equivalent helper functions.
This is particularly handy when you need to pass a function that takes a single
argument as a functional parameter. For example, in the following function,
which you’ll see again in Chapter 25, the FLETed function, count-version, takes
a single argument, as required by walk-directory, but can also use the variable
versions, introduced by the enclosing LET:

(defun count-versions (dir)
(let ((versions (mapcar #’(lambda (x) (cons x 0)) ’(2 3 4))))
(flet ((count-version (file)

(incf (cdr (assoc (major-version (read-id3 file)) versions)))))
(walk-directory dir #’count-version :test #’mp3-p))

versions))

This function could also be written using an anonymous function in the place of
the FLETed count-version, but giving the function a meaningful name makes
it a bit easier to read.

And when a helper function needs to recurse, an anonymous function just won’t
do.3 When you don’t want to define a recursive helper function as a global func-
tion, you can use LABELS. For example, the following function, collect-leaves,
uses the recursive helper function walk to walk a tree and gather all the atoms
in the tree into a list, which collect-leaves then returns (after reversing it):

(defun collect-leaves (tree)
(let ((leaves ()))
(labels ((walk (tree)

(cond
((null tree))
((atom tree) (push tree leaves))
(t (walk (car tree))

(walk (cdr tree))))))
(walk tree))

(nreverse leaves)))

Notice again how, within the walk function, you can refer to the variable, leaves,

236

introduced by the enclosing LET.

FLET and LABELS are also useful operations to use in macro expansions--a macro
can expand into code that contains a FLET or LABELS to create functions that
can be used within the body of the macro. This technique can be used either
to introduce functions that the user of the macro will call or simply as a way
of organizing the code generated by the macro. This, for instance, is how a
function such as CALL-NEXT-METHOD, which can be used only within a method
definition, might be defined.

A near relative to FLET and LABELS is the special operator MACROLET, which
you can use to define local macros. Local macros work just like global macros
defined with DEFMACRO except without cluttering the global namespace. When
a MACROLET form is evaluated, the body forms are evaluated with the local
macro definitions in effect and possibly shadowing global function and macro
definitions or local definitions from enclosing forms. Like FLET and LABELS,
MACROLET can be used directly, but it’s also a handy target for macro-generated
code--by wrapping some user-supplied code in a MACROLET, a macro can provide
constructs that can be used only within that code or can shadow a globally
defined macro. You’ll see an example of this latter use of MACROLET in Chapter
31.

Finally, one last macro-defining special operator is SYMBOL-MACROLET, which
defines a special kind of macro called, appropriately enough, a symbol macro.
Symbol macros are like regular macros except they can’t take arguments and
are referred to with a plain symbol rather than a list form. In other words, after
you’ve defined a symbol macro with a particular name, any use of that symbol
in a value position will be expanded and the resulting form evaluated in its place.
This is how macros such as WITH-SLOTS and WITH-ACCESSORS are able to define
"variables" that access the state of a particular object under the covers. For
instance, the following WITH-SLOTS form:

(with-slots (x y z) foo (list x y z)))

might expand into this code that uses SYMBOL-MACROLET:

(let ((#:g149 foo))
(symbol-macrolet

((x (slot-value #:g149 ’x))
(y (slot-value #:g149 ’y))
(z (slot-value #:g149 ’z)))

(list x y z)))

When the expression (list x y z) is evaluated, the symbols x, y, and z will
be replaced with their expansions, such as (slot-value #:g149 'x).4

Symbol macros are most often local, defined with SYMBOL-MACROLET, but Com-
mon Lisp also provides a macro DEFINE-SYMBOL-MACRO that defines a global
symbol macro. A symbol macro defined with SYMBOL-MACROLET shadows other

237

symbol macros of the same name defined with DEFINE-SYMBOL-MACRO or enclos-
ing SYMBOL-MACROLET forms.

Local Flow of Control
The next four special operators I’ll discuss also create and use names in the
lexical environment but for the purposes of altering the flow of control rather
than defining new functions and macros. I’ve mentioned all four of these special
operators in passing because they provide the underlying mechanisms used by
other language features. They’re BLOCK, RETURN-FROM, TAGBODY, and GO. The
first two, BLOCK and RETURN-FROM, are used together to write code that returns
immediately from a section of code--I discussed RETURN-FROM in Chapter 5 as
a way to return immediately from a function, but it’s more general than that.
The other two, TAGBODY and GO, provide a quite low-level goto construct that’s
the basis for all the higher-level looping constructs you’ve already seen.

The basic skeleton of a BLOCK form is this:

(block name
form*)

The name is a symbol, and the forms are Lisp forms. The forms are evaluated
in order, and the value of the last form is returned as the value of the BLOCK
unless a RETURN-FROM is used to return from the block early. A RETURN-FROM
form, as you saw in Chapter 5, consists of the name of the block to return from
and, optionally, a form that provides a value to return. When a RETURN-FROM is
evaluated, it causes the named BLOCK to return immediately. If RETURN-FROM
is called with a return value form, the BLOCK will return the resulting value;
otherwise, the BLOCK evaluates to NIL.

A BLOCK name can be any symbol, which includes NIL. Many of the standard
control construct macros, such as DO, DOTIMES, and DOLIST, generate an expan-
sion consisting of a BLOCK named NIL. This allows you to use the RETURN macro,
which is a bit of syntactic sugar for (return-from nil ...), to break out of
such loops. Thus, the following loop will print at most ten random numbers,
stopping as soon as it gets a number greater than 50:

(dotimes (i 10)
(let ((answer (random 100)))
(print answer)
(if (> answer 50) (return))))

Function-defining macros such as DEFUN, FLET, and LABELS, on the other hand,
wrap their bodies in a BLOCK with the same name as the function. That’s why
you can use RETURN-FROM to return from a function.

TAGBODY and GO have a similar relationship to each other as BLOCK and
RETURN-FROM: a TAGBODY form defines a context in which names are defined
that can be used by GO. The skeleton of a TAGBODY is as follows:

238

(tagbody
tag-or-compound-form*)

where each tag-or-compound-form is either a symbol, called a tag, or a nonempty
list form. The list forms are evaluated in order and the tags ignored, except as
I’ll discuss in a moment. After the last form of the TAGBODY is evaluated, the
TAGBODY returns NIL. Anywhere within the lexical scope of the TAGBODY you
can use the GO special operator to jump immediately to any of the tags, and
evaluation will resume with the form following the tag. For instance, you can
write a trivial infinite loop with TAGBODY and GO like this:

(tagbody
top
(print ’hello)
(go top))

Note that while the tag names must appear at the top level of the TAGBODY,
not nested within other forms, the GO special operator can appear anywhere
within the scope of the TAGBODY. This means you could write a loop that loops
a random number of times like this:

(tagbody
top
(print ’hello)
(when (plusp (random 10)) (go top)))

An even sillier example of TAGBODY, which shows you can have multiple tags in
a single TAGBODY, looks like this:

(tagbody
a (print ’a) (if (zerop (random 2)) (go c))
b (print ’b) (if (zerop (random 2)) (go a))
c (print ’c) (if (zerop (random 2)) (go b)))

This form will jump around randomly printing as, bs, and cs until eventually the
last RANDOM expression returns 1 and the control falls off the end of the TAGBODY.

TAGBODY is rarely used directly since it’s almost always easier to write iterative
constructs in terms of the existing looping macros. It’s handy, however, for
translating algorithms written in other languages into Common Lisp, either
automatically or manually. An example of an automatic translation tool is the
FORTRAN-to-Common Lisp translator, f2cl, that translates FORTRAN source
code into Common Lisp in order to make various FORTRAN libraries available
to Common Lisp programmers. Since many FORTRAN libraries were written
before the structured programming revolution, they’re full of gotos. The f2cl
compiler can simply translate those gotos to GOs within appropriate TAGBODYs.5

Similarly, TAGBODY and GO can be handy when translating algorithms described
in prose or by flowcharts--for instance, in Donald Knuth’s classic series The Art
of Computer Programming, he describes algorithms using a "recipe" format: step

239

1, do this; step 2, do that; step 3, go back to step 2; and so on. For example,
on page 142 of The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, Third Edition (Addison-Wesley, 1998), he describes Algorithm S,
which you’ll use in Chapter 27, in this form:

Algorithm S (Selection sampling technique). To select n records at
random from a set of N, where 0 < n <= N.

S1. [Initialize.] Set t <-- 0, m <-- 0. (During this algorithm, m
represents the number of records selected so far, and t is the total
number of input records that we have dealt with.)

S2. [Generate U.] Generate a random number U, uniformly dis-
tributed between zero and one.

S3. [Test.] If (N - t)U >= n - m, go to step S5.

S4. [Select.] Select the next record for the sample, and increase m
and t by 1. If m < n, go to step S2; otherwise the sample is complete
and the algorithm terminates.

S5. [Skip.] Skip the next record (do not include it in the sample),
increase t by 1, and go back to step S2.

This description can be easily translated into a Common Lisp function, after
renaming a few variables, as follows:

(defun algorithm-s (n max) ; max is N in Knuth’s algorithm
(let (seen ; t in Knuth’s algorithm

selected ; m in Knuth’s algorithm
u ; U in Knuth’s algorithm
(records ())) ; the list where we save the records selected

(tagbody
s1
(setf seen 0)
(setf selected 0)

s2
(setf u (random 1.0))

s3
(when (>= (* (- max seen) u) (- n selected)) (go s5))

s4
(push seen records)
(incf selected)
(incf seen)
(if (< selected n)

(go s2)
(return-from algorithm-s (nreverse records)))

s5
(incf seen)
(go s2))))

240

It’s not the prettiest code, but it’s easy to verify that it’s a faithful translation
of Knuth’s algorithm. But, this code, unlike Knuth’s prose description, can be
run and tested. Then you can start refactoring, checking after each change that
the function still works.6

After pushing the pieces around a bit, you might end up with something like
this:

(defun algorithm-s (n max)
(loop for seen from 0

when (< (* (- max seen) (random 1.0)) n)
collect seen and do (decf n)
until (zerop n)))

While it may not be immediately obvious that this code correctly implements
Algorithm S, if you got here via a series of functions that all behave identically
to the original literal translation of Knuth’s recipe, you’d have good reason to
believe it’s correct.

Unwinding the Stack
Another aspect of the language that special operators give you control over is
the behavior of the call stack. For instance, while you normally use BLOCK and
TAGBODY to manage the flow of control within a single function, you can also use
them, in conjunction with closures, to force an immediate nonlocal return from
a function further down on the stack. That’s because BLOCK names and TAGBODY
tags can be closed over by any code within the lexical scope of the BLOCK or
TAGBODY. For example, consider this function:

(defun foo ()
(format t "Entering foo~%")
(block a
(format t " Entering BLOCK~%")
(bar #’(lambda () (return-from a)))
(format t " Leaving BLOCK~%"))

(format t "Leaving foo~%"))

The anonymous function passed to bar uses RETURN-FROM to return from the
BLOCK. But that RETURN-FROM doesn’t get evaluated until the anonymous function
is invoked with FUNCALL or APPLY. Now suppose bar looks like this:

(defun bar (fn)
(format t " Entering bar~%")
(baz fn)
(format t " Leaving bar~%"))

Still, the anonymous function isn’t invoked. Now look at baz.

(defun baz (fn)
(format t " Entering baz~%")

241

(funcall fn)
(format t " Leaving baz~%"))

Finally the function is invoked. But what does it mean to RETURN-FROM a block
that’s several layers up on the call stack? Turns out it works fine--the stack is
unwound back to the frame where the BLOCK was established and control returns
from the BLOCK. The FORMAT expressions in foo, bar, and baz show this:

CL-USER> (foo)
Entering foo
Entering BLOCK
Entering bar
Entering baz

Leaving foo
NIL

Note that the only "Leaving . . ." message that prints is the one that appears
after the BLOCK in foo.

Because the names of blocks are lexically scoped, a RETURN-FROM always re-
turns from the smallest enclosing BLOCK in the lexical environment where the
RETURN-FROM form appears even if the RETURN-FROM is executed in a different
dynamic context. For instance, bar could also contain a BLOCK named a, like
this:

(defun bar (fn)
(format t " Entering bar~%")
(block a (baz fn))
(format t " Leaving bar~%"))

This extra BLOCK won’t change the behavior of foo at all--the name a is resolved
lexically, at compile time, not dynamically, so the intervening block has no effect
on the RETURN-FROM. Conversely, the name of a BLOCK can be used only by
RETURN-FROMs appearing within the lexical scope of the BLOCK; there’s no way
for code outside the block to return from the block except by invoking a closure
that closes over a RETURN-FROM from the lexical scope of the BLOCK.

TAGBODY and GO work the same way, in this regard, as BLOCK and RETURN-FROM.
When you invoke a closure that contains a GO form, if the GO is evaluated,
the stack will unwind back to the appropriate TAGBODY and then jump to the
specified tag.

BLOCK names and TAGBODY tags, however, differ from lexical variable bindings in
one important way. As I discussed in Chapter 6, lexical bindings have indefinite
extent, meaning the bindings can stick around even after the binding form has
returned. BLOCKs and TAGBODYs, on the other hand, have dynamic extent--you
can RETURN-FROM a BLOCK or GO to a TAGBODY tag only while the BLOCK or
TAGBODY is on the call stack. In other words, a closure that captures a block
name or TAGBODY tag can be passed down the stack to be invoked later, but it
can’t be returned up the stack. If you invoke a closure that tries to RETURN-FROM

242

a BLOCK, after the BLOCK itself has returned, you’ll get an error. Likewise, trying
to GO to a TAGBODY that no longer exists will cause an error.7

It’s unlikely you’ll need to use BLOCK and TAGBODY yourself for this kind of stack
unwinding. But you’ll likely be using them indirectly whenever you use the
condition system, so understanding how they work should help you understand
better what exactly, for instance, invoking a restart is doing.8

CATCH and THROW are another pair of special operators that can force the stack
to unwind. You’ll use these operators even less often than the others mentioned
so far--they’re holdovers from earlier Lisp dialects that didn’t have Common
Lisp’s condition system. They definitely shouldn’t be confused with try/catch
and try/except constructs from languages such as Java and Python.

CATCH and THROW are the dynamic counterparts of BLOCK and RETURN-FROM.
That is, you wrap CATCH around a body of code and then use THROW to cause the
CATCH form to return immediately with a specified value. The difference is that
the association between a CATCH and THROW is established dynamically--instead
of a lexically scoped name, the label for a CATCH is an object, called a catch tag,
and any THROW evaluated within the dynamic extent of the CATCH that throws
that object will unwind the stack back to the CATCH form and cause it to return
immediately. Thus, you can write a version of the foo, bar, and baz functions
from before using CATCH and THROW instead of BLOCK and RETURN-FROM like this:

(defparameter *obj* (cons nil nil)) ; i.e. some arbitrary object

(defun foo ()
(format t "Entering foo~%")
(catch *obj*
(format t " Entering CATCH~%")
(bar)
(format t " Leaving CATCH~%"))

(format t "Leaving foo~%"))

(defun bar ()
(format t " Entering bar~%")
(baz)
(format t " Leaving bar~%"))

(defun baz ()
(format t " Entering baz~%")
(throw *obj* nil)
(format t " Leaving baz~%"))

Notice how it isn’t necessary to pass a closure down the stack--baz can call
THROW directly. The result is quite similar to the earlier version.

CL-USER> (foo)
Entering foo

243

Entering CATCH
Entering bar
Entering baz

Leaving foo
NIL

However, CATCH and THROW are almost too dynamic. In both the CATCH and the
THROW, the tag form is evaluated, which means their values are both determined
at runtime. Thus, if some code in bar reassigned or rebound *obj*, the THROW
in baz wouldn’t throw to the same CATCH. This makes CATCH and THROW much
harder to reason about than BLOCK and RETURN-FROM. The only advantage, which
the version of foo, bar, and baz that use CATCH and THROW demonstrates, is
there’s no need to pass down a closure in order for low-level code to return from
a CATCH--any code that runs within the dynamic extent of a CATCH can cause it
to return by throwing the right object.

In older Lisp dialects that didn’t have anything like Common Lisp’s condition
system, CATCH and THROW were used for error handling. However, to keep them
manageable, the catch tags were usually just quoted symbols, so you could tell
by looking at a CATCH and a THROW whether they would hook up at runtime.
In Common Lisp you’ll rarely have any call to use CATCH and THROW since the
condition system is so much more flexible.

The last special operator related to controlling the stack is another one I’ve
mentioned in passing before--UNWIND-PROTECT. UNWIND-PROTECT lets you control
what happens as the stack unwinds--to make sure that certain code always runs
regardless of how control leaves the scope of the UNWIND-PROTECT, whether by a
normal return, by a restart being invoked, or by any of the ways discussed in
this section.9 The basic skeleton of UNWIND-PROTECT looks like this:

(unwind-protect protected-form
cleanup-form*)

The single protected-form is evaluated, and then, regardless of how it returns,
the cleanup-forms are evaluated. If the protected-form returns normally, then
whatever it returns is returned from the UNWIND-PROTECT after the cleanup forms
run. The cleanup forms are evaluated in the same dynamic environment as the
UNWIND-PROTECT, so the same dynamic variable bindings, restarts, and condition
handlers will be visible to code in cleanup forms as were visible just before the
UNWIND-PROTECT.

You’ll occasionally use UNWIND-PROTECT directly. More often you’ll use it as
the basis for WITH- style macros, similar to WITH-OPEN-FILE, that evaluate any
number of body forms in a context where they have access to some resource
that needs to be cleaned up after they’re done, regardless of whether they
return normally or bail via a restart or other nonlocal exit. For example, if you
were writing a database library that defined functions open-connection and
close-connection, you might write a macro like this:10

244

(defmacro with-database-connection ((var &rest open-args) &body body)
‘(let ((,var (open-connection ,@open-args)))
(unwind-protect (progn ,@body)
(close-connection ,var))))

which lets you write code like this:

(with-database-connection (conn :host "foo" :user "scott" :password "tiger")
(do-stuff conn)
(do-more-stuff conn))

and not have to worry about closing the database connection, since the
UNWIND-PROTECT will make sure it gets closed no matter what happens in the
body of the with-database-connection form.

Multiple Values
Another feature of Common Lisp that I’ve mentioned in passing--in Chapter 11,
when I discussed GETHASH--is the ability for a single form to return multiple values.
I’ll discuss it in greater detail now. It is, however, slightly misplaced in a chapter
on special operators since the ability to return multiple values isn’t provided by
just one or two special operators but is deeply integrated into the language. The
operators you’ll most often use when dealing with multiple values are macros and
functions, not special operators. But it is the case that the basic ability to get at
multiple return values is provided by a special operator, MULTIPLE-VALUE-CALL,
upon which the more commonly used MULTIPLE-VALUE-BIND macro is built.

The key thing to understand about multiple values is that returning multiple
values is quite different from returning a list--if a form returns multiple values,
unless you do something specific to capture the multiple values, all but the
primary value will be silently discarded. To see the distinction, consider the
function GETHASH, which returns two values: the value found in the hash table
and a boolean that’s NIL when no value was found. If it returned those two
values in a list, every time you called GETHASH you’d have to take apart the list
to get at the actual value, regardless of whether you cared about the second
return value. Suppose you have a hash table, *h*, that contains numeric values.
If GETHASH returned a list, you couldn’t write something like this:

(+ (gethash ’a *h*) (gethash ’b *h*))

because + expects its arguments to be numbers, not lists. But because the
multiple value mechanism silently discards the secondary return value when it’s
not wanted, this form works fine.

There are two aspects to using multiple values--returning multiple values and
getting at the nonprimary values returned by forms that return multiple values.
The starting points for returning multiple values are the functions VALUES
and VALUES-LIST. These are regular functions, not special operators, so their
arguments are passed in the normal way. VALUES takes a variable number of

245

arguments and returns them as multiple values; VALUES-LIST takes a single list
and returns its elements as multiple values. In other words:

(values-list x) === (apply #’values x)

The mechanism by which multiple values are returned is implementation depen-
dent just like the mechanism for passing arguments into functions is. Almost all
language constructs that return the value of some subform will "pass through"
multiple values, returning all the values returned by the subform. Thus, a
function that returns the result of calling VALUES or VALUES-LIST will itself
return multiple values--and so will another function whose result comes from
calling the first function. And so on.11

But when a form is evaluated in a value position, only the primary value will
be used, which is why the previous addition form works the way you’d expect.
The special operator MULTIPLE-VALUE-CALL provides the mechanism for getting
your hands on the multiple values returned by a form. MULTIPLE-VALUE-CALL is
similar to FUNCALL except that while FUNCALL is a regular function and, therefore,
can see and pass on only the primary values passed to it, MULTIPLE-VALUE-CALL
passes, to the function returned by its first subform, all the values returned by
the remaining subforms.

(funcall #’+ (values 1 2) (values 3 4)) ==> 4
(multiple-value-call #’+ (values 1 2) (values 3 4)) ==> 10

However, it’s fairly rare that you’ll simply want to pass all the values returned
by a function onto another function. More likely, you’ll want to stash the
multiple values in different variables and then do something with them. The
MULTIPLE-VALUE-BIND macro, which you saw in Chapter 11, is the most fre-
quently used operator for accepting multiple return values. Its skeleton looks
like this:

(multiple-value-bind (variable*) values-form
body-form*)

The values-form is evaluated, and the multiple values it returns are bound to
the variables. Then the body-forms are evaluated with those bindings in effect.
Thus:

(multiple-value-bind (x y) (values 1 2)
(+ x y)) ==> 3

Another macro, MULTIPLE-VALUE-LIST, is even simpler--it takes a single form,
evaluates it, and collects the resulting multiple values into a list. In other words,
it’s the inverse of VALUES-LIST.

CL-USER> (multiple-value-list (values 1 2))
(1 2)
CL-USER> (values-list (multiple-value-list (values 1 2)))
1
2

246

However, if you find yourself using MULTIPLE-VALUE-LIST a lot, it may be a sign
that some function should be returning a list to start with rather than multiple
values.

Finally, if you want to assign multiple values returned by a form to existing
variables, you can use VALUES as a SETFable place. For example:

CL-USER> (defparameter *x* nil)
X
CL-USER> (defparameter *y* nil)
Y
CL-USER> (setf (values *x* *y*) (floor (/ 57 34)))
1
23/34
CL-USER> *x*
1
CL-USER> *y*
23/34

EVAL-WHEN
A special operator you’ll need to understand in order to write certain kinds of
macros is EVAL-WHEN. For some reason, Lisp books often treat EVAL-WHEN as a
wizards-only topic. But the only prerequisite to understanding EVAL-WHEN is an
understanding of how the two functions LOAD and COMPILE-FILE interact. And
understanding EVAL-WHEN will be important as you start writing certain kinds of
more sophisticated macros, such as the ones you’ll write in Chapters 24 and 31.

I’ve touched briefly on the relation between LOAD and COMPILE-FILE in previous
chapters, but it’s worth reviewing again here. The job of LOAD is to load a file
and evaluate all the top-level forms it contains. The job of COMPILE-FILE is to
compile a source file into a FASL file, which can then be loaded with LOAD such
that (load "foo.lisp") and (load "foo.fasl") are essentially equivalent.

Because LOAD evaluates each form before reading the next, the side effects of
evaluating forms earlier in the file can affect how forms later in the form are read
and evaluated. For instance, evaluating an IN-PACKAGE form changes the value
of *PACKAGE*, which will affect the way subsequent forms are read.12 Similarly,
a DEFMACRO form early in a file can define a macro that can then be used by
code later in the file.13

COMPILE-FILE, on the other hand, normally doesn’t evaluate the forms it’s
compiling; it’s when the FASL is loaded that the forms--or their compiled
equivalents--will be evaluated. However, COMPILE-FILE must evaluate some
forms, such as IN-PACKAGE and DEFMACRO forms, in order to keep the behavior
of (load "foo.lisp") and (load "foo.fasl") consistent.

So how do macros such as IN-PACKAGE and DEFMACRO work when processed by
COMPILE-FILE? In some pre-Common Lisp versions of Lisp, the file compiler

247

simply knew it should evaluate certain macros in addition to compiling them.
Common Lisp avoided the need for such kludges by borrowing the EVAL-WHEN
special operator from Maclisp. This operator, as its name suggests, allows you to
control when specific bits of code are evaluated. The skeleton of an EVAL-WHEN
form looks like this:

(eval-when (situation*)
body-form*)

There are three possible situations--:compile-toplevel, :load-toplevel, and
:execute--and which ones you specify controls when the body-forms will be eval-
uated. An EVAL-WHEN with multiple situations is equivalent to several EVAL-WHEN
forms, one per situation, each with the same body code. To explain the meaning
of the three situations, I’ll need to explain a bit about how COMPILE-FILE, which
is also referred to as the file compiler, goes about compiling a file.

To explain how COMPILE-FILE compiles EVAL-WHEN forms, I need to introduce a
distinction between compiling top-level forms and compiling non-top-level forms.
A top-level form is, roughly speaking, one that will be compiled into code that
will be run when the FASL is loaded. Thus, all forms that appear directly at the
top level of a source file are compiled as top-level forms. Similarly, any forms
appearing directly in a top-level PROGN are compiled as top-level forms since the
PROGN itself doesn’t do anything--it just groups together its subforms, which
will be run when the FASL is loaded.14 Similarly, forms appearing directly in
a MACROLET or SYMBOL-MACROLET are compiled as top-level forms because after
the compiler has expanded the local macros or symbol macros, there will be no
remnant of the MACROLET or SYMBOL-MACROLET in the compiled code. Finally,
the expansion of a top-level macro form will be compiled as a top-level form.

Thus, a DEFUN appearing at the top level of a source file is a top-level form--the
code that defines the function and associates it with its name will run when the
FASL is loaded--but the forms within the body of the function, which won’t run
until the function is called, aren’t top-level forms. Most forms are compiled the
same when compiled as top-level and non-top-level forms, but the semantics
of an EVAL-WHEN depend on whether it’s being compiled as a top- level form,
compiled as a non-top-level form, or simply evaluated, combined with what
situations are listed in its situation list.

The situations :compile-toplevel and :load-toplevel control the meaning
of an EVAL-WHEN compiled as a top-level form. When :compile-toplevel is
present, the file compiler will evaluate the subforms at compile time. When
:load-toplevel is present, it will compile the subforms as top-level forms. If
neither of these situations is present in a top-level EVAL-WHEN, the compiler
ignores it.

When an EVAL-WHEN is compiled as a non-top-level form, it’s either compiled like
a PROGN, if the :execute situation is specified, or ignored. Similarly, an evaluated
EVAL-WHEN--which includes top-level EVAL-WHENs in a source file processed by
LOAD and EVAL-WHENs evaluated at compile time because they appear as subforms

248

of a top-level EVAL-WHEN with the :compile-toplevel situation--is treated like
a PROGN if :execute is present and ignored otherwise.

Thus, a macro such as IN-PACKAGE can have the necessary effect at both compile
time and when loading from source by expanding into an EVAL-WHEN like the
following:

(eval-when (:compile-toplevel :load-toplevel :execute)
(setf *package* (find-package "PACKAGE-NAME")))

PACKAGE will be set at compile time because of the :compile-toplevel
situation, set when the FASL is loaded because of :load-toplevel, and set
when the source is loaded because of the :execute.

There are two ways you’re most likely to use EVAL-WHEN. One is if you want to
write macros that need to save some information at compile time to be used
when generating the expansion of other macro forms in the same file. This
typically arises with definitional macros where a definition early in a file can
affect the code generated for a definition later in the same file. You’ll write this
kind of macro in Chapter 24.

The other time you might need EVAL-WHEN is if you want to put the definition of
a macro and helper functions it uses in the same file as code that uses the macro.
DEFMACRO already includes an EVAL-WHEN in its expansion so the macro definition
is immediately available to be used later in the file. But DEFUN normally doesn’t
make function definitions available at compile time. But if you use a macro
in the same file as it’s defined in, you need the macro and any functions it
uses to be defined. If you wrap the DEFUNs of any helper functions used by
the macro in an EVAL-WHEN with :compile-toplevel, the definitions will be
available when the macro’s expansion function runs. You’ll probably want to
include :load-toplevel and :execute as well since the macros will also need
the function definitions after the file is compiled and loaded or if you load the
source instead of compiling.

Other Special Operators
The four remaining special operators, LOCALLY, THE, LOAD-TIME-VALUE, and
PROGV, all allow you to get at parts of the underlying language that can’t be
accessed any other way. LOCALLY and THE are part of Common Lisp’s declaration
system, which is used to communicate things to the compiler that don’t affect the
meaning of your code but that may help the compiler generate better code--faster,
clearer error messages, and so on.15 I’ll discuss declarations briefly in Chapter
32.

The other two, LOAD-TIME-VALUE and PROGV, are infrequently used, and explain-
ing the reason why you might ever want to use them would take longer than
explaining what they do. So I’ll just tell you what they do so you know they’re
there. Someday you’ll hit on one of those rare times when they’re just the thing,
and then you’ll be ready.

249

LOAD-TIME-VALUE is used, as its name suggests, to create a value that’s de-
termined at load time. When the file compiler compiles code that contains a
LOAD-TIME-VALUE form, it arranges to evaluate the first subform once, when the
FASL is loaded, and for the code containing the LOAD-TIME-VALUE form to refer
to that value. In other words, instead of writing this:

(defvar *loaded-at* (get-universal-time))

(defun when-loaded () *loaded-at*)

you can write the following:

(defun when-loaded () (load-time-value (get-universal-time)))

In code not processed by COMPILE-FILE, LOAD-TIME-VALUE is evaluated once
when the code is compiled, which may be when you explicitly compile a func-
tion with COMPILE or earlier because of implicit compilation performed by the
implementation in the course of evaluating the code. In uncompiled code,
LOAD-TIME-VALUE evaluates its form each time it’s evaluated.

Finally, PROGV creates new dynamic bindings for variables whose names are
determined at runtime. This is mostly useful for implementing embedded
interpreters for languages with dynamically scoped variables. The basic skeleton
is as follows:

(progv symbols-list values-list
body-form*)

where symbols-list is a form that evaluates to a list of symbols and values-list is
a form that evaluates to a list of values. Each symbol is dynamically bound to
the corresponding value, and then the body-forms are evaluated. The difference
between PROGV and LET is that because symbols-list is evaluated at runtime, the
names of the variables to bind can be determined dynamically. As I say, this
isn’t something you need to do often.

And that’s it for special operators. In the next chapter, I’ll get back to hard-
nosed practical topics and show you how to use Common Lisp’s package system
to take control of your namespaces so you can write libraries and applications
that can coexist without stomping on each other’s names.

1Of course, if IF wasn’t a special operator but some other conditional form, such
as COND, was, you could build IF as a macro. Indeed, in many Lisp dialects,
starting with McCarthy’s original Lisp, COND was the primitive conditional
evaluation operator.
2Well, technically those constructs could also expand into a LAMBDA expression
since, as I mentioned in Chapter 6, LET could be defined--and was in some earlier
Lisps--as a macro that expands into an invocation of an anonymous function.

250

3Surprising as it may seem, it actually is possible to make anonymous functions
recurse. However, you must use a rather esoteric mechanism known as the Y
combinator. But the Y combinator is an interesting theoretical result, not a
practical programming tool, so is well outside the scope of this book.
4It’s not required that WITH-SLOTS be implemented with SYMBOL-MACROLET--in
some implementations, WITH-SLOTS may walk the code provided and generate
an expansion with x, y, and z already replaced with the appropriate SLOT-VALUE
forms. You can see how your implementation does it by evaluating this form:

(macroexpand-1 ’(with-slots (x y z) obj (list x y z)))

However, walking the body is much easier for the Lisp implementation to do than
for user code; to replace x, y, and z only when they appear in value positions
requires a code walker that understands the syntax of all special operators and
that recursively expands all macro forms in order to determine whether their
expansions include the symbols in value positions. The Lisp implementation
obviously has such a code walker at its disposal, but it’s one of the few parts of
Lisp that’s not exposed to users of the language.
5One version of f2cl is available as part of the Common Lisp Open Code Collection
(CLOCC): http://clocc.sourceforge.net/. By contrast, consider the tricks
the authors of f2j, a FORTRAN-to-Java translator, have to play. Although the
Java Virtual Machine (JVM) has a goto instruction, it’s not directly exposed
in Java. So to compile FORTRAN gotos, they first compile the FORTRAN
code into legal Java source with calls to a dummy class to represent the labels
and gotos. Then they compile the source with a regular Java compiler and
postprocess the byte codes to translate the dummy calls into JVM-level byte
codes. Clever, but what a pain.
6Since this algorithm depends on values returned by RANDOM, you may want to test
it with a consistent random seed, which you can get by binding *RANDOM-STATE*
to the value of (make-random-state nil) around each call to algorithm-s.
For instance, you can do a basic sanity check of algorithm-s by evaluating this:

(let ((*random-state* (make-random-state nil))) (algorithm-s 10 200))

If your refactorings are all valid, this expression should evaluate to the same list
each time.
7This is a pretty reasonable restriction--it’s not entirely clear what it’d mean to
return from a form that has already returned--unless, of course, you’re a Scheme
programmer. Scheme supports continuations, a language construct that makes
it possible to return from the same function call more than once. But for a
variety of reasons, few, if any, languages other than Scheme support this kind of
continuation.
8If you’re the kind of person who likes to know how things work all the way
down to the bits, it may be instructive to think about how you might implement

251

the condition system’s macros using BLOCK, TAGBODY, closures, and dynamic
variables.
9UNWIND-PROTECT is essentially equivalent to try/finally constructs in Java
and Python.
10And indeed, CLSQL, the multi-Lisp, multidatabase SQL interface library,
provides a similar macro called with-database. CLSQL’s home page is at
http://clsql.b9.com.
11A small handful of macros don’t pass through extra return values of the forms
they evaluate. In particular, the PROG1 macro, which evaluates a number of
forms like a PROGN before returning the value of the first form, returns that
form’s primary value only. Likewise, PROG2, which returns the value of the
second of its subforms, returns only the primary value. The special operator
MULTIPLE-VALUE-PROG1 is a variant of PROG1 that returns all the values returned
by the first form. It’s a minor wart that PROG1 doesn’t already behave like
MULTIPLE-VALUE-PROG1, but neither is used often enough that it matters much.
The OR and COND macros are also not always transparent to multiple values,
returning only the primary value of certain subforms.
12The reason loading a file with an IN-PACKAGE form in it has no effect on the
value of *PACKAGE* after LOAD returns is because LOAD binds *PACKAGE* to its
current value before doing anything else. In other words, something equivalent
to the following LET is wrapped around the rest of the code in LOAD:

(let ((*package* *package*)) ...)

Any assignment to *PACKAGE* will be to the new binding, and the old binding
will be restored when LOAD returns. It also binds the variable *READTABLE*,
which I haven’t discussed, in the same way.
13In some implementations, you may be able to get away with evaluating DEFUNs
that use undefined macros in the function body as long as the macros are defined
before the function is actually called. But that works, if at all, only when
LOADing the definitions from source, not when compiling with COMPILE-FILE, so
in general macro definitions must be evaluated before they’re used.
14By contrast, the subforms in a top-level LET aren’t compiled as top-level forms
because they’re not run directly when the FASL is loaded. They will run, but
it’s in the runtime context of the bindings established by the LET. Theoretically,
a LET that binds no variables could be treated like a PROGN, but it’s not--the
forms appearing in a LET are never treated as top-level forms.
15The one declaration that has an effect on the semantics of a program is the
SPECIAL declaration mentioned in Chapter 6.

Copyright © 2003-2005, Peter Seibel

252

21. Programming in the Large: Packages and
Symbols
In Chapter 4 I discussed how the Lisp reader translates textual names into
objects to be passed to the evaluator, representing them with a kind of object
called a symbol. It turns out that having a built-in data type specifically for
representing names is quite handy for a lot of kinds of programming.1 That,
however, isn’t the topic of this chapter. In this chapter I’ll discuss one of the
more immediate and practical aspects of dealing with names: how to avoid name
conflicts between independently developed pieces of code.

Suppose, for instance, you’re writing a program and decide to use a third-party
library. You don’t want to have to know the name of every function, variable,
class, or macro used in the internals of that library in order to avoid conflicts
between those names and the names you use in your program. You’d like for
most of the names in the library and the names in your program to be considered
distinct even if they happen to have the same textual representation. At the same
time, you’d like certain names defined in the library to be readily accessible--the
names that make up its public API, which you’ll want to use in your program.

In Common Lisp, this namespace problem boils down to a question of controlling
how the reader translates textual names into symbols: if you want two occurrences
of the same name to be considered the same by the evaluator, you need to make
sure the reader uses the same symbol to represent each name. Conversely, if you
want two names to be considered distinct, even if they happen to have the same
textual name, you need the reader to create different symbols to represent each
name.

How the Reader Uses Packages
In Chapter 4 I discussed briefly how the Lisp reader translates names into
symbols, but I glossed over most of the details--now it’s time to take a closer
look at what actually happens.

I’ll start by describing the syntax of names understood by the reader and how
that syntax relates to packages. For the moment you can think of a package
as a table that maps strings to symbols. As you’ll see in the next section, the
actual mapping is slightly more flexible than a simple lookup table but not in
ways that matter much to the reader. Each package also has a name, which can
be used to find the package using the function FIND-PACKAGE.

The two key functions that the reader uses to access the name-to-symbol mappings
in a package are FIND-SYMBOL and INTERN. Both these functions take a string
and, optionally, a package. If not supplied, the package argument defaults to
the value of the global variable *PACKAGE*, also called the current package.

FIND-SYMBOL looks in the package for a symbol with the given string for a name
and returns it, or NIL if no symbol is found. INTERN also will return an existing

253

symbol; otherwise it creates a new symbol with the string as its name and adds
it to the package.

Most names you use are unqualified, names that contain no colons. When
the reader reads such a name, it translates it to a symbol by converting any
unescaped letters to uppercase and passing the resulting string to INTERN. Thus,
each time the reader reads the same name in the same package, it’ll get the same
symbol object. This is important because the evaluator uses the object identity
of symbols to determine which function, variable, or other program element a
given symbol refers to. Thus, the reason an expression such as (hello-world)
results in calling a particular hello-world function is because the reader returns
the same symbol when it reads the function call as it did when it read the DEFUN
form that defined the function.

A name containing either a single colon or a double colon is a package-qualified
name. When the reader reads a package-qualified name, it splits the name on
the colon(s) and uses the first part as the name of a package and the second
part as the name of the symbol. The reader looks up the appropriate package
and uses it to translate the symbol name to a symbol object.

A name containing only a single colon must refer to an external symbol--one
the package exports for public use. If the named package doesn’t contain a
symbol with a given name, or if it does but it hasn’t been exported, the reader
signals an error. A double-colon name can refer to any symbol from the named
package, though it’s usually a bad idea--the set of exported symbols defines a
package’s public interface, and if you don’t respect the package author’s decision
about what names to make public and which ones to keep private, you’re asking
for trouble down the road. On the other hand, sometimes a package author
will neglect to export a symbol that really ought to be public. In that case, a
double-colon name lets you get work done without having to wait for the next
version of the package to be released.

Two other bits of symbol syntax the reader understands are those for keyword
symbols and uninterned symbols. Keyword symbols are written with names
starting with a colon. Such symbols are interned in the package named KEYWORD
and automatically exported. Additionally, when the reader interns a symbol in
the KEYWORD, it also defines a constant variable with the symbol as both its name
and value. This is why you can use keywords in argument lists without quoting
them--when they appear in a value position, they evaluate to themselves. Thus:

(eql ’:foo :foo) ==> T

The names of keyword symbols, like all symbols, are converted to all uppercase
by the reader before they’re interned. The name doesn’t include the leading
colon.

(symbol-name :foo) ==> "FOO"

Uninterned symbols are written with a leading #:. These names (minus the #:)
are converted to uppercase as normal and then translated into symbols, but the

254

symbols aren’t interned in any package; each time the reader reads a #: name,
it creates a new symbol. Thus:

(eql ’#:foo ’#:foo) ==> NIL

You’ll rarely, if ever, write this syntax yourself, but will sometimes see it when
you print an s-expression containing symbols returned by the function GENSYM.

(gensym) ==> #:G3128

A Bit of Package and Symbol Vocabulary
As I mentioned previously, the mapping from names to symbols implemented by
a package is slightly more flexible than a simple lookup table. At its core, every
package contains a name-to-symbol lookup table, but a symbol can be made
accessible via an unqualified name in a given package in other ways. To talk
sensibly about these other mechanisms, you’ll need a little bit of vocabulary.

To start with, all the symbols that can be found in a given package using
FIND-SYMBOL are said to be accessible in that package. In other words, the
accessible symbols in a package are those that can be referred to with unqualified
names when the package is current.

A symbol can be accessible in two ways. The first is for the package’s name-to-
symbol table to contain an entry for the symbol, in which case the symbol is
said to be present in the package. When the reader interns a new symbol in
a package, it’s added to the package’s name-to-symbol table. The package in
which a symbol is first interned is called the symbol’s home package.

The other way a symbol can be accessible in a package is if the package inherits
it. A package inherits symbols from other packages by using the other packages.
Only external symbols in the used packages are inherited. A symbol is made
external in a package by exporting it. In addition to causing it to be inherited
by using packages, exporting a symbol also--as you saw in the previous section--
makes it possible to refer to the symbol using a single-colon qualified name.

To keep the mappings from names to symbols deterministic, the package system
allows only one symbol to be accessible in a given package for each name. That
is, a package can’t have a present symbol and an inherited symbol with the
same name or inherit two different symbols, from different packages, with the
same name. However, you can resolve conflicts by making one of the accessible
symbols a shadowing symbol, which makes the other symbols of the same name
inaccessible. In addition to its name-to-symbol table, each package maintains a
list of shadowing symbols.

An existing symbol can be imported into another package by adding it to the
package’s name-to-symbol table. Thus, the same symbol can be present in
multiple packages. Sometimes you’ll import symbols simply because you want
them to be accessible in the importing package without using their home package.
Other times you’ll import a symbol because only present symbols can be exported

255

or be shadowing symbols. For instance, if a package needs to use two packages
that have external symbols of the same name, one of the symbols must be
imported into the using package in order to be added to its shadowing list and
make the other symbol inaccessible.

Finally, a present symbol can be uninterned from a package, which causes it to
be removed from the name-to-symbol table and, if it’s a shadowing symbol, from
the shadowing list. You might unintern a symbol from a package to resolve a
conflict between the symbol and an external symbol from a package you want to
use. A symbol that isn’t present in any package is called an uninterned symbol,
can no longer be read by the reader, and will be printed using the #:foo syntax.

Three Standard Packages
In the next section I’ll show you how to define your own packages, including
how to make one package use another and how to export, shadow, and import
symbols. But first let’s look at a few packages you’ve been using already. When
you first start Lisp, the value of *PACKAGE* is typically the COMMON-LISP-USER
package, also known as CL-USER.2 CL-USER uses the package COMMON-LISP, which
exports all the names defined by the language standard. Thus, when you type an
expression at the REPL, all the names of standard functions, macros, variables,
and so on, will be translated to the symbols exported from COMMON-LISP, and all
other names will be interned in the COMMON-LISP-USER package. For example,
the name *PACKAGE* is exported from COMMON-LISP--if you want to see the value
of *PACKAGE*, you can type this:

CL-USER> *package*
#<The COMMON-LISP-USER package>

because COMMON-LISP-USER uses COMMON-LISP. Or you can use a package-
qualified name.

CL-USER> common-lisp:*package*
#<The COMMON-LISP-USER package>

You can even use COMMON-LISP’s nickname, CL.

CL-USER> cl:*package*
#<The COMMON-LISP-USER package>

But *X* isn’t a symbol in COMMON-LISP, so you if type this:

CL-USER> (defvar *x* 10)
X

the reader reads DEFVAR as the symbol from the COMMON-LISP package and *X*
as a symbol in COMMON-LISP-USER.

The REPL can’t start in the COMMON-LISP package because you’re not allowed to
intern new symbols in it; COMMON-LISP-USER serves as a "scratch" package where
you can create your own names while still having easy access to all the symbols

256

in COMMON-LISP.3 Typically, all packages you’ll define will also use COMMON-LISP,
so you don’t have to write things like this:

(cl:defun (x) (cl:+ x 2))

The third standard package is the KEYWORD package, the package the Lisp reader
uses to intern names starting with colon. Thus, you can also refer to any keyword
symbol with an explicit package qualification of keyword like this:

CL-USER> :a
:A
CL-USER> keyword:a
:A
CL-USER> (eql :a keyword:a)
T

Defining Your Own Packages
Working in COMMON-LISP-USER is fine for experiments at the REPL, but once
you start writing actual programs you’ll want to define new packages so different
programs loaded into the same Lisp environment don’t stomp on each other’s
names. And when you write libraries that you intend to use in different contexts,
you’ll want to define separate packages and then export the symbols that make
up the libraries’ public APIs.

However, before you start defining packages, it’s important to understand one
thing about what packages do not do. Packages don’t provide direct control
over who can call what function or access what variable. They provide you with
basic control over namespaces by controlling how the reader translates textual
names into symbol objects, but it isn’t until later, in the evaluator, that the
symbol is interpreted as the name of a function or variable or whatever else.
Thus, it doesn’t make sense to talk about exporting a function or a variable from
a package. You can export symbols to make certain names easier to refer to, but
the package system doesn’t allow you to restrict how those names are used.4

With that in mind, you can start looking at how to define packages and tie them
together. You define new packages with the macro DEFPACKAGE, which allows
you to not only create the package but to specify what packages it uses, what
symbols it exports, and what symbols it imports from other packages and to
resolve conflicts by creating shadowing symbols.5

I’ll describe the various options in terms of how you might use packages while
writing a program that organizes e-mail messages into a searchable database.
The program is purely hypothetical, as are the libraries I’ll refer to--the point is
to look at how the packages used in such a program might be structured.

The first package you’d need is one to provide a namespace for the application--
you want to be able to name your functions, variables, and so on, without having

257

to worry about name collisions with unrelated code. So you’d define a new
package with DEFPACKAGE.

If the application is simple enough to be written with no libraries beyond the
facilities provided by the language itself, you could define a simple package like
this:

(defpackage :com.gigamonkeys.email-db
(:use :common-lisp))

This defines a package, named COM.GIGAMONKEYS.EMAIL-DB, that inherits all
the symbols exported by the COMMON-LISP package.6

You actually have several choices of how to represent the names of packages
and, as you’ll see, the names of symbols in a DEFPACKAGE. Packages and symbols
are named with strings. However, in a DEFPACKAGE form, you can specify the
names of packages and symbols with string designators. A string designator is
either a string, which designates itself; a symbol, which designates its name; or a
character, which designates a one-character string containing just the character.
Using keyword symbols, as in the previous DEFPACKAGE, is a common style that
allows you to write the names in lowercase--the reader will convert the names to
uppercase for you. You could also write the DEFPACKAGE with strings, but then
you have to write them in all uppercase, because the true names of most symbols
and packages are in fact uppercase because of the case conversion performed by
the reader.7

(defpackage "COM.GIGAMONKEYS.EMAIL-DB"
(:use "COMMON-LISP"))

You could also use nonkeyword symbols--the names in DEFPACKAGE aren’t
evaluated--but then the very act of reading the DEFPACKAGE form would cause
those symbols to be interned in the current package, which at the very least will
pollute that namespace and may also cause problems later if you try to use the
package.8

To read code in this package, you need to make it the current package with the
IN-PACKAGE macro:

(in-package :com.gigamonkeys.email-db)

If you type this expression at the REPL, it will change the value of *PACKAGE*,
affecting how the REPL reads subsequent expressions, until you change it with
another call to IN-PACKAGE. Similarly, if you include an IN-PACKAGE in a file
that’s loaded with LOAD or compiled with COMPILE-FILE, it will change the
package, affecting the way subsequent expressions in the file are read.9

With the current package set to the COM.GIGAMONKEYS.EMAIL-DB package, other
than names inherited from the COMMON-LISP package, you can use any name you
want for whatever purpose you want. Thus, you could define a new hello-world
function that could coexist with the hello-world function previously defined in
COMMON-LISP-USER. Here’s the behavior of the existing function:

258

CL-USER> (hello-world)
hello, world
NIL

Now you can switch to the new package using IN-PACKAGE.10 Notice how the
prompt changes--the exact form is determined by the development environment,
but in SLIME the default prompt consists of an abbreviated version of the
package name.

CL-USER> (in-package :com.gigamonkeys.email-db)
#<The COM.GIGAMONKEYS.EMAIL-DB package>
EMAIL-DB>

You can define a new hello-world in this package:

EMAIL-DB> (defun hello-world () (format t "hello from EMAIL-DB package~%"))
HELLO-WORLD

And test it, like this:

EMAIL-DB> (hello-world)
hello from EMAIL-DB package
NIL

Now switch back to CL-USER.

EMAIL-DB> (in-package :cl-user)
#<The COMMON-LISP-USER package>
CL-USER>

And the old function is undisturbed.

CL-USER> (hello-world)
hello, world
NIL

Packaging Reusable Libraries
While working on the e-mail database, you might write several functions related
to storing and retrieving text that don’t have anything in particular to do with
e-mail. You might realize that those functions could be useful in other programs
and decide to repackage them as a library. You should define a new package, but
this time you’ll export certain names to make them available to other packages.

(defpackage :com.gigamonkeys.text-db
(:use :common-lisp)
(:export :open-db

:save
:store))

Again, you use the COMMON-LISP package, because you’ll need access to stan-
dard functions within COM.GIGAMONKEYS.TEXT-DB. The :export clause specifies

259

names that will be external in COM.GIGAMONKEYS.TEXT-DB and thus accessible
in packages that :use it. Therefore, after you’ve defined this package, you can
change the definition of the main application package to the following:

(defpackage :com.gigamonkeys.email-db
(:use :common-lisp :com.gigamonkeys.text-db))

Now code written in COM.GIGAMONKEYS.EMAIL-DB can use unqualified
names to refer to the exported symbols from both COMMON-LISP and
COM.GIGAMONKEYS.TEXT-DB. All other names will continue to be interned
directly in the COM.GIGAMONKEYS.EMAIL-DB package.

Importing Individual Names
Now suppose you find a third-party library of functions for manipulating e-
mail messages. The names used in the library’s API are exported from the
package COM.ACME.EMAIL, so you could :use that package to get easy access to
those names. But suppose you need to use only one function from this library,
and other exported symbols conflict with names you already use (or plan to
use) in our own code.11 In this case, you can import the one symbol you need
with an :import-from clause in the DEFPACKAGE. For instance, if the name of
the function you want to use is parse-email-address, you can change the
DEFPACKAGE to this:

(defpackage :com.gigamonkeys.email-db
(:use :common-lisp :com.gigamonkeys.text-db)
(:import-from :com.acme.email :parse-email-address))

Now anywhere the name parse-email-address appears in code read in the
COM.GIGAMONKEYS.EMAIL-DB package, it will be read as the symbol from
COM.ACME.EMAIL. If you need to import more than one symbol from a single
package, you can include multiple names after the package name in a single
:import-from clause. A DEFPACKAGE can also include multiple :import-from
clauses in order to import symbols from different packages.

Occasionally you’ll run into the opposite situation--a package may export a
bunch of names you want to use and a few you don’t. Rather than listing all the
symbols you do want to use in an :import-from clause, you can instead :use
the package and then list the names you don’t want to inherit in a :shadow
clause. For instance, suppose the COM.ACME.TEXT package exports a bunch of
names of functions and classes used in text processing. Further suppose that
most of these functions and classes are ones you’ll want to use in your code, but
one of the names, build-index, conflicts with a name you’ve already used. You
can make the build-index from COM.ACME.TEXT inaccessible by shadowing it.

(defpackage :com.gigamonkeys.email-db
(:use
:common-lisp
:com.gigamonkeys.text-db

260

:com.acme.text)
(:import-from :com.acme.email :parse-email-address)
(:shadow :build-index))

The :shadow clause causes a new symbol named BUILD-INDEX to be created and
added directly to COM.GIGAMONKEYS.EMAIL-DB’s name-to-symbol map. Now if
the reader reads the name BUILD-INDEX, it will translate it to the symbol in
COM.GIGAMONKEYS.EMAIL-DB’s map, rather than the one that would otherwise
be inherited from COM.ACME.TEXT. The new symbol is also added to a shad-
owing symbols list that’s part of the COM.GIGAMONKEYS.EMAIL-DB package, so
if you later use another package that also exports a BUILD-INDEX symbol, the
package system will know there’s no conflict--that you want the symbol from
COM.GIGAMONKEYS.EMAIL-DB to be used rather than any other symbols with the
same name inherited from other packages.

A similar situation can arise if you want to use two packages that export
the same name. In this case the reader won’t know which inherited name
to use when it reads the textual name. In such situations you must resolve
the ambiguity by shadowing the conflicting names. If you don’t need to use
the name from either package, you could shadow the name with a :shadow
clause, creating a new symbol with the same name in your package. But
if you actually want to use one of the inherited symbols, then you need
to resolve the ambiguity with a :shadowing-import-from clause. Like an
:import-from clause, a :shadowing-import-from clause consists of a pack-
age name followed by the names to import from that package. For instance, if
COM.ACME.TEXT exports a name SAVE that conflicts with the name exported from
COM.GIGAMONKEYS.TEXT-DB, you could resolve the ambiguity with the following
DEFPACKAGE:

(defpackage :com.gigamonkeys.email-db
(:use
:common-lisp
:com.gigamonkeys.text-db
:com.acme.text)
(:import-from :com.acme.email :parse-email-address)
(:shadow :build-index)
(:shadowing-import-from :com.gigamonkeys.text-db :save))

Packaging Mechanics
That covers the basics of how to use packages to manage namespaces in several
common situations. However, another level of how to use packages is worth
discussing--the raw mechanics of how to organize code that uses different packages.
In this section I’ll discuss a few rules of thumb about how to organize code--where
to put your DEFPACKAGE forms relative to the code that uses your packages via
IN-PACKAGE.

Because packages are used by the reader, a package must be defined be-

261

fore you can LOAD or COMPILE-FILE a file that contains an IN-PACKAGE
expression switching to that package. Packages also must be defined before
other DEFPACKAGE forms can refer to them. For instance, if you’re going
to :use COM.GIGAMONKEYS.TEXT-DB in COM.GIGAMONKEYS.EMAIL-DB, then
COM.GIGAMONKEYS.TEXT-DB’s DEFPACKAGE must be evaluated before the
DEFPACKAGE of COM.GIGAMONKEYS.EMAIL-DB.

The best first step toward making sure packages exist when they need to is
to put all your DEFPACKAGEs in files separate from the code that needs to be
read in those packages. Some folks like to create a foo-package.lisp file for
each individual package, and others create a single packages.lisp that contains
all the DEFPACKAGE forms for a group of related packages. Either approach
is reasonable, though the one-file-per-package approach also requires that you
arrange to load the individual files in the right order according to the interpackage
dependencies.

Either way, once all the DEFPACKAGE forms have been separated from the code
that will be read in the packages they define, you can arrange to LOAD the files
containing the DEFPACKAGEs before you compile or load any of the other files.
For simple programs you can do this by hand: simply LOAD the file or files
containing the DEFPACKAGE forms, possibly compiling them with COMPILE-FILE
first. Then LOAD the files that use those packages, again optionally compiling
them first with COMPILE-FILE. Note, however, that the packages don’t exist
until you LOAD the package definitions, either the source or the files produced
by COMPILE-FILE. Thus, if you’re compiling everything, you must still LOAD all
the package definitions before you can COMPILE-FILE any files to be read in the
packages.

Doing these steps by hand will get tedious after a while. For simple programs
you can automate the steps by writing a file, load.lisp, that contains the
appropriate LOAD and COMPILE-FILE calls in the right order. Then you can just
LOAD that file. For more complex programs you’ll want to use a system definition
facility to manage loading and compiling files in the right order.12

The other key rule of thumb is that each file should contain exactly one
IN-PACKAGE form, and it should be the first form in the file other than com-
ments. Files containing DEFPACKAGE forms should start with (in-package
"COMMON-LISP-USER"), and all other files should contain an IN-PACKAGE of one
of your packages.

If you violate this rule and switch packages in the middle of a file, you’ll confuse
human readers who don’t notice the second IN-PACKAGE. Also, many Lisp devel-
opment environments, particularly Emacs-based ones such as SLIME, look for
an IN-PACKAGE to determine the package they should use when communicating
with Common Lisp. Multiple IN-PACKAGE forms per file may confuse these tools
as well.

On the other hand, it’s fine to have multiple files read in the same package,
each with an identical IN-PACKAGE form. It’s just a matter of how you like to

262

organize your code.

The other bit of packaging mechanics has to do with how to name packages.
Package names live in a flat namespace--package names are just strings, and
different packages must have textually distinct names. Thus, you have to consider
the possibility of conflicts between package names. If you’re using only packages
you developed yourself, then you can probably get away with using short names
for your packages. But if you’re planning to use third-party libraries or to publish
your code for use by other programmers, then you need to follow a naming
convention that will minimize the possibility of name collisions between different
packages. Many Lispers these days are adopting Java-style names, like the ones
used in this chapter, consisting of a reversed Internet domain name followed by
a dot and a descriptive string.

Package Gotchas
Once you’re familiar with packages, you won’t spend a bunch of time thinking
about them. There’s just not that much to them. However, a couple of gotchas
that bite most new Lisp programmers make the package system seem more
complicated and unfriendly than it really is.

The number-one gotcha arises most commonly when playing around at the REPL.
You’ll be looking at some library that defines certain interesting functions. You’ll
try to call one of the functions like this:

CL-USER> (foo)

and get dropped into the debugger with this error:

attempt to call ‘FOO’ which is an undefined function.
[Condition of type UNDEFINED-FUNCTION]

Restarts:
0: [TRY-AGAIN] Try calling FOO again.
1: [RETURN-VALUE] Return a value instead of calling FOO.
2: [USE-VALUE] Try calling a function other than FOO.
3: [STORE-VALUE] Setf the symbol-function of FOO and call it again.
4: [ABORT] Abort handling SLIME request.
5: [ABORT] Abort entirely from this (lisp) process.

Ah, of course--you forgot to use the library’s package. So you quit the debugger
and try to USE-PACKAGE the library’s package in order to get access to the name
FOO so you can call the function.

CL-USER> (use-package :foolib)

But that drops you back into the debugger with this error message:

Using package ‘FOOLIB’ results in name conflicts for these symbols: FOO
[Condition of type PACKAGE-ERROR]

263

Restarts:
0: [CONTINUE] Unintern the conflicting symbols from the ‘COMMON-LISP-USER’ package.
1: [ABORT] Abort handling SLIME request.
2: [ABORT] Abort entirely from this (lisp) process.

Huh? The problem is the first time you called foo, the reader read the name foo
and interned it in CL-USER before the evaluator got hold of it and discovered that
this newly interned symbol isn’t the name of a function. This new symbol then
conflicts with the symbol of the same name exported from the FOOLIB package.
If you had remembered to USE-PACKAGE FOOLIB before you tried to call foo,
the reader would have read foo as the inherited symbol and not interned a foo
symbol in CL-USER.

However, all isn’t lost, because the first restart offered by the debugger will
patch things up in just the right way: it will unintern the foo symbol from
COMMON-LISP-USER, putting the CL-USER package back to the state it was in
before you called foo, allowing the USE-PACKAGE to proceed and allowing for
the inherited foo to be available in CL-USER.

This kind of problem can also occur when loading and compiling files. For
instance, if you defined a package, MY-APP, for code that was going to use
functions with names from the FOOLIB package, but forgot to :use FOOLIB,
when you compile the files with an (in-package :my-app) in them, the reader
will intern new symbols in MY-APP for the names that were supposed to be read
as symbols from FOOLIB. When you try to run the compiled code, you’ll get
undefined function errors. If you then try to redefine the MY-APP package to
:use FOOLIB, you’ll get the conflicting symbols error. The solution is the same:
select the restart to unintern the conflicting symbols from MY-APP. You’ll then
need to recompile the code in the MY-APP package so it will refer to the inherited
names.

The next gotcha is essentially the reverse of the first gotcha. In this case, you’d
have defined a package--again, let’s say it’s MY-APP--that uses another package,
say, FOOLIB. Now you start writing code in the MY-APP package. Although you
used FOOLIB in order to be able to refer to the foo function, FOOLIB may export
other symbols as well. If you use one of those exported symbols--say, bar--as the
name of a function in your own code, Lisp won’t complain. Instead, the name
of your function will be the symbol exported by FOOLIB, which will clobber the
definition of bar from FOOLIB.

This gotcha is more insidious because it doesn’t cause an error--from the eval-
uator’s point of view it’s just being asked to associate a new function with
an old name, something that’s perfectly legal. It’s suspect only because the
code doing the redefining was read with a different value for *PACKAGE* than
the name’s package. But the evaluator doesn’t necessarily know that. How-
ever, in most Lisps you’ll get an warning about "redefining BAR, originally
defined in?". You should heed those warnings. If you clobber a definition from

264

a library, you can restore it by reloading the library code with LOAD.13

The last package-related gotcha is, by comparison, quite trivial, but it bites
most Lisp programmers at least a few times: you define a package that uses
COMMON-LISP and maybe a few libraries. Then at the REPL you change to that
package to play around. Then you decide to quit Lisp altogether and try to call
(quit). However, quit isn’t a name from the COMMON-LISP package--it’s defined
by the implementation in some implementation-specific package that happens to
be used by COMMON-LISP-USER. The solution is simple--change packages back to
CL-USER to quit. Or use the SLIME REPL shortcut quit, which will also save
you from having to remember that in certain Common Lisp implementations
the function to quit is exit, not quit.

You’re almost done with your tour of Common Lisp. In the next chapter I’ll
discuss the details of the extended LOOP macro. After that, the rest of the book
is devoted to "practicals": a spam filter, a library for parsing binary files, and
various parts of a streaming MP3 server with a Web interface.

1The kind of programming that relies on a symbol data type is called, appro-
priately enough, symbolic computation. It’s typically contrasted to numeric
programming. An example of a primarily symbolic program that all programmers
should be familiar with is a compiler--it treats the text of a program as symbolic
data and translates it into a new form.
2Every package has one official name and zero or more nicknames that can be
used anywhere you need to use the package name, such as in package-qualified
names or to refer to the package in a DEFPACKAGE or IN-PACKAGE form.
3COMMON-LISP-USER is also allowed to provide access to symbols exported by
other implementation-defined packages. While this is intended as a convenience
for the user--it makes implementation-specific functionality readily accessible-
-it can also cause confusion for new Lispers: Lisp will complain about an
attempt to redefine some name that isn’t listed in the language standard. To
see what packages COMMON-LISP-USER inherits symbols from in a particular
implementation, evaluate this expression at the REPL:

(mapcar #’package-name (package-use-list :cl-user))

And to find out what package a symbol came from originally, evaluate this:

(package-name (symbol-package ’some-symbol))

with some-symbol replaced by the symbol in question. For instance:

(package-name (symbol-package ’car)) ==> "COMMON-LISP"
(package-name (symbol-package ’foo)) ==> "COMMON-LISP-USER"

Symbols inherited from implementation-defined packages will return some other
value.

265

4This is different from the Java package system, which provides a namespace for
classes but is also involved in Java’s access control mechanism. The non-Lisp
language with a package system most like Common Lisp’s packages is Perl.
5All the manipulations performed by DEFPACKAGE can also be performed with
functions that man- ipulate package objects. However, since a package generally
needs to be fully defined before it can be used, those functions are rarely used.
Also, DEFPACKAGE takes care of performing all the package manipulations in the
right order--for instance, DEFPACKAGE adds symbols to the shadowing list before
it tries to use the used packages.
6In many Lisp implementations the :use clause is optional if you want only
to :use COMMON-LISP--if it’s omitted, the package will automatically inherit
names from an implementation-defined list of packages that will usually include
COMMON-LISP. However, your code will be more portable if you always explicitly
specify the packages you want to :use. Those who are averse to typing can use
the package’s nickname and write (:use :cl).
7Using keywords instead of strings has another advantage--Allegro provides a
"modern mode" Lisp in which the reader does no case conversion of names and
in which, instead of a COMMON-LISP package with uppercase names, provides a
common-lisp package with lowercase names. Strictly speaking, this Lisp isn’t
a conforming Common Lisp since all the names in the standard are defined to
be uppercase. But if you write your DEFPACKAGE forms using keyword symbols,
they will work both in Common Lisp and in this near relative.
8Some folks, instead of keywords, use uninterned symbols, using the #: syntax.

(defpackage #:com.gigamonkeys.email-db
(:use #:common-lisp))

This saves a tiny bit of memory by not interning any symbols in the keyword
package--the symbol can become garbage after DEFPACKAGE (or the code it
expands into) is done with it. However, the difference is so slight that it really
boils down to a matter of aesthetics.
9The reason to use IN-PACKAGE instead of just SETFing *PACKAGE* is that
IN-PACKAGE expands into code that will run when the file is compiled by
COMPILE-FILE as well as when the file is loaded, changing the way the reader
reads the rest of the file during compilation.
10In the REPL buffer in SLIME you can also change packages with a REPL
shortcut. Type a comma, and then enter change-package at the Command:
prompt.
11During development, if you try to :use a package that exports a symbol with
the same name as a symbol already interned in the using package, Lisp will
signal an error and typically offer you a restart that will unintern the offending
symbol from the using package. For more on this, see the section "Package
Gotchas."

266

12The code for the "Practical" chapters, available from this book’s Web site, uses
the ASDF system definition library. ASDF stands for Another System Definition
Facility.
13Some Common Lisp implementations, such as Allegro and SBCL, provide a
facility for "locking" the symbols in a particular package so they can be used
in defining forms such as DEFUN, DEFVAR, and DEFCLASS only when their home
package is the current package.

Copyright © 2003-2005, Peter Seibel

22. LOOP for Black Belts
In Chapter 7 I briefly discussed the extended LOOP macro. As I mentioned then,
LOOP provides what is essentially a special-purpose language just for writing
iteration constructs.

This might seem like a lot of bother--inventing a whole language just for writing
loops. But if you think about the ways loops are used in programs, it actually
makes a fair bit of sense. Any program of any size at all will contain quite a
number of loops. And while they won’t all be the same, they won’t all be unique
either; patterns will emerge, particularly if you include the code immediately
preceding and following the loops--patterns of how things are set up for the loop,
patterns in what gets done in the loop proper, and patterns in what gets done
after the loop. The LOOP language captures these patterns so you can express
them directly.

The LOOPmacro has a lot of parts--one of the main complaints of LOOP’s detractors
is that it’s too complex. In this chapter, I’ll tackle LOOP head on, giving you a
systematic tour of the various parts and how they fit together.

The Parts of a LOOP
You can do the following in a LOOP:

• Step variables numerically and over various data structures
• Collect, count, sum, minimize, and maximize values seen while looping
• Execute arbitrary Lisp expressions
• Decide when to terminate the loop
• Conditionally do any of these

Additionally, LOOP provides syntax for the following:

• Creating local variables for use within the loop
• Specifying arbitrary Lisp expressions to run before and after the loop

proper

The basic structure of a LOOP is a set of clauses, each of which begins with a loop
keyword.1 How each clause is parsed by the LOOP macro depends on the keyword.

267

Some of the main keywords, which you saw in Chapter 7, are for, collecting,
summing, counting, do, and finally.

Iteration Control
Most of the so-called iteration control clauses start with the loop keyword for,
or its synonym as,2 followed by the name of a variable. What follows after the
variable name depends on the type of for clause.

The subclauses of a for clause can iterate over the following:

• Ranges of numbers, up or down, by specified intervals
• The individual items of a list
• The cons cells that make up a list
• The elements of a vector, including subtypes such as strings and bit vectors
• The pairs of a hash table
• The symbols in a package
• The results of repeatedly evaluating a given form

A single loop can have multiple for clauses with each clause naming its own
variable. When a loop has multiple for clauses, the loop terminates as soon as
any for clause reaches its end condition. For instance, the following loop:

(loop
for item in list
for i from 1 to 10
do (something))

will iterate at most ten times but may stop sooner if list contains fewer than
ten items.

Counting Loops
Arithmetic iteration clauses control the number of times the loop body will be
executed by stepping a variable over a range of numbers, executing the body once
per step. These clauses consist of from one to three of the following prepositional
phrases after the for (or as): the from where phrase, the to where phrase, and
the by how much phrase.

The from where phrase specifies the initial value of the clause’s variable. It
consists of one of the prepositions from, downfrom, or upfrom followed by a form,
which supplies the initial value (a number).

The to where phrase specifies a stopping point for the loop and consists of one of
the prepositions to, upto, below, downto, or above followed by a form, which
supplies the stopping point. With upto and downto, the loop body will be
terminated (without executing the body again) when the variable passes the
stopping point; with below and above, it stops one iteration earlier.The by how
much phrase consists of the prepositions by and a form, which must evaluate to

268

a positive number. The variable will be stepped (up or down, as determined by
the other phrases) by this amount on each iteration or by one if it’s omitted.

You must specify at least one of these prepositional phrases. The defaults are to
start at zero, increment the variable by one at each iteration, and go forever or,
more likely, until some other clause terminates the loop. You can modify any or
all of these defaults by adding the appropriate prepositional phrases. The only
wrinkle is that if you want decremental stepping, there’s no default from where
value, so you must specify one with either from or downfrom. So, the following:

(loop for i upto 10 collect i)

collects the first eleven integers (zero to ten), but the behavior of this:

(loop for i downto -10 collect i) ; wrong

is undefined. Instead, you need to write this:

(loop for i from 0 downto -10 collect i)

Also note that because LOOP is a macro, which runs at compile time, it has
to be able to determine the direction to step the variable based solely on the
prepositions--not the values of the forms, which may not be known until runtime.
So, the following:

(loop for i from 10 to 20 ...)

works fine since the default is incremental stepping. But this:

(loop for i from 20 to 10 ...)

won’t know to count down from twenty to ten. Worse yet, it won’t give you
an error--it will just not execute the loop since i is already greater than ten.
Instead, you must write this:

(loop for i from 20 downto 10 ...)

or this:

(loop for i downfrom 20 to 10 ...)

Finally, if you just want a loop that repeats a certain number of times, you can
replace a clause of the following form:

for i from 1 to number-form

with a repeat clause like this:

repeat number-form

These clauses are identical in effect except the repeat clause doesn’t create an
explicit loop variable.

269

Looping Over Collections and Packages
The for clauses for iterating over lists are much simpler than the arithmetic
clauses. They support only two prepositional phrases, in and on.

A phrase of this form:

for var in list-form

steps var over all the elements of the list produced by evaluating list-form.

(loop for i in (list 10 20 30 40) collect i) ==> (10 20 30 40)

Occasionally this clause is supplemented with a by phrase, which specifies a
function to use to move down the list. The default is CDR but can be any function
that takes a list and returns a sublist. For instance, you could collect every other
element of a list with a loop like this:

(loop for i in (list 10 20 30 40) by #’cddr collect i) ==> (10 30)

An on prepositional phrase is used to step var over the cons cells that make up
a list.

(loop for x on (list 10 20 30) collect x) ==> ((10 20 30) (20 30) (30))

This phrase too can take a by preposition:

(loop for x on (list 10 20 30 40) by #’cddr collect x) ==> ((10 20 30 40) (30 40))

Looping over the elements of a vector (which includes strings and bit vectors) is
similar to looping over the elements of a list except the preposition across is
used instead of in.3 For instance:

(loop for x across "abcd" collect x) ==> (#\a #\b #\c #\d)

Iterating over a hash table or package is slightly more complicated because
hash tables and packages have different sets of values you might want to iterate
over--the keys or values in a hash table and the different kinds of symbols in a
package. Both kinds of iteration follow the same pattern. The basic pattern
looks like this:

(loop for var being the things in hash-or-package ...)

For hash tables, the possible values for things are hash-keys and hash-values,
which cause var to be bound to successive values of either the keys or the values
of the hash table. The hash-or-package form is evaluated once to produce a
value, which must be a hash table.

To iterate over a package, things can be symbols, present-symbols, and
external-symbols, which cause var to be bound to each of the symbols acces-
sible in a package, each of the symbols present in a package (in other words,
interned or imported into that package), or each of the symbols that have been
exported from the package. The hash-or-package form is evaluated to produce
the name of a package, which is looked up as if by FIND-PACKAGE or a package

270

object. Synonyms are also available for parts of the for clause. In place of the,
you can use each; you can use of instead of in; and you can write the things in
the singular (for example, hash-key or symbol).

Finally, since you’ll often want both the keys and the values when iterating over
a hash table, the hash table clauses support a using subclause at the end of the
hash table clause.

(loop for k being the hash-keys in h using (hash-value v) ...)
(loop for v being the hash-values in h using (hash-key k) ...)

Both of these loops will bind k to each key in the hash table and v to the
corresponding value. Note that the first element of the using subclause must be
in the singular form.4

Equals-Then Iteration
If none of the other for clauses supports exactly the form of variable stepping
you need, you can take complete control over stepping with an equals-then clause.
This clause is similar to the binding clauses in a DO loop but cast in a more
Algolish syntax. The template is as follows:

(loop for var = initial-value-form [then step-form] ...)

As usual, var is the name of the variable to be stepped. Its initial value is
obtained by evaluating initial-value-form once before the first iteration. In each
subsequent iteration, step-form is evaluated, and its value becomes the new value
of var. With no then part to the clause, the initial-value-form is reevaluated on
each iteration to provide the new value. Note that this is different from a DO
binding clause with no step form.

The step-form can refer to other loop variables, including variables created by
other for clauses later in the loop. For instance:

(loop repeat 5
for x = 0 then y
for y = 1 then (+ x y)
collect y) ==> (1 2 4 8 16)

However, note that each for clause is evaluated separately in the order it appears.
So in the previous loop, on the second iteration x is set to the value of y before
y changes (in other words, 1). But y is then set to the sum of its old value (still
1) and the new value of x. If the order of the for clauses is reversed, the results
change.

(loop repeat 5
for y = 1 then (+ x y)
for x = 0 then y
collect y) ==> (1 1 2 4 8)

271

Often, however, you’ll want the step forms for multiple variables to be evaluated
before any of the variables is given its new value (similar to how DO steps its
variables). In that case, you can join multiple for clauses by replacing all but
the first for with and. You saw this formulation already in the LOOP version of
the Fibonacci computation in Chapter 7. Here’s another variant, based on the
two previous examples:

(loop repeat 5
for x = 0 then y
and y = 1 then (+ x y)
collect y) ==> (1 1 2 3 5)

Local Variables
While the main variables needed within a loop are usually declared implicitly in
for clauses, sometimes you’ll need auxiliary variables, which you can declare
with with clauses.

with var [= value-form]

The name var becomes the name of a local variable that will cease to exist when
the loop finishes. If the with clause contains an = value-form part, the variable
will be initialized, before the first iteration of the loop, to the value of value-form.

Multiple with clauses can appear in a loop; each clause is evaluated independently
in the order it appears and the value is assigned before proceeding to the next
clause, allowing later variables to depend on the value of already declared
variables. Mutually independent variables can be declared in one with clause
with an and between each declaration.

Destructuring Variables
One handy feature of LOOP I haven’t mentioned yet is the ability to destructure
list values assigned to loop variables. This lets you take apart the value of
lists that would otherwise be assigned to a loop variable, similar to the way
DESTRUCTURING-BIND works but a bit less elaborate. Basically, you can replace
any loop variable in a for or with clause with a tree of symbols, and the list value
that would have been assigned to the simple variable will instead be destructured
into variables named by the symbols in the tree. A simple example looks like
this:

CL-USER> (loop for (a b) in ’((1 2) (3 4) (5 6))
do (format t "a: ~a; b: ~a~%" a b))

a: 1; b: 2
a: 3; b: 4
a: 5; b: 6
NIL

272

The tree can also include dotted lists, in which case the name after the dot
acts like a &rest parameter, being bound to a list containing any remaining
elements of the list. This is particularly handy with for/on loops since the value
is always a list. For instance, this LOOP (which I used in Chapter 18 to emit a
comma-delimited list):

(loop for cons on list
do (format t "~a" (car cons))
when (cdr cons) do (format t ", "))

could also be written like this:

(loop for (item . rest) on list
do (format t "~a" item)
when rest do (format t ", "))

If you want to ignore a value in the destructured list, you can use NIL in place
of a variable name.

(loop for (a nil) in ’((1 2) (3 4) (5 6)) collect a) ==> (1 3 5)

If the destructuring list contains more variables than there are values in the
list, the extra variables are set to NIL, making all the variables essentially like
&optional parameters. There isn’t, however, any equivalent to &key parameters.

Value Accumulation
The value accumulation clauses are perhaps the most powerful part of LOOP.
While the iteration control clauses provide a concise syntax for expressing the
basic mechanics of looping, they aren’t dramatically different from the equivalent
mechanisms provided by DO, DOLIST, and DOTIMES.

The value accumulation clauses, on the other hand, provide a concise notation
for a handful of common loop idioms having to do with accumulating values
while looping. Each accumulation clause starts with a verb and follows this
pattern:

verb form [into var]

Each time through the loop, an accumulation clause evaluates form and saves the
value in a manner determined by the verb. With an into subclause, the value
is saved into the variable named by var. The variable is local to the loop, as if
it’d been declared in a with clause. With no into subclause, the accumulation
clause instead accumulates a default value for the whole loop expression.

The possible verbs are collect, append, nconc, count, sum, maximize, and
minimize. Also available as synonyms are the present participle forms:
collecting, appending, nconcing, counting, summing, maximizing, and
minimizing.

273

A collect clause builds up a list containing all the values of form in the order
they’re seen. This is a particularly useful construct because the code you’d have
to write to collect a list in order as efficiently as LOOP does is more painful than
you’d normally write by hand.5 Related to collect are the verbs append and
nconc. These verbs also accumulate values into a list, but they join the values,
which must be lists, into a single list as if by the functions APPEND or NCONC. 6

The remaining accumulation clauses are used to accumulate numeric values.
The verb count counts the number of times form is true, sum collects a running
total of the values of form, maximize collects the largest value seen for form,
and minimize collects the smallest. For instance, suppose you define a variable
random that contains a list of random numbers.

(defparameter *random* (loop repeat 100 collect (random 10000)))

Then the following loop will return a list containing various summary information
about the numbers:

(loop for i in *random*
counting (evenp i) into evens
counting (oddp i) into odds
summing i into total
maximizing i into max
minimizing i into min
finally (return (list min max total evens odds)))

Unconditional Execution
As useful as the value accumulation constructs are, LOOP wouldn’t be a very
good general-purpose iteration facility if there wasn’t a way to execute arbitrary
Lisp code in the loop body.

The simplest way to execute arbitrary code within a loop body is with a do
clause. Compared to the clauses I’ve described so far, with their prepositions
and subclauses, do is a model of Yodaesque simplicity.7 A do clause consists of
the word do (or doing) followed by one or more Lisp forms that are all evaluated
when the do clause is. The do clause ends at the closing parenthesis of the loop
or the next loop keyword.

For instance, to print the numbers from one to ten, you could write this:

(loop for i from 1 to 10 do (print i))

Another, more dramatic, form of immediate execution is a return clause. This
clause consists of the word return followed by a single Lisp form, which is
evaluated, with the resulting value immediately returned as the value of the
loop.

You can also break out of a loop in a do clause using any of Lisp’s normal control
flow operators, such as RETURN and RETURN-FROM. Note that a return clause

274

always returns from the immediately enclosing LOOP expression, while a RETURN
or RETURN-FROM in a do clause can return from any enclosing expression. For
instance, compare the following:

(block outer
(loop for i from 0 return 100) ; 100 returned from LOOP
(print "This will print")
200) ==> 200

to this:

(block outer
(loop for i from 0 do (return-from outer 100)) ; 100 returned from BLOCK
(print "This won’t print")
200) ==> 100

The do and return clauses are collectively called the unconditional execution
clauses.

Conditional Execution
Because a do clause can contain arbitrary Lisp forms, you can use any Lisp
expressions you want, including control constructs such as IF and WHEN. So, the
following is one way to write a loop that prints only the even numbers between
one and ten:

(loop for i from 1 to 10 do (when (evenp i) (print i)))

However, sometimes you’ll want conditional control at the level of loop clauses.
For instance, suppose you wanted to sum only the even numbers between one
and ten using a summing clause. You couldn’t write such a loop with a do
clause because there’d be no way to "call" the sum i in the middle of a regular
Lisp form. In cases like this, you need to use one of LOOP’s own conditional
expressions like this:

(loop for i from 1 to 10 when (evenp i) sum i) ==> 30

LOOP provides three conditional constructs, and they all follow this basic pattern:

conditional test-form loop-clause

The conditional can be if, when, or unless. The test-form is any regular Lisp
form, and loop-clause can be a value accumulation clause (count, collect,
and so on), an unconditional execution clause, or another conditional execution
clause. Multiple loop clauses can be attached to a single conditional by joining
them with and.

As an extra bit of syntactic sugar, within the first loop clause, after the test
form, you can use the variable it to refer to the value returned by the test form.
For instance, the following loop collects the non-NIL values found in some-hash
when looking up the keys in some-list:

275

(loop for key in some-list when (gethash key some-hash) collect it)

A conditional clause is executed each time through the loop. An if or when
clause executes its loop-clause if test-form evaluates to true. An unless reverses
the test, executing loop-clause only when test-form is NIL. Unlike their Common
Lisp namesakes, LOOP’s if and when are merely synonyms--there’s no difference
in their behavior.

All three conditional clauses can also take an else branch, which is followed by
another loop clause or multiple clauses joined by and. When conditional clauses
are nested, the set of clauses connected to an inner conditional clause can be
closed with the word end. The end is optional when not needed to disambiguate
a nested conditional--the end of a conditional clause will be inferred from the
end of the loop or the start of another clause not joined by and.

The following rather silly loop demonstrates the various forms of LOOP condi-
tionals. The update-analysis function will be called each time through the
loop with the latest values of the various variables accumulated by the clauses
within the conditionals.

(loop for i from 1 to 100
if (evenp i)
minimize i into min-even and
maximize i into max-even and
unless (zerop (mod i 4))
sum i into even-not-fours-total

end
and sum i into even-total

else
minimize i into min-odd and
maximize i into max-odd and
when (zerop (mod i 5))
sum i into fives-total

end
and sum i into odd-total

do (update-analysis min-even
max-even
min-odd
max-odd
even-total
odd-total
fives-total
even-not-fours-total))

Setting Up and Tearing Down
One of the key insights the designers of the LOOP language had about actual
loops "in the wild" is that the loop proper is often preceded by a bit of code to

276

set things up and then followed by some more code that does something with the
values computed by the loop. A trivial example, in Perl,8 might look like this:

my $evens_sum = 0;
my $odds_sum = 0;
foreach my $i (@list_of_numbers) {
if ($i % 2) {
$odds_sum += $i;

} else {
$evens_sum += $i;

}
}
if ($evens_sum > $odds_sum) {
print "Sum of evens greater\n";

} else {
print "Sum of odds greater\n";

}

The loop proper in this code is the foreach statement. But the foreach loop
doesn’t stand on its own: the code in the loop body refers to variables declared
in the two lines before the loop.9 And the work the loop does is all for naught
without the if statement after the loop that actually reports the results. In
Common Lisp, of course, the LOOP construct is an expression that returns a
value, so there’s even more often a need to do something after the loop proper,
namely, generate the return value.

So, said the LOOP designers, let’s give a way to include the code that’s really part
of the loop in the loop itself. Thus, LOOP provides two keywords, initially and
finally, that introduce code to be run outside the loop’s main body.

After the initially or finally, these clauses consist of all the Lisp forms up
to the start of the next loop clause or the end of the loop. All the initially
forms are combined into a single prologue, which runs once, immediately after
all the local loop variables are initialized and before the body of the loop. The
finally forms are similarly combined into a epilogue to be run after the last
iteration of the loop body. Both the prologue and epilogue code can refer to
local loop variables.

The prologue is always run, even if the loop body iterates zero times. The loop
can return without running the epilogue if any of the following happens:

• A return clause executes.
• RETURN , RETURN-FROM, or another transfer of control construct is called

from within a Lisp form within the body.10

• The loop is terminated by an always, never, or thereis clause, as I’ll
discuss in the next section.

Within the epilogue code, RETURN or RETURN-FROM can be used to explicitly
provide a return value for the loop. Such an explicit return value will take

277

precedence over any value that might otherwise be provided by an accumulation
or termination test clause.

To allow RETURN-FROM to be used to return from a specific loop (useful when
nesting LOOP expressions), you can name a LOOP with the loop keyword named.
If a named clause appears in a loop, it must be the first clause. For a simple
example, assume lists is a list of lists and you want to find an item that matches
some criteria in one of those nested lists. You could find it with a pair of nested
loops like this:

(loop named outer for list in lists do
(loop for item in list do

(if (what-i-am-looking-for-p item)
(return-from outer item))))

Termination Tests
While the for and repeat clauses provide the basic infrastructure for controlling
the number of iterations, sometimes you’ll need to break out of a loop early.
You’ve already seen how a return clause or a RETURN or RETURN-FROM within
a do clause can immediately terminate the loop; but just as there are common
patterns for accumulating values, there are also common patterns for deciding
when it’s time to bail on a loop. These patterns are supported in LOOP by the
termination clauses, while, until, always, never, and thereis. They all follow
the same pattern.

loop-keyword test-form

All five evaluate test-form each time through the iteration and decide, based on
the resulting value, whether to terminate the loop. They differ in what happens
after they terminate the loop--if they do--and how they decide.

The loop keywords while and until introduce the "mild" termination clauses.
When they decide to terminate the loop, control passes to the epilogue, skipping
the rest of the loop body. The epilogue can then return a value or do whatever
it wants to finish the loop. A while clause terminates the loop the first time the
test form is false; until, conversely, stops it the first time the test form is true.

Another form of mild termination is provided by the LOOP-FINISH macro. This
is a regular Lisp form, not a loop clause, so it can be used anywhere within
the Lisp forms of a do clause. It also causes an immediate jump to the loop
epilogue. It can be useful when the decision to break out of the loop can’t be
easily condensed into a single form that can be used with a while or until
clause.

The other three clauses--always, never, and thereis--terminate the loop with
extreme prejudice; they immediately return from the loop, skipping not only any
subsequent loop clauses but also the epilogue. They also provide a default value
for the loop even when they don’t cause the loop to terminate. However, if the

278

loop is not terminated by one of these termination tests, the epilogue is run and
can return a value other than the default provided by the termination clauses.

Because these clauses provide their own return values, they can’t be combined
with accumulation clauses unless the accumulation clause has an into subclause.
The compiler (or interpreter) should signal an error at compile time if they
are.The always and never clauses return only boolean values, so they’re most
useful when you need to use a loop expression as part of a predicate. You can
use always to check that the test form is true on every iteration of the loop.
Conversely, never tests that the test form evaluates to NIL on every iteration.
If the test form fails (returning NIL in an always clause or non-NIL in a never
clause), the loop is immediately terminated, returning NIL. If the loop runs to
completion, the default value of T is provided.

For instance, if you want to test that all the numbers in a list, numbers, are
even, you can write this:

(if (loop for n in numbers always (evenp n))
(print "All numbers even."))

Equivalently you could write the following:

(if (loop for n in numbers never (oddp n))
(print "All numbers even."))

A thereis clause is used to test whether the test form is ever true. As soon
as the test form returns a non-NIL value, the loop is terminated, returning that
value. If the loop runs to completion, the thereis clause provides a default
return value of NIL.

(loop for char across "abc123" thereis (digit-char-p char)) ==> 1

(loop for char across "abcdef" thereis (digit-char-p char)) ==> NIL

Putting It All Together
Now you’ve seen all the main features of the LOOP facility. You can combine any
of the clauses I’ve discussed as long as you abide by the following rules:

• The named clause, if any, must be the first clause.
• After the named clause come all the initially, with, for, and repeat

clauses.
• Then comes the body clauses: conditional and unconditional execution,

accumulation, and termination test.11

• End with any finally clauses.

The LOOP macro will expand into code that performs the following actions:

• Initializes all local loop variables as declared with with or for clauses as
well as those implicitly created by accumulation clauses. The initial value
forms are evaluated in the order the clauses appear in the loop.

279

• Execute the forms provided by any initially clauses--the prologue--in
the order they appear in the loop.

• Iterate, executing the body of the loop as described in the next paragraph.
• Execute the forms provided by any finally clauses--the epilogue--in the

order they appear in the loop.

While the loop is iterating, the body is executed by first stepping any iteration
control variables and then executing any conditional or unconditional execution,
accumulation, or termination test clauses in the order they appear in the loop
code. If any of the clauses in the loop body terminate the loop, the rest of the
body is skipped and the loop returns, possibly after running the epilogue.

And that’s pretty much all there is to it.12 You’ll use LOOP fairly often in the
code later in this book, so it’s worth having some knowledge of it. Beyond that,
it’s up to you how much you use it.

And with that, you’re ready to dive into the practical chapters that make up
the rest of the book--up first, writing a spam filter.

1The term loop keyword is a bit unfortunate, as loop keywords aren’t keywords in
the normal sense of being symbols in the KEYWORD package. In fact, any symbol,
from any package, with the appropriate name will do; the LOOP macro cares only
about their names. Typically, though, they’re written with no package qualifier
and are thus read (and interned as necessary) in the current package.
2Because one of the goals of LOOP is to allow loop expressions to be written with
a quasi-English syntax, many of the keywords have synonyms that are treated
the same by LOOP but allow some freedom to express things in slightly more
idiomatic English for different contexts.
3You may wonder why LOOP can’t figure out whether it’s looping over a list or
a vector without needing different prepositions. This is another consequence
of LOOP being a macro: the value of the list or vector won’t be known until
runtime, but LOOP, as a macro, has to generate code at compile time. And LOOP’s
designers wanted it to generate extremely efficient code. To be able to generate
efficient code for looping across, say, a vector, it needs to know at compile time
that the value will be a vector at runtime--thus, the different prepositions are
needed.
4Don’t ask me why LOOP’s authors chickened out on the no-parentheses style for
the using subclause.
5The trick is to keep ahold of the tail of the list and add new cons cells by
SETFing the CDR of the tail. A handwritten equivalent of the code generated by
(loop for i upto 10 collect i) would look like this:

(do ((list nil) (tail nil) (i 0 (1+ i)))
((> i 10) list)

(let ((new (cons i nil)))

280

(if (null list)
(setf list new)
(setf (cdr tail) new))

(setf tail new)))

Of course you’ll rarely, if ever, write code like that. You’ll use either LOOP or
(if, for some reason, you don’t want to use LOOP) the standard PUSH/NREVERSE
idiom for collecting values.
6Recall that NCONC is the destructive version of APPEND--it’s safe to use an nconc
clause only if the values you’re collecting are fresh lists that don’t share any
structure with other lists. For instance, this is safe:

(loop for i upto 3 nconc (list i i)) ==> (0 0 1 1 2 2 3 3)

But this will get you into trouble:

(loop for i on (list 1 2 3) nconc i) ==> undefined

The later will most likely get into an infinite loop as the various parts of the list
produced by (list 1 2 3) are destructively modified to point to each other. But
even that’s not guaranteed--the behavior is simply undefined.
7"No! Try not. Do . . . or do not. There is no try." -- Yoda, The Empire Strikes
Back
8I’m not picking on Perl here--this example would look pretty much the same in
any language that bases its syntax on C’s.
9Perl would let you get away with not declaring those variables if your program
didn’t use strict. But you should always use strict in Perl. The equivalent
code in Python, Java, or C would always require the variables to be declared.
10You can cause a loop to finish normally, running the epilogue, from Lisp code
executed as part of the loop body with the local macro LOOP-FINISH.
11Some Common Lisp implementations will let you get away with mixing body
clauses and for clauses, but that’s strictly undefined, and some implementations
will reject such loops.
12The one aspect of LOOP I haven’t touched on at all is the syntax for declaring
the types of loop variables. Of course, I haven’t discussed type declarations
outside of LOOP either. I’ll cover the general topic a bit in Chapter 32. For
information on how they work with LOOP, consult your favorite Common Lisp
reference.

Copyright © 2003-2005, Peter Seibel

281

23. Practical: A Spam Filter
In 2002 Paul Graham, having some time on his hands after selling Viaweb to
Yahoo, wrote the essay "A Plan for Spam"1 that launched a minor revolution
in spam-filtering technology. Prior to Graham’s article, most spam filters were
written in terms of handcrafted rules: if a message has XXX in the subject, it’s
probably a spam; if a message has a more than three or more words in a row in
ALL CAPITAL LETTERS, it’s probably a spam. Graham spent several months
trying to write such a rule-based filter before realizing it was fundamentally a
soul-sucking task.

To recognize individual spam features you have to try to get into
the mind of the spammer, and frankly I want to spend as little time
inside the minds of spammers as possible.

To avoid having to think like a spammer, Graham decided to try distinguishing
spam from nonspam, a.k.a. ham, based on statistics gathered about which words
occur in which kinds of e-mails. The filter would keep track of how often specific
words appear in both spam and ham messages and then use the frequencies
associated with the words in a new message to compute a probability that it
was either spam or ham. He called his approach Bayesian filtering after the
statistical technique that he used to combine the individual word frequencies
into an overall probability.2

The Heart of a Spam Filter
In this chapter, you’ll implement the core of a spam-filtering engine. You
won’t write a soup-to-nuts spam-filtering application; rather, you’ll focus on the
functions for classifying new messages and training the filter.

This application is going to be large enough that it’s worth defining a new package
to avoid name conflicts. For instance, in the source code you can download
from this book’s Web site, I use the package name COM.GIGAMONKEYS.SPAM,
defining a package that uses both the standard COMMON-LISP package and the
COM.GIGAMONKEYS.PATHNAMES package from Chapter 15, like this:

(defpackage :com.gigamonkeys.spam
(:use :common-lisp :com.gigamonkeys.pathnames))

Any file containing code for this application should start with this line:

(in-package :com.gigamonkeys.spam)

You can use the same package name or replace com.gigamonkeys with some
domain you control.3

You can also type this same form at the REPL to switch to this package to test
the functions you write. In SLIME this will change the prompt from CL-USER>
to SPAM> like this:

282

CL-USER> (in-package :com.gigamonkeys.spam)
#<The COM.GIGAMONKEYS.SPAM package>
SPAM>

Once you have a package defined, you can start on the actual code. The main
function you’ll need to implement has a simple job--take the text of a message
as an argument and classify the message as spam, ham, or unsure. You can
easily implement this basic function by defining it in terms of other functions
that you’ll write in a moment.

(defun classify (text)
(classification (score (extract-features text))))

Reading from the inside out, the first step in classifying a message is to extract
features to pass to the score function. In score you’ll compute a value that can
then be translated into one of three classifications--spam, ham, or unsure--by
the function classification. Of the three functions, classification is the
simplest. You can assume score will return a value near 1 if the message is a
spam, near 0 if it’s a ham, and near .5 if it’s unclear.

Thus, you can implement classification like this:

(defparameter *max-ham-score* .4)
(defparameter *min-spam-score* .6)

(defun classification (score)
(cond
((<= score *max-ham-score*) ’ham)
((>= score *min-spam-score*) ’spam)
(t ’unsure)))

The extract-features function is almost as straightforward, though it requires
a bit more code. For the moment, the features you’ll extract will be the words
appearing in the text. For each word, you need to keep track of the number of
times it has been seen in a spam and the number of times it has been seen in
a ham. A convenient way to keep those pieces of data together with the word
itself is to define a class, word-feature, with three slots.

(defclass word-feature ()
((word
:initarg :word
:accessor word
:initform (error "Must supply :word")
:documentation "The word this feature represents.")

(spam-count
:initarg :spam-count
:accessor spam-count
:initform 0
:documentation "Number of spams we have seen this feature in.")

283

(ham-count
:initarg :ham-count
:accessor ham-count
:initform 0
:documentation "Number of hams we have seen this feature in.")))

You’ll keep the database of features in a hash table so you can easily find
the object representing a given feature. You can define a special variable,
feature-database, to hold a reference to this hash table.

(defvar *feature-database* (make-hash-table :test #’equal))

You should use DEFVAR rather than DEFPARAMETER because you don’t want
feature-database to be reset if you happen to reload the file contain-
ing this definition during development--you might have data stored in
feature-database that you don’t want to lose. Of course, that means if you
do want to clear out the feature database, you can’t just reevaluate the DEFVAR
form. So you should define a function clear-database.

(defun clear-database ()
(setf *feature-database* (make-hash-table :test #’equal)))

To find the features present in a given message, the code will need to extract
the individual words and then look up the corresponding word-feature object
in *feature-database*. If *feature-database* contains no such feature, it’ll
need to create a new word-feature to represent the word. You can encapsulate
that bit of logic in a function, intern-feature, that takes a word and returns
the appropriate feature, creating it if necessary.

(defun intern-feature (word)
(or (gethash word *feature-database*)

(setf (gethash word *feature-database*)
(make-instance ’word-feature :word word))))

You can extract the individual words from the message text using a regular
expression. For example, using the Common Lisp Portable Perl-Compatible
Regular Expression (CL-PPCRE) library written by Edi Weitz, you can write
extract-words like this:4

(defun extract-words (text)
(delete-duplicates
(cl-ppcre:all-matches-as-strings "[a-zA-Z]{3,}" text)
:test #’string=))

Now all that remains to implement extract-features is to put extract-features
and intern-feature together. Since extract-words returns a list of strings and
you want a list with each string translated to the corresponding word-feature,
this is a perfect time to use MAPCAR.

(defun extract-features (text)
(mapcar #’intern-feature (extract-words text)))

284

You can test these functions at the REPL like this:

SPAM> (extract-words "foo bar baz")
("foo" "bar" "baz")

And you can make sure the DELETE-DUPLICATES is working like this:

SPAM> (extract-words "foo bar baz foo bar")
("baz" "foo" "bar")

You can also test extract-features.

SPAM> (extract-features "foo bar baz foo bar")
(#<WORD-FEATURE @ #x71ef28da> #<WORD-FEATURE @ #x71e3809a>
#<WORD-FEATURE @ #x71ef28aa>)

However, as you can see, the default method for printing arbitrary objects isn’t
very informative. As you work on this program, it’ll be useful to be able to print
word-feature objects in a less opaque way. Luckily, as I mentioned in Chapter
17, the printing of all objects is implemented in terms of a generic function
PRINT-OBJECT, so to change the way word-feature objects are printed, you just
need to define a method on PRINT-OBJECT that specializes on word-feature.
To make implementing such methods easier, Common Lisp provides the macro
PRINT-UNREADABLE-OBJECT.5

The basic form of PRINT-UNREADABLE-OBJECT is as follows:

(print-unreadable-object (object stream-variable &key type identity)
body-form*)

The object argument is an expression that evaluates to the object to be printed.
Within the body of PRINT-UNREADABLE-OBJECT, stream-variable is bound to
a stream to which you can print anything you want. Whatever you print to
that stream will be output by PRINT-UNREADABLE-OBJECT and enclosed in the
standard syntax for unreadable objects, #<>.6

PRINT-UNREADABLE-OBJECT also lets you include the type of the object and an
indication of the object’s identity via the keyword parameters type and identity.
If they’re non-NIL, the output will start with the name of the object’s class and
end with an indication of the object’s identity similar to what’s printed by the
default PRINT-OBJECT method for STANDARD-OBJECTs. For word-feature, you
probably want to define a PRINT-OBJECT method that includes the type but
not the identity along with the values of the word, ham-count, and spam-count
slots. Such a method would look like this:

(defmethod print-object ((object word-feature) stream)
(print-unreadable-object (object stream :type t)
(with-slots (word ham-count spam-count) object
(format stream "~s :hams ~d :spams ~d" word ham-count spam-count))))

Now when you test extract-features at the REPL, you can see more clearly
what features are being extracted.

285

SPAM> (extract-features "foo bar baz foo bar")
(#<WORD-FEATURE "baz" :hams 0 :spams 0>
#<WORD-FEATURE "foo" :hams 0 :spams 0>
#<WORD-FEATURE "bar" :hams 0 :spams 0>)

Training the Filter
Now that you have a way to keep track of individual features, you’re almost ready
to implement score. But first you need to write the code you’ll use to train the
spam filter so score will have some data to use. You’ll define a function, train,
that takes some text and a symbol indicating what kind of message it is--ham or
spam--and that increments either the ham count or the spam count of all the
features present in the text as well as a global count of hams or spams processed.
Again, you can take a top-down approach and implement it in terms of other
functions that don’t yet exist.

(defun train (text type)
(dolist (feature (extract-features text))
(increment-count feature type))

(increment-total-count type))

You’ve already written extract-features, so next up is increment-count,
which takes a word-feature and a message type and increments the appropriate
slot of the feature. Since there’s no reason to think that the logic of incrementing
these counts is going to change for different kinds of objects, you can write this
as a regular function.7 Because you defined both ham-count and spam-count
with an :accessor option, you can use INCF and the accessor functions created
by DEFCLASS to increment the appropriate slot.

(defun increment-count (feature type)
(ecase type
(ham (incf (ham-count feature)))
(spam (incf (spam-count feature)))))

The ECASE construct is a variant of CASE, both of which are similar to case
statements in Algol-derived languages (renamed switch in C and its progeny).
They both evaluate their first argument--the key form--and then find the clause
whose first element--the key--is the same value according to EQL. In this case,
that means the variable type is evaluated, yielding whatever value was passed
as the second argument to increment-count.

The keys aren’t evaluated. In other words, the value of type will be compared
to the literal objects read by the Lisp reader as part of the ECASE form. In this
function, that means the keys are the symbols ham and spam, not the values of
any variables named ham and spam. So, if increment-count is called like this:

(increment-count some-feature ’ham)

the value of type will be the symbol ham, and the first branch of the ECASE will

286

be evaluated and the feature’s ham count incremented. On the other hand, if
it’s called like this:

(increment-count some-feature ’spam)

then the second branch will run, incrementing the spam count. Note that the
symbols ham and spam are quoted when calling increment-count since otherwise
they’d be evaluated as the names of variables. But they’re not quoted when
they appear in ECASE since ECASE doesn’t evaluate the keys.8

The E in ECASE stands for "exhaustive" or "error," meaning ECASE should signal
an error if the key value is anything other than one of the keys listed. The
regular CASE is looser, returning NIL if no matching clause is found.

To implement increment-total-count, you need to decide where to store
the counts; for the moment, two more special variables, *total-spams* and
total-hams, will do fine.

(defvar *total-spams* 0)
(defvar *total-hams* 0)

(defun increment-total-count (type)
(ecase type
(ham (incf *total-hams*))
(spam (incf *total-spams*))))

You should use DEFVAR to define these two variables for the same reason you
used it with *feature-database*--they’ll hold data built up while you run
the program that you don’t necessarily want to throw away just because you
happen to reload your code during development. But you’ll want to reset those
variables if you ever reset *feature-database*, so you should add a few lines
to clear-database as shown here:

(defun clear-database ()
(setf
feature-database (make-hash-table :test #’equal)
total-spams 0
total-hams 0))

Per-Word Statistics
The heart of a statistical spam filter is, of course, the functions that compute
statistics-based probabilities. The mathematical nuances9 of why exactly these
computations work are beyond the scope of this book--interested readers may
want to refer to several papers by Gary Robinson.10 I’ll focus rather on how
they’re implemented.

The starting point for the statistical computations is the set of measured
values--the frequencies stored in *feature-database*, *total-spams*, and
total-hams. Assuming that the set of messages trained on is statistically

287

representative, you can treat the observed frequencies as probabilities of the
same features showing up in hams and spams in future messages.

The basic plan is to classify a message by extracting the features it contains,
computing the individual probability that a given message containing the feature
is a spam, and then combining all the individual probabilities into a total score
for the message. Messages with many "spammy" features and few "hammy"
features will receive a score near 1, and messages with many hammy features
and few spammy features will score near 0.

The first statistical function you need is one that computes the basic probability
that a message containing a given feature is a spam. By one point of view, the
probability that a given message containing the feature is a spam is the ratio
of spam messages containing the feature to all messages containing the feature.
Thus, you could compute it this way:

(defun spam-probability (feature)
(with-slots (spam-count ham-count) feature
(/ spam-count (+ spam-count ham-count))))

The problem with the value computed by this function is that it’s strongly
affected by the overall probability that any message will be a spam or a ham.
For instance, suppose you get nine times as much ham as spam in general. A
completely neutral feature will then appear in one spam for every nine hams,
giving you a spam probability of 1/10 according to this function.

But you’re more interested in the probability that a given feature will appear in
a spam message, independent of the overall probability of getting a spam or ham.
Thus, you need to divide the spam count by the total number of spams trained
on and the ham count by the total number of hams. To avoid division-by-zero
errors, if either of *total-spams* or *total-hams* is zero, you should treat
the corresponding frequency as zero. (Obviously, if the total number of either
spams or hams is zero, then the corresponding per-feature count will also be
zero, so you can treat the resulting frequency as zero without ill effect.)

(defun spam-probability (feature)
(with-slots (spam-count ham-count) feature
(let ((spam-frequency (/ spam-count (max 1 *total-spams*)))

(ham-frequency (/ ham-count (max 1 *total-hams*))))
(/ spam-frequency (+ spam-frequency ham-frequency)))))

This version suffers from another problem--it doesn’t take into account the
number of messages analyzed to arrive at the per-word probabilities. Suppose
you’ve trained on 2,000 messages, half spam and half ham. Now consider two
features that have appeared only in spams. One has appeared in all 1,000 spams,
while the other appeared only once. According to the current definition of
spam-probability, the appearance of either feature predicts that a message is
spam with equal probability, namely, 1.

However, it’s still quite possible that the feature that has appeared only once is

288

actually a neutral feature--it’s obviously rare in either spams or hams, appearing
only once in 2,000 messages. If you trained on another 2,000 messages, it might
very well appear one more time, this time in a ham, making it suddenly a neutral
feature with a spam probability of .5.

So it seems you might like to compute a probability that somehow factors in
the number of data points that go into each feature’s probability. In his papers,
Robinson suggested a function based on the Bayesian notion of incorporating
observed data into prior knowledge or assumptions. Basically, you calculate
a new probability by starting with an assumed prior probability and a weight
to give that assumed probability before adding new information. Robinson’s
function is this:

(defun bayesian-spam-probability (feature &optional
(assumed-probability 1/2)
(weight 1))

(let ((basic-probability (spam-probability feature))
(data-points (+ (spam-count feature) (ham-count feature))))

(/ (+ (* weight assumed-probability)
(* data-points basic-probability))

(+ weight data-points))))

Robinson suggests values of 1/2 for assumed-probability and 1 for weight.
Using those values, a feature that has appeared in one spam and no hams has a
bayesian-spam-probability of 0.75, a feature that has appeared in 10 spams
and no hams has a bayesian-spam-probability of approximately 0.955, and
one that has matched in 1,000 spams and no hams has a spam probability of
approximately 0.9995.

Combining Probabilities
Now that you can compute the bayesian-spam-probability of each individual
feature you find in a message, the last step in implementing the score function
is to find a way to combine a bunch of individual probabilities into a single value
between 0 and 1.

If the individual feature probabilities were independent, then it’d be mathe-
matically sound to multiply them together to get a combined probability. But
it’s unlikely they actually are independent--certain features are likely to appear
together, while others never do.11

Robinson proposed using a method for combining probabilities invented by the
statistician R. A. Fisher. Without going into the details of exactly why his
technique works, it’s this: First you combine the probabilities by multiplying
them together. This gives you a number nearer to 0 the more low probabilities
there were in the original set. Then take the log of that number and multiply by
-2. Fisher showed in 1950 that if the individual probabilities were independent
and drawn from a uniform distribution between 0 and 1, then the resulting

289

value would be on a chi-square distribution. This value and twice the number
of probabilities can be fed into an inverse chi-square function, and it’ll return
the probability that reflects the likelihood of obtaining a value that large or
larger by combining the same number of randomly selected probabilities. When
the inverse chi-square function returns a low probability, it means there was
a disproportionate number of low probabilities (either a lot of relatively low
probabilities or a few very low probabilities) in the individual probabilities.

To use this probability in determining whether a given message is a spam, you
start with a null hypothesis, a straw man you hope to knock down. The null
hypothesis is that the message being classified is in fact just a random collection
of features. If it were, then the individual probabilities--the likelihood that each
feature would appear in a spam--would also be random. That is, a random
selection of features would usually contain some features with a high probability
of appearing in spam and other features with a low probability of appearing in
spam. If you were to combine these randomly selected probabilities according to
Fisher’s method, you should get a middling combined value, which the inverse
chi-square function will tell you is quite likely to arise just by chance, as, in
fact, it would have. But if the inverse chi-square function returns a very low
probability, it means it’s unlikely the probabilities that went into the combined
value were selected at random; there were too many low probabilities for that to
be likely. So you can reject the null hypothesis and instead adopt the alternative
hypothesis that the features involved were drawn from a biased sample--one with
few high spam probability features and many low spam probability features. In
other words, it must be a ham message.

However, the Fisher method isn’t symmetrical since the inverse chi-square
function returns the probability that a given number of randomly selected
probabilities would combine to a value as large or larger than the one you got
by combining the actual probabilities. This asymmetry works to your advantage
because when you reject the null hypothesis, you know what the more likely
hypothesis is. When you combine the individual spam probabilities via the
Fisher method, and it tells you there’s a high probability that the null hypothesis
is wrong--that the message isn’t a random collection of words--then it means
it’s likely the message is a ham. The number returned is, if not literally the
probability that the message is a ham, at least a good measure of its "hamminess."
Conversely, the Fisher combination of the individual ham probabilities gives you
a measure of the message’s "spamminess."

To get a final score, you need to combine those two measures into a single number
that gives you a combined hamminess-spamminess score ranging from 0 to 1.
The method recommended by Robinson is to add half the difference between
the hamminess and spamminess scores to 1/2, in other words, to average the
spamminess and 1 minus the hamminess. This has the nice effect that when
the two scores agree (high spamminess and low hamminess, or vice versa) you’ll
end up with a strong indicator near either 0 or 1. But when the spamminess
and hamminess scores are both high or both low, then you’ll end up with a final

290

value near 1/2, which you can treat as an "uncertain" classification.

The score function that implements this scheme looks like this:

(defun score (features)
(let ((spam-probs ()) (ham-probs ()) (number-of-probs 0))
(dolist (feature features)
(unless (untrained-p feature)
(let ((spam-prob (float (bayesian-spam-probability feature) 0.0d0)))
(push spam-prob spam-probs)
(push (- 1.0d0 spam-prob) ham-probs)
(incf number-of-probs))))

(let ((h (- 1 (fisher spam-probs number-of-probs)))
(s (- 1 (fisher ham-probs number-of-probs))))

(/ (+ (- 1 h) s) 2.0d0))))

You take a list of features and loop over them, building up two lists of probabilities,
one listing the probabilities that a message containing each feature is a spam and
the other that a message containing each feature is a ham. As an optimization,
you can also count the number of probabilities while looping over them and pass
the count to fisher to avoid having to count them again in fisher itself. The
value returned by fisher will be low if the individual probabilities contained too
many low probabilities to have come from random text. Thus, a low fisher score
for the spam probabilities means there were many hammy features; subtracting
that score from 1 gives you a probability that the message is a ham. Conversely,
subtracting the fisher score for the ham probabilities gives you the probability
that the message was a spam. Combining those two probabilities gives you an
overall spamminess score between 0 and 1.

Within the loop, you can use the function untrained-p to skip features extracted
from the message that were never seen during training. These features will have
spam counts and ham counts of zero. The untrained-p function is trivial.

(defun untrained-p (feature)
(with-slots (spam-count ham-count) feature
(and (zerop spam-count) (zerop ham-count))))

The only other new function is fisher itself. Assuming you already had an
inverse-chi-square function, fisher is conceptually simple.

(defun fisher (probs number-of-probs)
"The Fisher computation described by Robinson."
(inverse-chi-square
(* -2 (log (reduce #’* probs)))
(* 2 number-of-probs)))

Unfortunately, there’s a small problem with this straightforward implementation.
While using REDUCE is a concise and idiomatic way of multiplying a list of
numbers, in this particular application there’s a danger the product will be too
small a number to be represented as a floating-point number. In that case, the

291

result will underflow to zero. And if the product of the probabilities underflows,
all bets are off because taking the LOG of zero will either signal an error or,
in some implementation, result in a special negative-infinity value, which will
render all subsequent calculations essentially meaningless. This is particularly
unfortunate in this function because the Fisher method is most sensitive when
the input probabilities are low--near zero--and therefore in the most danger of
causing the multiplication to underflow.

Luckily, you can use a bit of high-school math to avoid this problem. Recall
that the log of a product is the same as the sum of the logs of the factors. So
instead of multiplying all the probabilities and then taking the log, you can sum
the logs of each probability. And since REDUCE takes a :key keyword parameter,
you can use it to perform the whole calculation. Instead of this:

(log (reduce #’* probs))

write this:

(reduce #’+ probs :key #’log)

Inverse Chi Square
The implementation of inverse-chi-square in this section is a fairly straight-
forward translation of a version written in Python by Robinson. The exact
mathematical meaning of this function is beyond the scope of this book, but
you can get an intuitive sense of what it does by thinking about how the values
you pass to fisher will affect the result: the more low probabilities you pass
to fisher, the smaller the product of the probabilities will be. The log of a
small product will be a negative number with a large absolute value, which is
then multiplied by -2, making it an even larger positive number. Thus, the
more low probabilities were passed to fisher, the larger the value it’ll pass
to inverse-chi-square. Of course, the number of probabilities involved also
affects the value passed to inverse-chi-square. Since probabilities are, by
definition, less than or equal to 1, the more probabilities that go into a product,
the smaller it’ll be and the larger the value passed to inverse-chi-square.
Thus, inverse-chi-square should return a low probability when the Fisher
combined value is abnormally large for the number of probabilities that went
into it. The following function does exactly that:

(defun inverse-chi-square (value degrees-of-freedom)
(assert (evenp degrees-of-freedom))
(min
(loop with m = (/ value 2)

for i below (/ degrees-of-freedom 2)
for prob = (exp (- m)) then (* prob (/ m i))
summing prob)

1.0))

Recall from Chapter 10 that EXP raises e to the argument given. Thus, the

292

larger value is, the smaller the initial value of prob will be. But that initial
value will then be adjusted upward slightly for each degree of freedom as long as
m is greater than the number of degrees of freedom. Since the value returned by
inverse-chi-square is supposed to be another probability, it’s important to
clamp the value returned with MIN since rounding errors in the multiplication
and exponentiation may cause the LOOP to return a sum just a shade over 1.

Training the Filter
Since you wrote classify and train to take a string argument, you can test
them easily at the REPL. If you haven’t yet, you should switch to the package
in which you’ve been writing this code by evaluating an IN-PACKAGE form at
the REPL or using the SLIME shortcut change-package. To use the SLIME
shortcut, type a comma at the REPL and then type the name at the prompt.
Pressing Tab while typing the package name will autocomplete based on the
packages your Lisp knows about. Now you can invoke any of the functions that
are part of the spam application. You should first make sure the database is
empty.

SPAM> (clear-database)

Now you can train the filter with some text.

SPAM> (train "Make money fast" ’spam)

And then see what the classifier thinks.

SPAM> (classify "Make money fast")
SPAM
SPAM> (classify "Want to go to the movies?")
UNSURE

While ultimately all you care about is the classification, it’d be nice to be able
to see the raw score too. The easiest way to get both values without disturbing
any other code is to change classification to return multiple values.

(defun classification (score)
(values
(cond
((<= score *max-ham-score*) ’ham)
((>= score *min-spam-score*) ’spam)
(t ’unsure))

score))

You can make this change and then recompile just this one function. Because
classify returns whatever classification returns, it’ll also now return two
values. But since the primary return value is the same, callers of either function
who expect only one value won’t be affected. Now when you test classify, you
can see exactly what score went into the classification.

293

SPAM> (classify "Make money fast")
SPAM
0.863677101854273D0
SPAM> (classify "Want to go to the movies?")
UNSURE
0.5D0

And now you can see what happens if you train the filter with some more ham
text.

SPAM> (train "Do you have any money for the movies?" ’ham)
1
SPAM> (classify "Make money fast")
SPAM
0.7685351219857626D0

It’s still spam but a bit less certain since money was seen in ham text.

SPAM> (classify "Want to go to the movies?")
HAM
0.17482223132078922D0

And now this is clearly recognizable ham thanks to the presence of the word
movies, now a hammy feature.

However, you don’t really want to train the filter by hand. What you’d really
like is an easy way to point it at a bunch of files and train it on them. And if
you want to test how well the filter actually works, you’d like to then use it to
classify another set of files of known types and see how it does. So the last bit
of code you’ll write in this chapter will be a test harness that tests the filter on
a corpus of messages of known types, using a certain fraction for training and
then measuring how accurate the filter is when classifying the remainder.

Testing the Filter
To test the filter, you need a corpus of messages of known types. You can use
messages lying around in your inbox, or you can grab one of the corpora available
on the Web. For instance, the SpamAssassin corpus12 contains several thousand
messages hand classified as spam, easy ham, and hard ham. To make it easy to
use whatever files you have, you can define a test rig that’s driven off an array
of file/type pairs. You can define a function that takes a filename and a type
and adds it to the corpus like this:

(defun add-file-to-corpus (filename type corpus)
(vector-push-extend (list filename type) corpus))

The value of corpus should be an adjustable vector with a fill pointer. For
instance, you can make a new corpus like this:

(defparameter *corpus* (make-array 1000 :adjustable t :fill-pointer 0))

294

If you have the hams and spams already segregated into separate directories, you
might want to add all the files in a directory as the same type. This function,
which uses the list-directory function from Chapter 15, will do the trick:

(defun add-directory-to-corpus (dir type corpus)
(dolist (filename (list-directory dir))
(add-file-to-corpus filename type corpus)))

For instance, suppose you have a directory mail containing two subdirectories,
spam and ham, each containing messages of the indicated type; you can add all
the files in those two directories to *corpus* like this:

SPAM> (add-directory-to-corpus "mail/spam/" ’spam *corpus*)
NIL
SPAM> (add-directory-to-corpus "mail/ham/" ’ham *corpus*)
NIL

Now you need a function to test the classifier. The basic strategy will be to
select a random chunk of the corpus to train on and then test the corpus by
classifying the remainder of the corpus, comparing the classification returned by
the classify function to the known classification. The main thing you want
to know is how accurate the classifier is--what percentage of the messages are
classified correctly? But you’ll probably also be interested in what messages
were misclassified and in what direction--were there more false positives or more
false negatives? To make it easy to perform different analyses of the classifier’s
behavior, you should define the testing functions to build a list of raw results,
which you can then analyze however you like.

The main testing function might look like this:

(defun test-classifier (corpus testing-fraction)
(clear-database)
(let* ((shuffled (shuffle-vector corpus))

(size (length corpus))
(train-on (floor (* size (- 1 testing-fraction)))))

(train-from-corpus shuffled :start 0 :end train-on)
(test-from-corpus shuffled :start train-on)))

This function starts by clearing out the feature database.13 Then it shuffles the
corpus, using a function you’ll implement in a moment, and figures out, based
on the testing-fraction parameter, how many messages it’ll train on and how
many it’ll reserve for testing. The two helper functions train-from-corpus
and test-from-corpus will both take :start and :end keyword parameters,
allowing them to operate on a subsequence of the given corpus.

The train-from-corpus function is quite simple--simply loop over the appro-
priate part of the corpus, use DESTRUCTURING-BIND to extract the filename
and type from the list found in each element, and then pass the text of the
named file and the type to train. Since some mail messages, such as those with
attachments, are quite large, you should limit the number of characters it’ll take

295

from the message. It’ll obtain the text with a function start-of-file, which
you’ll implement in a moment, that takes a filename and a maximum number of
characters to return. train-from-corpus looks like this:

(defparameter *max-chars* (* 10 1024))

(defun train-from-corpus (corpus &key (start 0) end)
(loop for idx from start below (or end (length corpus)) do

(destructuring-bind (file type) (aref corpus idx)
(train (start-of-file file *max-chars*) type))))

The test-from-corpus function is similar except you want to return a list
containing the results of each classification so you can analyze them after the
fact. Thus, you should capture both the classification and score returned by
classify and then collect a list of the filename, the actual type, the type
returned by classify, and the score. To make the results more human readable,
you can include keywords in the list to indicate which values are which.

(defun test-from-corpus (corpus &key (start 0) end)
(loop for idx from start below (or end (length corpus)) collect

(destructuring-bind (file type) (aref corpus idx)
(multiple-value-bind (classification score)

(classify (start-of-file file *max-chars*))
(list
:file file
:type type
:classification classification
:score score)))))

A Couple of Utility Functions
To finish the implementation of test-classifier, you need to write the two
utility functions that don’t really have anything particularly to do with spam
filtering, shuffle-vector and start-of-file.

An easy and efficient way to implement shuffle-vector is using the Fisher-
Yates algorithm.14 You can start by implementing a function, nshuffle-vector,
that shuffles a vector in place. This name follows the same naming convention
of other destructive functions such as NCONC and NREVERSE. It looks like this:

(defun nshuffle-vector (vector)
(loop for idx downfrom (1- (length vector)) to 1

for other = (random (1+ idx))
do (unless (= idx other)

(rotatef (aref vector idx) (aref vector other))))
vector)

The nondestructive version simply makes a copy of the original vector and passes
it to the destructive version.

296

(defun shuffle-vector (vector)
(nshuffle-vector (copy-seq vector)))

The other utility function, start-of-file, is almost as straightforward with just
one wrinkle. The most efficient way to read the contents of a file into memory is
to create an array of the appropriate size and use READ-SEQUENCE to fill it in. So
it might seem you could make a character array that’s either the size of the file
or the maximum number of characters you want to read, whichever is smaller.
Unfortunately, as I mentioned in Chapter 14, the function FILE-LENGTH isn’t
entirely well defined when dealing with character streams since the number of
characters encoded in a file can depend on both the character encoding used
and the particular text in the file. In the worst case, the only way to get an
accurate measure of the number of characters in a file is to actually read the
whole file. Thus, it’s ambiguous what FILE-LENGTH should do when passed a
character stream; in most implementations, FILE-LENGTH always returns the
number of octets in the file, which may be greater than the number of characters
that can be read from the file.

However, READ-SEQUENCE returns the number of characters actually read. So,
you can attempt to read the number of characters reported by FILE-LENGTH and
return a substring if the actual number of characters read was smaller.

(defun start-of-file (file max-chars)
(with-open-file (in file)
(let* ((length (min (file-length in) max-chars))

(text (make-string length))
(read (read-sequence text in)))

(if (< read length)
(subseq text 0 read)
text))))

Analyzing the Results
Now you’re ready to write some code to analyze the results generated by
test-classifier. Recall that test-classifier returns the list returned by
test-from-corpus in which each element is a plist representing the result of
classifying one file. This plist contains the name of the file, the actual type
of the file, the classification, and the score returned by classify. The first
bit of analytical code you should write is a function that returns a symbol
indicating whether a given result was correct, a false positive, a false negative,
a missed ham, or a missed spam. You can use DESTRUCTURING-BIND to pull
out the :type and :classification elements of an individual result list (using
&allow-other-keys to tell DESTRUCTURING-BIND to ignore any other key/value
pairs it sees) and then use nested ECASE to translate the different pairings into a
single symbol.

(defun result-type (result)
(destructuring-bind (&key type classification &allow-other-keys) result

297

(ecase type
(ham
(ecase classification
(ham ’correct)
(spam ’false-positive)
(unsure ’missed-ham)))

(spam
(ecase classification
(ham ’false-negative)
(spam ’correct)
(unsure ’missed-spam))))))

You can test out this function at the REPL.

SPAM> (result-type ’(:FILE #p"foo" :type ham :classification ham :score 0))
CORRECT
SPAM> (result-type ’(:FILE #p"foo" :type spam :classification spam :score 0))
CORRECT
SPAM> (result-type ’(:FILE #p"foo" :type ham :classification spam :score 0))
FALSE-POSITIVE
SPAM> (result-type ’(:FILE #p"foo" :type spam :classification ham :score 0))
FALSE-NEGATIVE
SPAM> (result-type ’(:FILE #p"foo" :type ham :classification unsure :score 0))
MISSED-HAM
SPAM> (result-type ’(:FILE #p"foo" :type spam :classification unsure :score 0))
MISSED-SPAM

Having this function makes it easy to slice and dice the results of
test-classifier in a variety of ways. For instance, you can start by
defining predicate functions for each type of result.

(defun false-positive-p (result)
(eql (result-type result) ’false-positive))

(defun false-negative-p (result)
(eql (result-type result) ’false-negative))

(defun missed-ham-p (result)
(eql (result-type result) ’missed-ham))

(defun missed-spam-p (result)
(eql (result-type result) ’missed-spam))

(defun correct-p (result)
(eql (result-type result) ’correct))

With those functions, you can easily use the list and sequence manipulation
functions I discussed in Chapter 11 to extract and count particular kinds of

298

results.

SPAM> (count-if #’false-positive-p *results*)
6
SPAM> (remove-if-not #’false-positive-p *results*)
((:FILE #p"ham/5349" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.9999983107355541d0)
(:FILE #p"ham/2746" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.6286468956619795d0)
(:FILE #p"ham/3427" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.9833753501352983d0)
(:FILE #p"ham/7785" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.9542788587998488d0)
(:FILE #p"ham/1728" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.684339162891261d0)
(:FILE #p"ham/10581" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.9999924537959615d0))

You can also use the symbols returned by result-type as keys into a hash table
or an alist. For instance, you can write a function to print a summary of the
counts and percentages of each type of result using an alist that maps each type
plus the extra symbol total to a count.

(defun analyze-results (results)
(let* ((keys ’(total correct false-positive

false-negative missed-ham missed-spam))
(counts (loop for x in keys collect (cons x 0))))

(dolist (item results)
(incf (cdr (assoc ’total counts)))
(incf (cdr (assoc (result-type item) counts))))

(loop with total = (cdr (assoc ’total counts))
for (label . count) in counts
do (format t "~&~@(~a~):~20t~5d~,5t: ~6,2f%~%"

label count (* 100 (/ count total))))))

This function will give output like this when passed a list of results generated by
test-classifier:

SPAM> (analyze-results *results*)
Total: 3761 : 100.00%
Correct: 3689 : 98.09%
False-positive: 4 : 0.11%
False-negative: 9 : 0.24%
Missed-ham: 19 : 0.51%
Missed-spam: 40 : 1.06%
NIL

And as a last bit of analysis you might want to look at why an individual message
was classified the way it was. The following functions will show you:

(defun explain-classification (file)
(let* ((text (start-of-file file *max-chars*))

(features (extract-features text))
(score (score features))
(classification (classification score)))

299

(show-summary file text classification score)
(dolist (feature (sorted-interesting features))
(show-feature feature))))

(defun show-summary (file text classification score)
(format t "~&~a" file)
(format t "~2%~a~2%" text)
(format t "Classified as ~a with score of ~,5f~%" classification score))

(defun show-feature (feature)
(with-slots (word ham-count spam-count) feature
(format
t "~&~2t~a~30thams: ~5d; spams: ~5d;~,10tprob: ~,f~%"
word ham-count spam-count (bayesian-spam-probability feature))))

(defun sorted-interesting (features)
(sort (remove-if #’untrained-p features) #’< :key #’bayesian-spam-probability))

What’s Next
Obviously, you could do a lot more with this code. To turn it into a real spam-
filtering application, you’d need to find a way to integrate it into your normal
e-mail infrastructure. One approach that would make it easy to integrate with
almost any e-mail client is to write a bit of code to act as a POP3 proxy--that’s
the protocol most e-mail clients use to fetch mail from mail servers. Such a
proxy would fetch mail from your real POP3 server and serve it to your mail
client after either tagging spam with a header that your e-mail client’s filters
can easily recognize or simply putting it aside. Of course, you’d also need a
way to communicate with the filter about misclassifications--as long as you’re
setting it up as a server, you could also provide a Web interface. I’ll talk about
how to write Web interfaces in Chapter 26, and you’ll build one, for a different
application, in Chapter 29.

Or you might want to work on improving the basic classification--a likely place
to start is to make extract-features more sophisticated. In particular, you
could make the tokenizer smarter about the internal structure of e-mail--you
could extract different kinds of features for words appearing in the body versus
the message headers. And you could decode various kinds of message encoding
such as base 64 and quoted printable since spammers often try to obfuscate their
message with those encodings.

But I’ll leave those improvements to you. Now you’re ready to head down the
path of building a streaming MP3 server, starting by writing a general-purpose
library for parsing binary files.

1Available at http://www.paulgraham.com/spam.html and also in Hackers &

300

Painters: Big Ideas from the Computer Age (O’Reilly, 2004)
2There has since been some disagreement over whether the technique Graham
described was actually "Bayesian." However, the name has stuck and is well on
its way to becoming a synonym for "statistical" when talking about spam filters.
3It would, however, be poor form to distribute a version of this application using
a package starting with com.gigamonkeys since you don’t control that domain.
4A version of CL-PPCRE is included with the book’s source code available
from the book’s Web site. Or you can download it from Weitz’s site at
http://www.weitz.de/cl-ppcre/.
5The main reason to use PRINT-UNREADABLE-OBJECT is that it takes care of
signaling the appropriate error if someone tries to print your object readably,
such as with the ~S FORMAT directive.
6PRINT-UNREADABLE-OBJECT also signals an error if it’s used when the printer
control variable *PRINT-READABLY* is true. Thus, a PRINT-OBJECT method
consisting solely of a PRINT-UNREADABLE-OBJECT form will correctly implement
the PRINT-OBJECT contract with regard to *PRINT-READABLY*.
7If you decide later that you do need to have different versions of
increment-feature for different classes, you can redefine increment-count as
a generic function and this function as a method specialized on word-feature.
8Technically, the key in each clause of a CASE or ECASE is interpreted as a list
designator, an object that designates a list of objects. A single nonlist object,
treated as a list designator, designates a list containing just that one object,
while a list designates itself. Thus, each clause can have multiple keys; CASE
and ECASE will select the clause whose list of keys contains the value of the key
form. For example, if you wanted to make good a synonym for ham and bad a
synonym for spam, you could write increment-count like this:

(defun increment-count (feature type)
(ecase type
((ham good) (incf (ham-count feature)))
((spam bad) (incf (spam-count feature)))))

9Speaking of mathematical nuances, hard-core statisticians may be offended by
the sometimes loose use of the word probability in this chapter. However, since
even the pros, who are divided between the Bayesians and the frequentists, can’t
agree on what a probability is, I’m not going to worry about it. This is a book
about programming, not statistics.
10Robinson’s articles that directly informed this chapter are "A Statistical
Approach to the Spam Problem" (published in the Linux Journal and
available at http://www.linuxjournal.com/ article.php?sid=6467 and
in a shorter form on Robinson’s blog at http://radio.weblogs.com/
0101454/stories/2002/09/16/spamDetection.html) and "Why Chi? Motiva-
tions for the Use of Fisher’s Inverse Chi-Square Procedure in Spam Classification"

301

(available at http://garyrob.blogs.com/ whychi93.pdf). Another article
that may be useful is "Handling Redundancy in Email Token Probabilities" (avail-
able at http://garyrob.blogs.com//handlingtokenredundancy94.pdf).
The archived mailing lists of the SpamBayes project (http://spambayes.sourceforge.net/)
also contain a lot of useful information about different algorithms and approaches
to testing spam filters.
11Techniques that combine nonindependent probabilities as though they were,
in fact, independent, are called naive Bayesian. Graham’s original proposal was
essentially a naive Bayesian classifier with some "empirically derived" constant
factors thrown in.
12Several spam corpora including the SpamAssassin corpus are linked to from
http://nexp.cs.pdx.edu/~psam/cgi-bin/view/PSAM/CorpusSets.
13If you wanted to conduct a test without disturbing the existing database, you
could bind *feature-database*, *total-spams*, and *total-hams* with a
LET, but then you’d have no way of looking at the database after the fact--unless
you returned the values you used within the function.
14This algorithm is named for the same Fisher who invented the method used for
combining probabilities and for Frank Yates, his coauthor of the book Statistical
Tables for Biological, Agricultural and Medical Research (Oliver & Boyd, 1938)
in which, according to Knuth, they provided the first published description of
the algorithm.

Copyright © 2003-2005, Peter Seibel

24. Practical: Parsing Binary Files
In this chapter I’ll show you how to build a library that you can use to write
code for reading and writing binary files. You’ll use this library in Chapter 25
to write a parser for ID3 tags, the mechanism used to store metadata such as
artist and album names in MP3 files. This library is also an example of how
to use macros to extend the language with new constructs, turning it into a
special-purpose language for solving a particular problem, in this case reading
and writing binary data. Because you’ll develop the library a bit at a time,
including several partial versions, it may seem you’re writing a lot of code. But
when all is said and done, the whole library is fewer than 150 lines of code, and
the longest macro is only 20 lines long.

Binary Files
At a sufficiently low level of abstraction, all files are "binary" in the sense that they
just contain a bunch of numbers encoded in binary form. However, it’s customary
to distinguish between text files, where all the numbers can be interpreted as
characters representing human-readable text, and binary files, which contain
data that, if interpreted as characters, yields nonprintable characters.1

302

Binary file formats are usually designed to be both compact and efficient to
parse--that’s their main advantage over text-based formats. To meet both those
criteria, they’re usually composed of on-disk structures that are easily mapped
to data structures that a program might use to represent the same data in
memory.2

The library will give you an easy way to define the mapping between the on-disk
structures defined by a binary file format and in-memory Lisp objects. Using
the library, it should be easy to write a program that can read a binary file,
translating it into Lisp objects that you can manipulate, and then write back
out to another properly formatted binary file.

Binary Format Basics
The starting point for reading and writing binary files is to open the file for
reading or writing individual bytes. As I discussed in Chapter 14, both OPEN and
WITH-OPEN-FILE accept a keyword argument, :element-type, that controls
the basic unit of transfer for the stream. When you’re dealing with binary
files, you’ll specify (unsigned-byte 8). An input stream opened with such an
:element-type will return an integer between 0 and 255 each time it’s passed to
READ-BYTE. Conversely, you can write bytes to an (unsigned-byte 8) output
stream by passing numbers between 0 and 255 to WRITE-BYTE.

Above the level of individual bytes, most binary formats use a smallish number
of primitive data types--numbers encoded in various ways, textual strings, bit
fields, and so on--which are then composed into more complex structures. So
your first task is to define a framework for writing code to read and write the
primitive data types used by a given binary format.

To take a simple example, suppose you’re dealing with a binary format that uses
an unsigned 16-bit integer as a primitive data type. To read such an integer,
you need to read the two bytes and then combine them into a single number by
multiplying one byte by 256, a.k.a. 2ˆ8, and adding it to the other byte. For
instance, assuming the binary format specifies that such 16-bit quantities are
stored in big-endian3 form, with the most significant byte first, you can read
such a number with this function:

(defun read-u2 (in)
(+ (* (read-byte in) 256) (read-byte in)))

However, Common Lisp provides a more convenient way to perform this kind of
bit twiddling. The function LDB, whose name stands for load byte, can be used
to extract and set (with SETF) any number of contiguous bits from an integer.4
The number of bits and their position within the integer is specified with a byte
specifier created with the BYTE function. BYTE takes two arguments, the number
of bits to extract (or set) and the position of the rightmost bit where the least
significant bit is at position zero. LDB takes a byte specifier and the integer from
which to extract the bits and returns the positive integer represented by the

303

extracted bits. Thus, you can extract the least significant octet of an integer
like this:

(ldb (byte 8 0) #xabcd) ==> 205 ; 205 is #xcd

To get the next octet, you’d use a byte specifier of (byte 8 8) like this:

(ldb (byte 8 8) #xabcd) ==> 171 ; 171 is #xab

You can use LDB with SETF to set the specified bits of an integer stored in a
SETFable place.

CL-USER> (defvar *num* 0)
NUM
CL-USER> (setf (ldb (byte 8 0) *num*) 128)
128
CL-USER> *num*
128
CL-USER> (setf (ldb (byte 8 8) *num*) 255)
255
CL-USER> *num*
65408

Thus, you can also write read-u2 like this:5

(defun read-u2 (in)
(let ((u2 0))
(setf (ldb (byte 8 8) u2) (read-byte in))
(setf (ldb (byte 8 0) u2) (read-byte in))
u2))

To write a number out as a 16-bit integer, you need to extract the individual
8-bit bytes and write them one at a time. To extract the individual bytes, you
just need to use LDB with the same byte specifiers.

(defun write-u2 (out value)
(write-byte (ldb (byte 8 8) value) out)
(write-byte (ldb (byte 8 0) value) out))

Of course, you can also encode integers in many other ways--with different
numbers of bytes, with different endianness, and in signed and unsigned format.

Strings in Binary Files
Textual strings are another kind of primitive data type you’ll find in many binary
formats. When you read files one byte at a time, you can’t read and write strings
directly--you need to decode and encode them one byte at a time, just as you do
with binary-encoded numbers. And just as you can encode an integer in several
ways, you can encode a string in many ways. To start with, the binary format
must specify how individual characters are encoded.

304

To translate bytes to characters, you need to know both what character code
and what character encoding you’re using. A character code defines a mapping
from positive integers to characters. Each number in the mapping is called a
code point. For instance, ASCII is a character code that maps the numbers from
0-127 to particular characters used in the Latin alphabet. A character encoding,
on the other hand, defines how the code points are represented as a sequence of
bytes in a byte-oriented medium such as a file. For codes that use eight or fewer
bits, such as ASCII and ISO-8859-1, the encoding is trivial--each numeric value
is encoded as a single byte.

Nearly as straightforward are pure double-byte encodings, such as UCS-2, which
map between 16-bit values and characters. The only reason double-byte encodings
can be more complex than single-byte encodings is that you may also need to
know whether the 16-bit values are supposed to be encoded in big-endian or
little-endian format.

Variable-width encodings use different numbers of octets for different numeric
values, making them more complex but allowing them to be more compact in
many cases. For instance, UTF-8, an encoding designed for use with the Unicode
character code, uses a single octet to encode the values 0-127 while using up to
four octets to encode values up to 1,114,111.6

Since the code points from 0-127 map to the same characters in Unicode as
they do in ASCII, a UTF-8 encoding of text consisting only of characters also in
ASCII is the same as the ASCII encoding. On the other hand, texts consisting
mostly of characters requiring four bytes in UTF-8 could be more compactly
encoded in a straight double-byte encoding.

Common Lisp provides two functions for translating between numeric character
codes and character objects: CODE-CHAR, which takes an numeric code and
returns as a character, and CHAR-CODE, which takes a character and returns its
numeric code. The language standard doesn’t specify what character encoding
an implementation must use, so there’s no guarantee you can represent every
character that can possibly be encoded in a given file format as a Lisp character.
However, almost all contemporary Common Lisp implementations use ASCII,
ISO-8859-1, or Unicode as their native character code. Because Unicode is a
superset ofISO-8859-1, which is in turn a superset of ASCII, if you’re using a
Unicode Lisp, CODE-CHAR and CHAR-CODE can be used directly for translating
any of those three character codes.7

In addition to specifying a character encoding, a string encoding must also
specify how to encode the length of the string. Three techniques are typically
used in binary file formats.

The simplest is to not encode it but to let it be implicit in the position of the
string in some larger structure: a particular element of a file may always be a
string of a certain length, or a string may be the last element of a variable-length
data structure whose overall size determines how many bytes are left to read as

305

string data. Both these techniques are used in ID3 tags, as you’ll see in the next
chapter.

The other two techniques can be used to encode variable-length strings without
relying on context. One is to encode the length of the string followed by the
character data--the parser reads an integer value (in some specified integer
format) and then reads that number of characters. Another is to write the
character data followed by a delimiter that can’t appear in the string such as a
null character.

The different representations have different advantages and disadvantages, but
when you’re dealing with already specified binary formats, you won’t have
any control over which encoding is used. However, none of the encodings is
particularly more difficult to read and write than any other. Here, as an example,
is a function that reads a null-terminated ASCII string, assuming your Lisp
implementation uses ASCII or one of its supersets such as ISO-8859-1 or full
Unicode as its native character encoding:

(defconstant +null+ (code-char 0))

(defun read-null-terminated-ascii (in)
(with-output-to-string (s)
(loop for char = (code-char (read-byte in))

until (char= char +null+) do (write-char char s))))

The WITH-OUTPUT-TO-STRING macro, which I mentioned in Chapter 14, is an
easy way to build up a string when you don’t know how long it’ll be. It creates
a STRING-STREAM and binds it to the variable name specified, s in this case.
All characters written to the stream are collected into a string, which is then
returned as the value of the WITH-OUTPUT-TO-STRING form.

To write a string back out, you just need to translate the characters back to
numeric values that can be written with WRITE-BYTE and then write the null
terminator after the string contents.

(defun write-null-terminated-ascii (string out)
(loop for char across string

do (write-byte (char-code char) out))
(write-byte (char-code +null+) out))

As these examples show, the main intellectual challenge--such as it is--of reading
and writing primitive elements of binary files is understanding how exactly to
interpret the bytes that appear in a file and to map them to Lisp data types. If
a binary file format is well specified, this should be a straightforward proposition.
Actually writing functions to read and write a particular encoding is, as they
say, a simple matter of programming.

Now you can turn to the issue of reading and writing more complex on-disk
structures and how to map them to Lisp objects.

306

Composite Structures
Since binary formats are usually used to represent data in a way that makes
it easy to map to in-memory data structures, it should come as no surprise
that composite on-disk structures are usually defined in ways similar to the
way programming languages define in-memory structures. Usually a composite
on-disk structure will consist of a number of named parts, each of which is itself
either a primitive type such as a number or a string, another composite structure,
or possibly a collection of such values.

For instance, an ID3 tag defined in the 2.2 version of the specification consists of
a header made up of a three-character ISO-8859-1 string, which is always "ID3";
two one-byte unsigned integers that specify the major version and revision of
the specification; eight bits worth of boolean flags; and four bytes that encode
the size of the tag in an encoding particular to the ID3 specification. Following
the header is a list of frames, each of which has its own internal structure. After
the frames are as many null bytes as are necessary to pad the tag out to the size
specified in the header.

If you look at the world through the lens of object orientation, composite
structures look a lot like classes. For instance, you could write a class to
represent an ID3 tag.

(defclass id3-tag ()
((identifier :initarg :identifier :accessor identifier)
(major-version :initarg :major-version :accessor major-version)
(revision :initarg :revision :accessor revision)
(flags :initarg :flags :accessor flags)
(size :initarg :size :accessor size)
(frames :initarg :frames :accessor frames)))

An instance of this class would make a perfect repository to hold the data needed
to represent an ID3 tag. You could then write functions to read and write
instances of this class. For example, assuming the existence of certain other
functions for reading the appropriate primitive data types, a read-id3-tag
function might look like this:

(defun read-id3-tag (in)
(let ((tag (make-instance ’id3-tag)))
(with-slots (identifier major-version revision flags size frames) tag
(setf identifier (read-iso-8859-1-string in :length 3))
(setf major-version (read-u1 in))
(setf revision (read-u1 in))
(setf flags (read-u1 in))
(setf size (read-id3-encoded-size in))
(setf frames (read-id3-frames in :tag-size size)))

tag))

The write-id3-tag function would be structured similarly--you’d use the ap-

307

propriate write-* functions to write out the values stored in the slots of the
id3-tag object.

It’s not hard to see how you could write the appropriate classes to represent
all the composite data structures in a specification along with read-foo and
write-foo functions for each class and for necessary primitive types. But it’s
also easy to tell that all the reading and writing functions are going to be pretty
similar, differing only in the specifics of what types they read and the names of
the slots they store them in. It’s particularly irksome when you consider that in
the ID3 specification it takes about four lines of text to specify the structure of
an ID3 tag, while you’ve already written eighteen lines of code and haven’t even
written write-id3-tag yet.

What you’d really like is a way to describe the structure of something like an
ID3 tag in a form that’s as compressed as the specification’s pseudocode yet that
can also be expanded into code that defines the id3-tag class and the functions
that translate between bytes on disk and instances of the class. Sounds like a
job for a macro.

Designing the Macros
Since you already have a rough idea what code your macros will need to generate,
the next step, according to the process for writing a macro I outlined in Chapter
8, is to switch perspectives and think about what a call to the macro should
look like. Since the goal is to be able to write something as compressed as the
pseudocode in the ID3 specification, you can start there. The header of an ID3
tag is specified like this:

ID3/file identifier "ID3"
ID3 version $02 00
ID3 flags %xx000000
ID3 size 4 * %0xxxxxxx

In the notation of the specification, this means the "file identifier" slot of an ID3
tag is the string "ID3" in ISO-8859-1 encoding. The version consists of two bytes,
the first of which--for this version of the specification--has the value 2 and the
second of which--again for this version of the specification--is 0. The flags slot is
eight bits, of which all but the first two are 0, and the size consists of four bytes,
each of which has a 0 in the most significant bit.

Some information isn’t captured by this pseudocode. For instance, exactly how
the four bytes that encode the size are to be interpreted is described in a few lines
of prose. Likewise, the spec describes in prose how the frame and subsequent
padding is stored after this header. But most of what you need to know to be
able to write code to read and write an ID3 tag is specified by this pseudocode.
Thus, you ought to be able to write an s-expression version of this pseudocode
and have it expanded into the class and function definitions you’d otherwise
have to write by hand--something, perhaps, like this:

308

(define-binary-class id3-tag
((file-identifier (iso-8859-1-string :length 3))
(major-version u1)
(revision u1)
(flags u1)
(size id3-tag-size)
(frames (id3-frames :tag-size size))))

The basic idea is that this form defines a class id3-tag similar to the way
you could with DEFCLASS, but instead of specifying things such as :initarg
and :accessors, each slot specification consists of the name of the slot--
file-identifier, major-version, and so on--and information about how that
slot is represented on disk. Since this is just a bit of fantasizing, you don’t have to
worry about exactly how the macro define-binary-class will know what to do
with expressions such as (iso-8859-1-string :length 3), u1, id3-tag-size,
and (id3-frames :tag-size size); as long as each expression contains the
information necessary to know how to read and write a particular data encoding,
you should be okay.

Making the Dream a Reality
Okay, enough fantasizing about good-looking code; now you need to get to work
writing define-binary-class--writing the code that will turn that concise
expression of what an ID3 tag looks like into code that can represent one in
memory, read one off disk, and write it back out.

To start with, you should define a package for this library. Here’s the package
file that comes with the version you can download from the book’s Web site:

(in-package :cl-user)

(defpackage :com.gigamonkeys.binary-data
(:use :common-lisp :com.gigamonkeys.macro-utilities)
(:export :define-binary-class

:define-tagged-binary-class
:define-binary-type
:read-value
:write-value
:*in-progress-objects*
:parent-of-type
:current-binary-object
:+null+))

The COM.GIGAMONKEYS.MACRO-UTILITIES package contains the with-gensyms
and once-only macros from Chapter 8.

Since you already have a handwritten version of the code you want to generate, it
shouldn’t be too hard to write such a macro. Just take it in small pieces, starting

309

with a version of define-binary-class that generates just the DEFCLASS form.

If you look back at the define-binary-class form, you’ll see that it takes two
arguments, the name id3-tag and a list of slot specifiers, each of which is itself
a two-item list. From those pieces you need to build the appropriate DEFCLASS
form. Clearly, the biggest difference between the define-binary-class form
and a proper DEFCLASS form is in the slot specifiers. A single slot specifier from
define-binary-class looks something like this:

(major-version u1)

But that’s not a legal slot specifier for a DEFCLASS. Instead, you need something
like this:

(major-version :initarg :major-version :accessor major-version)

Easy enough. First define a simple function to translate a symbol to the
corresponding keyword symbol.

(defun as-keyword (sym) (intern (string sym) :keyword))

Now define a function that takes a define-binary-class slot specifier and
returns a DEFCLASS slot specifier.

(defun slot->defclass-slot (spec)
(let ((name (first spec)))
‘(,name :initarg ,(as-keyword name) :accessor ,name)))

You can test this function at the REPL after switching to your new package
with a call to IN-PACKAGE.

BINARY-DATA> (slot->defclass-slot ’(major-version u1))
(MAJOR-VERSION :INITARG :MAJOR-VERSION :ACCESSOR MAJOR-VERSION)

Looks good. Now the first version of define-binary-class is trivial.

(defmacro define-binary-class (name slots)
‘(defclass ,name ()

,(mapcar #’slot->defclass-slot slots)))

This is simple template-style macro--define-binary-class generates a
DEFCLASS form by interpolating the name of the class and a list of slot specifiers
constructed by applying slot->defclass-slot to each element of the list of
slots specifiers from the define-binary-class form.

To see exactly what code this macro generates, you can evaluate this expression
at the REPL.

(macroexpand-1 ’(define-binary-class id3-tag
((identifier (iso-8859-1-string :length 3))
(major-version u1)
(revision u1)
(flags u1)

310

(size id3-tag-size)
(frames (id3-frames :tag-size size)))))

The result, slightly reformatted here for better readability, should look familiar
since it’s exactly the class definition you wrote by hand earlier:

(defclass id3-tag ()
((identifier :initarg :identifier :accessor identifier)
(major-version :initarg :major-version :accessor major-version)
(revision :initarg :revision :accessor revision)
(flags :initarg :flags :accessor flags)
(size :initarg :size :accessor size)
(frames :initarg :frames :accessor frames)))

Reading Binary Objects
Next you need to make define-binary-class also generate a function that can
read an instance of the new class. Looking back at the read-id3-tag function
you wrote before, this seems a bit trickier, as the read-id3-tag wasn’t quite so
regular--to read each slot’s value, you had to call a different function. Not to
mention, the name of the function, read-id3-tag, while derived from the name
of the class you’re defining, isn’t one of the arguments to define-binary-class
and thus isn’t available to be interpolated into a template the way the class
name was.

You could deal with both of those problems by devising and following a naming
convention so the macro can figure out the name of the function to call based
on the name of the type in the slot specifier. However, this would require
define-binary-class to generate the name read-id3-tag, which is possible
but a bad idea. Macros that create global definitions should generally use only
names passed to them by their callers; macros that generate names under the
covers can cause hard-to-predict--and hard-to-debug--name conflicts when the
generated names happen to be the same as names used elsewhere.8

You can avoid both these inconveniences by noticing that all the functions that
read a particular type of value have the same fundamental purpose, to read a
value of a specific type from a stream. Speaking colloquially, you might say
they’re all instances of a single generic operation. And the colloquial use of the
word generic should lead you directly to the solution to your problem: instead
of defining a bunch of independent functions, all with different names, you can
define a single generic function, read-value, with methods specialized to read
different types of values.

That is, instead of defining functions read-iso-8859-1-string and read-u1,
you can define read-value as a generic function taking two required arguments,
a type and a stream, and possibly some keyword arguments.

(defgeneric read-value (type stream &key)
(:documentation "Read a value of the given type from the stream."))

311

By specifying &key without any actual keyword parameters, you allow different
methods to define their own &key parameters without requiring them to do so.
This does mean every method specialized on read-value will have to include
either &key or an &rest parameter in its parameter list to be compatible with
the generic function.

Then you’ll define methods that use EQL specializers to specialize the type
argument on the name of the type you want to read.

(defmethod read-value ((type (eql ’iso-8859-1-string)) in &key length) ...)

(defmethod read-value ((type (eql ’u1)) in &key) ...)

Then you can make define-binary-class generate a read-value method
specialized on the type name id3-tag, and that method can be implemented
in terms of calls to read-value with the appropriate slot types as the first
argument. The code you want to generate is going to look like this:

(defmethod read-value ((type (eql ’id3-tag)) in &key)
(let ((object (make-instance ’id3-tag)))
(with-slots (identifier major-version revision flags size frames) object
(setf identifier (read-value ’iso-8859-1-string in :length 3))
(setf major-version (read-value ’u1 in))
(setf revision (read-value ’u1 in))
(setf flags (read-value ’u1 in))
(setf size (read-value ’id3-encoded-size in))
(setf frames (read-value ’id3-frames in :tag-size size)))

object))

So, just as you needed a function to translate a define-binary-class slot
specifier to a DEFCLASS slot specifier in order to generate the DEFCLASS form,
now you need a function that takes a define-binary-class slot specifier and
generates the appropriate SETF form, that is, something that takes this:

(identifier (iso-8859-1-string :length 3))

and returns this:

(setf identifier (read-value ’iso-8859-1-string in :length 3))

However, there’s a difference between this code and the DEFCLASS slot specifier: it
includes a reference to a variable in--the method parameter from the read-value
method--that wasn’t derived from the slot specifier. It doesn’t have to be called
in, but whatever name you use has to be the same as the one used in the
method’s parameter list and in the other calls to read-value. For now you can
dodge the issue of where that name comes from by defining slot->read-value
to take a second argument of the name of the stream variable.

(defun slot->read-value (spec stream)
(destructuring-bind (name (type &rest args)) (normalize-slot-spec spec)
‘(setf ,name (read-value ’,type ,stream ,@args))))

312

The function normalize-slot-spec normalizes the second element of the slot
specifier, converting a symbol like u1 to the list (u1) so the DESTRUCTURING-BIND
can parse it. It looks like this:

(defun normalize-slot-spec (spec)
(list (first spec) (mklist (second spec))))

(defun mklist (x) (if (listp x) x (list x)))

You can test slot->read-value with each type of slot specifier.

BINARY-DATA> (slot->read-value ’(major-version u1) ’stream)
(SETF MAJOR-VERSION (READ-VALUE ’U1 STREAM))
BINARY-DATA> (slot->read-value ’(identifier (iso-8859-1-string :length 3)) ’stream)
(SETF IDENTIFIER (READ-VALUE ’ISO-8859-1-STRING STREAM :LENGTH 3))

With these functions you’re ready to add read-value to define-binary-class.
If you take the handwritten read-value method and strip out anything that’s
tied to a particular class, you’re left with this skeleton:

(defmethod read-value ((type (eql ...)) stream &key)
(let ((object (make-instance ...)))
(with-slots (...) object
...

object)))

All you need to do is add this skeleton to the define-binary-class template,
replacing ellipses with code that fills in the skeleton with the appropriate names
and code. You’ll also want to replace the variables type, stream, and object
with gensymed names to avoid potential conflicts with slot names,9 which you
can do with the with-gensyms macro from Chapter 8.

Also, because a macro must expand into a single form, you need to wrap some
form around the DEFCLASS and DEFMETHOD. PROGN is the customary form to use
for macros that expand into multiple definitions because of the special treatment
it gets from the file compiler when appearing at the top level of a file, as I
discussed in Chapter 20.

So, you can change define-binary-class as follows:

(defmacro define-binary-class (name slots)
(with-gensyms (typevar objectvar streamvar)
‘(progn

(defclass ,name ()
,(mapcar #’slot->defclass-slot slots))

(defmethod read-value ((,typevar (eql ’,name)) ,streamvar &key)
(let ((,objectvar (make-instance ’,name)))
(with-slots ,(mapcar #’first slots) ,objectvar
,@(mapcar #’(lambda (x) (slot->read-value x streamvar)) slots))

313

,objectvar)))))

Writing Binary Objects
Generating code to write out an instance of a binary class will proceed similarly.
First you can define a write-value generic function.

(defgeneric write-value (type stream value &key)
(:documentation "Write a value as the given type to the stream."))

Then you define a helper function that translates a define-binary-class slot
specifier into code that writes out the slot using write-value. As with the
slot->read-value function, this helper function needs to take the name of the
stream variable as an argument.

(defun slot->write-value (spec stream)
(destructuring-bind (name (type &rest args)) (normalize-slot-spec spec)
‘(write-value ’,type ,stream ,name ,@args)))

Now you can add a write-value template to the define-binary-class macro.

(defmacro define-binary-class (name slots)
(with-gensyms (typevar objectvar streamvar)
‘(progn

(defclass ,name ()
,(mapcar #’slot->defclass-slot slots))

(defmethod read-value ((,typevar (eql ’,name)) ,streamvar &key)
(let ((,objectvar (make-instance ’,name)))
(with-slots ,(mapcar #’first slots) ,objectvar
,@(mapcar #’(lambda (x) (slot->read-value x streamvar)) slots))

,objectvar))

(defmethod write-value ((,typevar (eql ’,name)) ,streamvar ,objectvar &key)
(with-slots ,(mapcar #’first slots) ,objectvar
,@(mapcar #’(lambda (x) (slot->write-value x streamvar)) slots))))))

Adding Inheritance and Tagged Structures
While this version of define-binary-class will handle stand-alone struc-
tures, binary file formats often define on-disk structures that would be nat-
ural to model with subclasses and superclasses. So you might want to extend
define-binary-class to support inheritance.

A related technique used in many binary formats is to have several on-disk
structures whose exact type can be determined only by reading some data that
indicates how to parse the following bytes. For instance, the frames that make
up the bulk of an ID3 tag all share a common header structure consisting of a
string identifier and a length. To read a frame, you need to read the identifier

314

and use its value to determine what kind of frame you’re looking at and thus
how to parse the body of the frame.

The current define-binary-class macro has no way to handle this kind of
reading--you could use define-binary-class to define a class to represent each
kind of frame, but you’d have no way to know what type of frame to read without
reading at least the identifier. And if other code reads the identifier in order to
determine what type to pass to read-value, then that will break read-value
since it’s expecting to read all the data that makes up the instance of the class
it instantiates.

You can solve this problem by adding inheritance to define-binary-class
and then writing another macro, define-tagged-binary-class, for defining
"abstract" classes that aren’t instantiated directly but that can be specialized on
by read-value methods that know how to read enough data to determine what
kind of class to create.

The first step to adding inheritance to define-binary-class is to add a pa-
rameter to the macro to accept a list of superclasses.

(defmacro define-binary-class (name (&rest superclasses) slots) ...

Then, in the DEFCLASS template, interpolate that value instead of the empty
list.

(defclass ,name ,superclasses
...)

However, there’s a bit more to it than that. You also need to change the
read-value and write-value methods so the methods generated when defining
a superclass can be used by the methods generated as part of a subclass to read
and write inherited slots.

The current way read-value works is particularly problematic since it instan-
tiates the object before filling it in--obviously, you can’t have the method
responsible for reading the superclass’s fields instantiate one object while the
subclass’s method instantiates and fills in a different object.

You can fix that problem by splitting read-value into two parts--one responsible
for instantiating the correct kind of object and another responsible for filling
slots in an existing object. On the writing side it’s a bit simpler, but you can
use the same technique.

So you’ll define two new generic functions, read-object and write-object,
that will both take an existing object and a stream. Methods on these generic
functions will be responsible for reading or writing the slots specific to the class
of the object on which they’re specialized.

(defgeneric read-object (object stream)
(:method-combination progn :most-specific-last)
(:documentation "Fill in the slots of object from stream."))

315

(defgeneric write-object (object stream)
(:method-combination progn :most-specific-last)
(:documentation "Write out the slots of object to the stream."))

Defining these generic functions to use the PROGN method combination with
the option :most-specific-last allows you to define methods that specialize
object on each binary class and have them deal only with the slots actually
defined in that class; the PROGN method combination will combine all the ap-
plicable methods so the method specialized on the least specific class in the
hierarchy runs first, reading or writing the slots defined in that class, then the
method specialized on next least specific subclass, and so on. And since all
the heavy lifting for a specific class is now going to be done by read-object
and write-object, you don’t even need to define specialized read-value and
write-value methods; you can define default methods that assume the type
argument is the name of a binary class.

(defmethod read-value ((type symbol) stream &key)
(let ((object (make-instance type)))
(read-object object stream)
object))

(defmethod write-value ((type symbol) stream value &key)
(assert (typep value type))
(write-object value stream))

Note how you can use MAKE-INSTANCE as a generic object factory--while you
normally call MAKE-INSTANCE with a quoted symbol as the first argument because
you normally know exactly what class you want to instantiate, you can use any
expression that evaluates to a class name such as, in this case, the type parameter
in the read-value method.

The actual changes to define-binary-class to define methods on read-object
and write-object rather than read-value and write-value are fairly minor.

(defmacro define-binary-class (name superclasses slots)
(with-gensyms (objectvar streamvar)
‘(progn

(defclass ,name ,superclasses
,(mapcar #’slot->defclass-slot slots))

(defmethod read-object progn ((,objectvar ,name) ,streamvar)
(with-slots ,(mapcar #’first slots) ,objectvar
,@(mapcar #’(lambda (x) (slot->read-value x streamvar)) slots)))

(defmethod write-object progn ((,objectvar ,name) ,streamvar)
(with-slots ,(mapcar #’first slots) ,objectvar
,@(mapcar #’(lambda (x) (slot->write-value x streamvar)) slots))))))

316

Keeping Track of Inherited Slots
This definition will work for many purposes. However, it doesn’t handle one
fairly common situation, namely, when you have a subclass that needs to refer
to inherited slots in its own slot specifications. For instance, with the current
definition of define-binary-class, you can define a single class like this:

(define-binary-class generic-frame ()
((id (iso-8859-1-string :length 3))
(size u3)
(data (raw-bytes :bytes size))))

The reference to size in the specification of data works the way you’d expect
because the expressions that read and write the data slot are wrapped in a
WITH-SLOTS that lists all the object’s slots. However, if you try to split that
class into two classes like this:

(define-binary-class frame ()
((id (iso-8859-1-string :length 3))
(size u3)))

(define-binary-class generic-frame (frame)
((data (raw-bytes :bytes size))))

you’ll get a compile-time warning when you compile the generic-frame def-
inition and a runtime error when you try to use it because there will be no
lexically apparent variable size in the read-object and write-object methods
specialized on generic-frame.

What you need to do is keep track of the slots defined by each binary class and
then include inherited slots in the WITH-SLOTS forms in the read-object and
write-object methods.

The easiest way to keep track of information like this is to hang it off the symbol
that names the class. As I discussed in Chapter 21, every symbol object has an
associated property list, which can be accessed via the functions SYMBOL-PLIST
and GET. You can associate arbitrary key/value pairs with a symbol by adding
them to its property list with SETF of GET. For instance, if the binary class foo
defines three slots--x, y, and z--you can keep track of that fact by adding a
slots key to the symbol foo’s property list with the value (x y z) with this
expression:

(setf (get ’foo ’slots) ’(x y z))

You want this bookkeeping to happen as part of evaluating the define-binary-class
of foo. However, it’s not clear where to put the expression. If you evaluate it
when you compute the macro’s expansion, it’ll get evaluated when you compile
the define-binary-class form but not if you later load a file that contains
the resulting compiled code. On the other hand, if you include the expression
in the expansion, then it won’t be evaluated during compilation, which means

317

if you compile a file with several define-binary-class forms, none of the
information about what classes define what slots will be available until the
whole file is loaded, which is too late.

This is what the special operator EVAL-WHEN I discussed in Chapter 20 is for.
By wrapping a form in an EVAL-WHEN, you can control whether it’s evaluated
at compile time, when the compiled code is loaded, or both. For cases like this
where you want to squirrel away some information during the compilation of a
macro form that you also want to be available after the compiled form is loaded,
you should wrap it in an EVAL-WHEN like this:

(eval-when (:compile-toplevel :load-toplevel :execute)
(setf (get ’foo ’slots) ’(x y z)))

and include the EVAL-WHEN in the expansion generated by the macro. Thus, you
can save both the slots and the direct superclasses of a binary class by adding
this form to the expansion generated by define-binary-class:

(eval-when (:compile-toplevel :load-toplevel :execute)
(setf (get ’,name ’slots) ’,(mapcar #’first slots))
(setf (get ’,name ’superclasses) ’,superclasses))

Now you can define three helper functions for accessing this information. The
first simply returns the slots directly defined by a binary class. It’s a good idea
to return a copy of the list since you don’t want other code to modify the list of
slots after the binary class has been defined.

(defun direct-slots (name)
(copy-list (get name ’slots)))

The next function returns the slots inherited from other binary classes.

(defun inherited-slots (name)
(loop for super in (get name ’superclasses)

nconc (direct-slots super)
nconc (inherited-slots super)))

Finally, you can define a function that returns a list containing the names of all
directly defined and inherited slots.

(defun all-slots (name)
(nconc (direct-slots name) (inherited-slots name)))

When you’re computing the expansion of a define-generic-binary-class
form, you want to generate a WITH-SLOTS form that contains the names of all
the slots defined in the new class and all its superclasses. However, you can’t use
all-slots while you’re generating the expansion since the information won’t
be available until after the expansion is compiled. Instead, you should use the
following function, which takes the list of slot specifiers and superclasses passed
to define-generic-binary-class and uses them to compute the list of all the
new class’s slots:

318

(defun new-class-all-slots (slots superclasses)
(nconc (mapcan #’all-slots superclasses) (mapcar #’first slots)))

With these functions defined, you can change define-binary-class to store
the information about the class currently being defined and to use the already
stored information about the superclasses’ slots to generate the WITH-SLOTS
forms you want like this:

(defmacro define-binary-class (name (&rest superclasses) slots)
(with-gensyms (objectvar streamvar)
‘(progn

(eval-when (:compile-toplevel :load-toplevel :execute)
(setf (get ’,name ’slots) ’,(mapcar #’first slots))
(setf (get ’,name ’superclasses) ’,superclasses))

(defclass ,name ,superclasses
,(mapcar #’slot->defclass-slot slots))

(defmethod read-object progn ((,objectvar ,name) ,streamvar)
(with-slots ,(new-class-all-slots slots superclasses) ,objectvar
,@(mapcar #’(lambda (x) (slot->read-value x streamvar)) slots)))

(defmethod write-object progn ((,objectvar ,name) ,streamvar)
(with-slots ,(new-class-all-slots slots superclasses) ,objectvar
,@(mapcar #’(lambda (x) (slot->write-value x streamvar)) slots))))))

Tagged Structures
With the ability to define binary classes that extend other binary classes, you’re
ready to define a new macro for defining classes to represent "tagged" struc-
tures. The strategy for reading tagged structures will be to define a specialized
read-value method that knows how to read the values that make up the start of
the structure and then use those values to determine what subclass to instantiate.
It’ll then make an instance of that class with MAKE-INSTANCE, passing the already
read values as initargs, and pass the object to read-object, allowing the actual
class of the object to determine how the rest of the structure is read.

The new macro, define-tagged-binary-class, will look like define-binary-class
with the addition of a :dispatch option used to specify a form that should
evaluate to the name of a binary class. The :dispatch form will be evaluated
in a context where the names of the slots defined by the tagged class are bound
to variables that hold the values read from the file. The class whose name it
returns must accept initargs corresponding to the slot names defined by the
tagged class. This is easily ensured if the :dispatch form always evaluates to
the name of a class that subclasses the tagged class.

For instance, supposing you have a function, find-frame-class, that will map
a string identifier to a binary class representing a particular kind of ID3 frame,

319

you might define a tagged binary class, id3-frame, like this:

(define-tagged-binary-class id3-frame ()
((id (iso-8859-1-string :length 3))
(size u3))
(:dispatch (find-frame-class id)))

The expansion of a define-tagged-binary-class will contain a DEFCLASS and
a write-object method just like the expansion of define-binary-class, but
instead of a read-object method it’ll contain a read-value method that looks
like this:

(defmethod read-value ((type (eql ’id3-frame)) stream &key)
(let ((id (read-value ’iso-8859-1-string stream :length 3))

(size (read-value ’u3 stream)))
(let ((object (make-instance (find-frame-class id) :id id :size size)))
(read-object object stream)
object)))

Since the expansions of define-tagged-binary-class and define-binary-class
are going to be identical except for the read method, you can factor out the
common bits into a helper macro, define-generic-binary-class, that accepts
the read method as a parameter and interpolates it.

(defmacro define-generic-binary-class (name (&rest superclasses) slots read-method)
(with-gensyms (objectvar streamvar)
‘(progn

(eval-when (:compile-toplevel :load-toplevel :execute)
(setf (get ’,name ’slots) ’,(mapcar #’first slots))
(setf (get ’,name ’superclasses) ’,superclasses))

(defclass ,name ,superclasses
,(mapcar #’slot->defclass-slot slots))

,read-method

(defmethod write-object progn ((,objectvar ,name) ,streamvar)
(declare (ignorable ,streamvar))
(with-slots ,(new-class-all-slots slots superclasses) ,objectvar
,@(mapcar #’(lambda (x) (slot->write-value x streamvar)) slots))))))

Now you can define both define-binary-class and define-tagged-binary-class
to expand into a call to define-generic-binary-class. Here’s a new version
of define-binary-class that generates the same code as the earlier version
when it’s fully expanded:

(defmacro define-binary-class (name (&rest superclasses) slots)
(with-gensyms (objectvar streamvar)
‘(define-generic-binary-class ,name ,superclasses ,slots

320

(defmethod read-object progn ((,objectvar ,name) ,streamvar)
(declare (ignorable ,streamvar))
(with-slots ,(new-class-all-slots slots superclasses) ,objectvar
,@(mapcar #’(lambda (x) (slot->read-value x streamvar)) slots))))))

And here’s define-tagged-binary-class along with two new helper functions
it uses:

(defmacro define-tagged-binary-class (name (&rest superclasses) slots &rest options)
(with-gensyms (typevar objectvar streamvar)
‘(define-generic-binary-class ,name ,superclasses ,slots
(defmethod read-value ((,typevar (eql ’,name)) ,streamvar &key)
(let* ,(mapcar #’(lambda (x) (slot->binding x streamvar)) slots)
(let ((,objectvar

(make-instance
,@(or (cdr (assoc :dispatch options))

(error "Must supply :dispatch form."))
,@(mapcan #’slot->keyword-arg slots))))

(read-object ,objectvar ,streamvar)
,objectvar))))))

(defun slot->binding (spec stream)
(destructuring-bind (name (type &rest args)) (normalize-slot-spec spec)
‘(,name (read-value ’,type ,stream ,@args))))

(defun slot->keyword-arg (spec)
(let ((name (first spec)))
‘(,(as-keyword name) ,name)))

Primitive Binary Types
While define-binary-class and define-tagged-binary-class make it
easy to define composite structures, you still have to write read-value and
write-value methods for primitive data types by hand. You could decide to
live with that, specifying that users of the library need to write appropriate
methods on read-value and write-value to support the primitive types used
by their binary classes.

However, rather than having to document how to write a suitable
read-value/write-value pair, you can provide a macro to do it auto-
matically. This also has the advantage of making the abstraction created by
define-binary-class less leaky. Currently, define-binary-class depends
on having methods on read-value and write-value defined in a particular
way, but that’s really just an implementation detail. By defining a macro that
generates the read-value and write-value methods for primitive types, you
hide those details behind an abstraction you control. If you decide later to
change the implementation of define-binary-class, you can change your

321

primitive-type-defining macro to meet the new requirements without requiring
any changes to code that uses the binary data library.

So you should define one last macro, define-binary-type, that will
generate read-value and write-value methods for reading values repre-
sented by instances of existing classes, rather than by classes defined with
define-binary-class.

For a concrete example, consider a type used in the id3-tag class, a fixed-length
string encoded in ISO-8859-1 characters. I’ll assume, as I did earlier, that the
native character encoding of your Lisp is ISO-8859-1 or a superset, so you can
use CODE-CHAR and CHAR-CODE to translate bytes to characters and back.

As always, your goal is to write a macro that allows you to express only the essen-
tial information needed to generate the required code. In this case, there are four
pieces of essential information: the name of the type, iso-8859-1-string; the
&key parameters that should be accepted by the read-value and write-value
methods, length in this case; the code for reading from a stream; and the code
for writing to a stream. Here’s an expression that contains those four pieces of
information:

(define-binary-type iso-8859-1-string (length)
(:reader (in)
(let ((string (make-string length)))
(dotimes (i length)
(setf (char string i) (code-char (read-byte in))))

string))
(:writer (out string)
(dotimes (i length)
(write-byte (char-code (char string i)) out))))

Now you just need a macro that can take apart this form and put it back together
in the form of two DEFMETHODs wrapped in a PROGN. If you define the parameter
list to define-binary-type like this:

(defmacro define-binary-type (name (&rest args) &body spec) ...

then within the macro the parameter spec will be a list containing the reader
and writer definitions. You can then use ASSOC to extract the elements of spec
using the tags :reader and :writer and then use DESTRUCTURING-BIND to take
apart the REST of each element.10

From there it’s just a matter of interpolating the extracted values into the
backquoted templates of the read-value and write-value methods.

(defmacro define-binary-type (name (&rest args) &body spec)
(with-gensyms (type)
‘(progn
,(destructuring-bind ((in) &body body) (rest (assoc :reader spec))
‘(defmethod read-value ((,type (eql ’,name)) ,in &key ,@args)

322

,@body))
,(destructuring-bind ((out value) &body body) (rest (assoc :writer spec))
‘(defmethod write-value ((,type (eql ’,name)) ,out ,value &key ,@args)
,@body)))))

Note how the backquoted templates are nested: the outermost template starts
with the backquoted PROGN form. That template consists of the symbol PROGN
and two comma-unquoted DESTRUCTURING-BIND expressions. Thus, the outer
template is filled in by evaluating the DESTRUCTURING-BIND expressions and
interpolating their values. Each DESTRUCTURING-BIND expression in turn contains
another backquoted template, which is used to generate one of the method
definitions to be interpolated in the outer template.

With this macro defined, the define-binary-type form given previously ex-
pands to this code:

(progn
(defmethod read-value ((#:g1618 (eql ’iso-8859-1-string)) in &key length)
(let ((string (make-string length)))
(dotimes (i length)
(setf (char string i) (code-char (read-byte in))))

string))
(defmethod write-value ((#:g1618 (eql ’iso-8859-1-string)) out string &key length)
(dotimes (i length)
(write-byte (char-code (char string i)) out))))

Of course, now that you’ve got this nice macro for defining binary types, it’s
tempting to make it do a bit more work. For now you should just make one
small enhancement that will turn out to be pretty handy when you start using
this library to deal with actual formats such as ID3 tags.

ID3 tags, like many other binary formats, use lots of primitive types that are
minor variations on a theme, such as unsigned integers in one-, two-, three-,
and four-byte varieties. You could certainly define each of those types with
define-binary-type as it stands. Or you could factor out the common algo-
rithm for reading and writing n-byte unsigned integers into helper functions.

But suppose you had already defined a binary type, unsigned-integer, that
accepts a :bytes parameter to specify how many bytes to read and write. Using
that type, you could specify a slot representing a one-byte unsigned integer with
a type specifier of (unsigned-integer :bytes 1). But if a particular binary
format specifies lots of slots of that type, it’d be nice to be able to easily define
a new type--say, u1--that means the same thing. As it turns out, it’s easy to
change define-binary-type to support two forms, a long form consisting of a
:reader and :writer pair and a short form that defines a new binary type in
terms of an existing type. Using a short form define-binary-type, you can
define u1 like this:

(define-binary-type u1 () (unsigned-integer :bytes 1))

323

which will expand to this:

(progn
(defmethod read-value ((#:g161887 (eql ’u1)) #:g161888 &key)
(read-value ’unsigned-integer #:g161888 :bytes 1))

(defmethod write-value ((#:g161887 (eql ’u1)) #:g161888 #:g161889 &key)
(write-value ’unsigned-integer #:g161888 #:g161889 :bytes 1)))

To support both long- and short-form define-binary-type calls, you need to
differentiate based on the value of the spec argument. If spec is two items long,
it represents a long-form call, and the two items should be the :reader and
:writer specifications, which you extract as before. On the other hand, if it’s
only one item long, the one item should be a type specifier, which needs to be
parsed differently. You can use ECASE to switch on the LENGTH of spec and then
parse spec and generate an appropriate expansion for either the long form or
the short form.

(defmacro define-binary-type (name (&rest args) &body spec)
(ecase (length spec)
(1
(with-gensyms (type stream value)
(destructuring-bind (derived-from &rest derived-args) (mklist (first spec))
‘(progn

(defmethod read-value ((,type (eql ’,name)) ,stream &key ,@args)
(read-value ’,derived-from ,stream ,@derived-args))

(defmethod write-value ((,type (eql ’,name)) ,stream ,value &key ,@args)
(write-value ’,derived-from ,stream ,value ,@derived-args))))))

(2
(with-gensyms (type)
‘(progn

,(destructuring-bind ((in) &body body) (rest (assoc :reader spec))
‘(defmethod read-value ((,type (eql ’,name)) ,in &key ,@args)

,@body))
,(destructuring-bind ((out value) &body body) (rest (assoc :writer spec))

‘(defmethod write-value ((,type (eql ’,name)) ,out ,value &key ,@args)
,@body)))))))

The Current Object Stack
One last bit of functionality you’ll need in the next chapter is a way to get at the
binary object being read or written while reading and writing. More generally,
when reading or writing nested composite objects, it’s useful to be able to get at
any of the objects currently being read or written. Thanks to dynamic variables
and :around methods, you can add this enhancement with about a dozen lines
of code. To start, you should define a dynamic variable that will hold a stack of
objects currently being read or written.

(defvar *in-progress-objects* nil)

324

Then you can define :around methods on read-object and write-object
that push the object being read or written onto this variable before invoking
CALL-NEXT-METHOD.

(defmethod read-object :around (object stream)
(declare (ignore stream))
(let ((*in-progress-objects* (cons object *in-progress-objects*)))
(call-next-method)))

(defmethod write-object :around (object stream)
(declare (ignore stream))
(let ((*in-progress-objects* (cons object *in-progress-objects*)))
(call-next-method)))

Note how you rebind *in-progress-objects* to a list with a new item on the
front rather than assigning it a new value. This way, at the end of the LET, after
CALL-NEXT-METHOD returns, the old value of *in-progress-objects* will be
restored, effectively popping the object of the stack.

With those two methods defined, you can provide two convenience func-
tions for getting at specific objects in the in-progress stack. The function
current-binary-object will return the head of the stack, the object whose
read-object or write-object method was invoked most recently. The other,
parent-of-type, takes an argument that should be the name of a binary object
class and returns the most recently pushed object of that type, using the TYPEP
function that tests whether a given object is an instance of a particular type.

(defun current-binary-object () (first *in-progress-objects*))

(defun parent-of-type (type)
(find-if #’(lambda (x) (typep x type)) *in-progress-objects*))

These two functions can be used in any code that will be called within the
dynamic extent of a read-object or write-object call. You’ll see one example
of how current-binary-object can be used in the next chapter.11

Now you have all the tools you need to tackle an ID3 parsing library, so you’re
ready to move onto the next chapter where you’ll do just that.

1In ASCII, the first 32 characters are nonprinting control characters originally
used to control the behavior of a Teletype machine, causing it to do such things
as sound the bell, back up one character, move to a new line, and move the
carriage to the beginning of the line. Of these 32 control characters, only three,
the newline, carriage return, and horizontal tab, are typically found in text files.
2Some binary file formats are in-memory data structures--on many operating
systems it’s possible to map a file into memory, and low-level languages such
as C can then treat the region of memory containing the contents of the file

325

just like any other memory; data written to that area of memory is saved to
the underlying file when it’s unmapped. However, these formats are platform-
dependent since the in-memory representation of even such simple data types as
integers depends on the hardware on which the program is running. Thus, any
file format that’s intended to be portable must define a canonical representation
for all the data types it uses that can be mapped to the actual in-memory data
representation on a particular kind of machine or in a particular language.
3The term big-endian and its opposite, little-endian, borrowed from Jonathan
Swift’s Gulliver’s Travels, refer to the way a multibyte number is represented in
an ordered sequence of bytes such as in memory or in a file. For instance, the
number 43981, or abcd in hex, represented as a 16-bit quantity, consists of two
bytes, ab and cd. It doesn’t matter to a computer in what order these two bytes
are stored as long as everybody agrees. Of course, whenever there’s an arbitrary
choice to be made between two equally good options, the one thing you can be
sure of is that everybody is not going to agree. For more than you ever wanted
to know about it, and to see where the terms big-endian and little-endian were
first applied in this fashion, read "On Holy Wars and a Plea for Peace" by Danny
Cohen, available at http://khavrinen.lcs.mit.edu/wollman/ien-137.txt.
4LDB and DPB, a related function, were named after the DEC PDP-10 assembly
functions that did essentially the same thing. Both functions operate on integers
as if they were represented using twos-complement format, regardless of the
internal representation used by a particular Common Lisp implementation.
5Common Lisp also provides functions for shifting and masking the bits of
integers in a way that may be more familiar to C and Java programmers. For
instance, you could write read-u2 yet a third way, using those functions, like
this:

(defun read-u2 (in)
(logior (ash (read-byte in) 8) (read-byte in)))

which would be roughly equivalent to this Java method:

public int readU2 (InputStream in) throws IOException {
return (in.read() << 8) | (in.read());

}

The names LOGIOR and ASH are short for LOGical Inclusive OR and Arithmetic
SHift. ASH shifts an integer a given number of bits to the left when its second
argument is positive or to the right if the second argument is negative. LOGIOR
combines integers by logically or ing each bit. Another function, LOGAND, performs
a bitwise and, which can be used to mask off certain bits. However, for the kinds
of bit twiddling you’ll need to do in this chapter and the next, LDB and BYTE
will be both more convenient and more idiomatic Common Lisp style.
6Originally, UTF-8 was designed to represent a 31-bit character code and used
up to six bytes per code point. However, the maximum Unicode code point is

326

#x10ffff, so a UTF-8 encoding of Unicode requires at most four bytes per code
point.
7If you need to parse a file format that uses other character codes, or if you
need to parse files containing arbitrary Unicode strings using a non-Unicode-
Common-Lisp implementation, you can always represent such strings in memory
as vectors of integer code points. They won’t be Lisp strings, so you won’t be
able to manipulate or compare them with the string functions, but you’ll still be
able to do anything with them that you can with arbitrary vectors.
8Unfortunately, the language itself doesn’t always provide a good model in this
respect: the macro DEFSTRUCT, which I don’t discuss since it has largely been
superseded by DEFCLASS, generates functions with names that it generates based
on the name of the structure it’s given. DEFSTRUCT’s bad example leads many
new macro writers astray.
9Technically there’s no possibility of type or object conflicting with slot names-
-at worst they’d be shadowed within the WITH-SLOTS form. But it doesn’t hurt
anything to simply GENSYM all local variable names used within a macro template.
10Using ASSOC to extract the :reader and :writer elements of spec allows users
of define-binary-type to include the elements in either order; if you required
the :reader element to be always be first, you could then have used (rest
(first spec)) to extract the reader and (rest (second spec)) to extract
the writer. However, as long as you require the :reader and :writer keywords
to improve the readability of define-binary-type forms, you might as well use
them to extract the correct data.
11The ID3 format doesn’t require the parent-of-type function since it’s a
relatively flat structure. This function comes into its own when you need to
parse a format made up of many deeply nested structures whose parsing depends
on information stored in higher-level structures. For example, in the Java class
file format, the top-level class file structure contains a constant pool that maps
numeric values used in other substructures within the class file to constant values
that are needed while parsing those substructures. If you were writing a class
file parser, you could use parent-of-type in the code that reads and writes
those substructures to get at the top-level class file object and from there to the
constant pool.

Copyright © 2003-2005, Peter Seibel

25. Practical: An ID3 Parser
With a library for parsing binary data, you’re ready to write some code for
reading and writing an actual binary format, that of ID3 tags. ID3 tags are
used to embed metadata in MP3 audio files. Dealing with ID3 tags will be a
good test of the binary data library because the ID3 format is a true real-world
format--a mix of engineering trade-offs and idiosyncratic design choices that

327

does, whatever else might be said about it, get the job done. In case you missed
the file-sharing revolution, here’s a quick overview of what ID3 tags are and how
they relate to MP3 files.

MP3, also known as MPEG Audio Layer 3, is a format for storing compressed
audio data, designed by researchers at Fraunhofer IIS and standardized by
the Moving Picture Experts Group, a joint committee of the International
Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC). However, the MP3 format, by itself, defines only how to
store audio data. That’s fine as long as all your MP3 files are managed by a
single application that can store metadata externally and keep track of which
metadata goes with which files. However, when people started passing around
individual MP3 files on the Internet, via file-sharing systems such as Napster,
they soon discovered they needed a way to embed metadata in the MP3 files
themselves.

Because the MP3 standard was already codified and a fair bit of software and
hardware had already been written that knew how to decode the existing MP3
format, any scheme for embedding information in an MP3 file would have to be
invisible to MP3 decoders. Enter ID3.

The original ID3 format, invented by programmer Eric Kemp, consisted of 128
bytes stuck on the end of an MP3 file where it’d be ignored by most MP3 software.
It consisted of four 30-character fields, one each for the song title, the album title,
the artist name, and a comment; a four-byte year field; and a one-byte genre
code. Kemp provided standard meanings for the first 80 genre codes. Nullsoft,
the makers of Winamp, a popular MP3 player, later supplemented this list with
another 60 or so genres.

This format was easy to parse but obviously quite limited. It had no way to
encode names longer than 30 characters; it was limited to 256 genres, and the
meaning of the genre codes had to be agreed upon by all users of ID3-aware
software. There wasn’t even a way to encode the CD track number of a particular
MP3 file until another programmer, Michael Mutschler, proposed embedding
the track number in the comment field, separated from the rest of the comment
by a null byte, so existing ID3 software, which tended to read up to the first null
in each of the text fields, would ignore it. Kemp’s version is now called ID3v1,
and Mutschler’s is ID3v1.1.

Limited as they were, the version 1 proposals were at least a partial solution to
the metadata problem, so they were adopted by many MP3 ripping programs
(which had to put the ID3 tag into the MP3 files) and MP3 players (which would
extract the information in the ID3 tag to display to the user).1

By 1998, however, the limitations were really becoming annoying, and a new
group, led by Martin Nilsson, started work on a completely new tagging scheme,
which came to be called ID3v2. The ID3v2 format is extremely flexible, allowing
for many kinds of information to be included, with almost no length limitations.

328

It also takes advantage of certain details of the MP3 format to allow ID3v2 tags
to be placed at the beginning of an MP3 file.

ID3v2 tags are, however, more of a challenge to parse than version 1 tags. In
this chapter, you’ll use the binary data parsing library from the previous chapter
to develop code that can read and write ID3v2 tags. Or at least you’ll make a
reasonable start--where ID3v1 was too simple, ID3v2 is baroque to the point
of being completely overengineered. Implementing every nook and cranny of
the specification, especially if you want to support all three versions that have
been specified, would be a fair bit of work. However, you can ignore many
of the features in those specifications since they’re rarely used "in the wild."
For starters, you can ignore, for now, a whole version, 2.4, since it has not
been widely adopted and mostly just adds more needless flexibility compared to
version 2.3. I’ll focus on versions 2.2 and 2.3 because they’re both widely used
and are different enough from each other to keep things interesting.

Structure of an ID3v2 Tag
Before you can start cutting code, you’ll need to be familiar with the overall
structure of an ID3v2 tag. A tag starts with a header containing information
about the tag as a whole. The first three bytes of the header encode the string
"ID3" in ISO-8859-1 characters. In other words, they’re the bytes 73, 68, and 51.
Then comes two bytes that encode the major version and revision of the ID3
specification to which the tag purports to conform. They’re followed by a single
byte whose individual bits are treated as flags. The meanings of the individual
flags depend on the version of the spec. Some of the flags can affect the way
the rest of the tag is parsed. The "major version" is actually used to record the
minor version of the spec, while the "revision" is the subminor version of the
spec. Thus, the "major version" field for a tag conforming to the 2.3.0 spec is
3. The revision field is always zero since each new ID3v2 spec has bumped the
minor version, leaving the subminor version at zero. The value stored in the
major version field of the tag has, as you’ll see, a dramatic effect on how you’ll
parse the rest of the tag.

The last field in the tag header is an integer, encoded in four bytes but using
only seven bits from each byte, that gives the total size of the tag, not counting
the header. In version 2.3 tags, the header may be followed by several extended
header fields; otherwise, the remainder of the tag data is divided into frames.
Different types of frames store different kinds of information, from simple textual
information, such as the song name, to embedded images. Each frame starts
with a header containing a string identifier and a size. In version 2.3, the frame
header also contains two bytes worth of flags and, depending on the value of
one the flags, an optional one-byte code indicating how the rest of the frame is
encrypted.

Frames are a perfect example of a tagged data structure--to know how to parse
the body of a frame, you need to read the header and use the identifier to

329

determine what kind of frame you’re reading.

The ID3 tag header contains no direct indication of how many frames are in
a tag--the tag header tells you how big the tag is, but since many frames are
variable length, the only way to find out how many frames the tag contains is
to read the frame data. Also, the size given in the tag header may be larger
than the actual number of bytes of frame data; the frames may be followed with
enough null bytes to pad the tag out to the specified size. This makes it possible
for tag editors to modify a tag without having to rewrite the whole MP3 file.2

So, the main issues you have to deal with are reading the ID3 header; determining
whether you’re reading a version 2.2 or 2.3 tag; and reading the frame data,
stopping either when you’ve read the complete tag or when you’ve hit the padding
bytes.

Defining a Package
Like the other libraries you’ve developed so far, the code you’ll write in this
chapter is worth putting in its own package. You’ll need to refer to functions
from both the binary data and pathname libraries developed in Chapters 24 and
15 and will also want to export the names of the functions that make up the
public API to this package. The following package definition does all that:

(defpackage :com.gigamonkeys.id3v2
(:use :common-lisp

:com.gigamonkeys.binary-data
:com.gigamonkeys.pathnames)

(:export
:read-id3
:mp3-p
:id3-p
:album
:composer
:genre
:encoding-program
:artist
:part-of-set
:track
:song
:year
:size
:translated-genre))

As usual, you can, and probably should, change the com.gigamonkeys part of
the package name to your own domain.

330

Integer Types
You can start by defining binary types for reading and writing several of the
primitive types used by the ID3 format, various sizes of unsigned integers, and
four kinds of strings.

ID3 uses unsigned integers encoded in one, two, three, and four bytes. If you first
write a general unsigned-integer binary type that takes the number of bytes to
read as an argument, you can then use the short form of define-binary-type
to define the specific types. The general unsigned-integer type looks like this:

(define-binary-type unsigned-integer (bytes)
(:reader (in)
(loop with value = 0

for low-bit downfrom (* 8 (1- bytes)) to 0 by 8 do
(setf (ldb (byte 8 low-bit) value) (read-byte in))

finally (return value)))
(:writer (out value)
(loop for low-bit downfrom (* 8 (1- bytes)) to 0 by 8

do (write-byte (ldb (byte 8 low-bit) value) out))))

Now you can use the short form of define-binary-type to define one type for
each size of integer used in the ID3 format like this:

(define-binary-type u1 () (unsigned-integer :bytes 1))
(define-binary-type u2 () (unsigned-integer :bytes 2))
(define-binary-type u3 () (unsigned-integer :bytes 3))
(define-binary-type u4 () (unsigned-integer :bytes 4))

Another type you’ll need to be able to read and write is the 28-bit value used
in the header. This size is encoded using 28 bits rather than a multiple of 8,
such as 32 bits, because an ID3 tag can’t contain the byte #xff followed by a
byte with the top 3 bits on because that pattern has a special meaning to MP3
decoders. None of the other fields in the ID3 header could possibly contain such
a byte sequence, but if you encoded the tag size as a regular unsigned-integer,
it might. To avoid that possibility, the size is encoded using only the bottom
seven bits of each byte, with the top bit always zero.3

Thus, it can be read and written a lot like an unsigned-integer except the
size of the byte specifier you pass to LDB should be seven rather than eight.
This similarity suggests that if you add a parameter, bits-per-byte, to the
existing unsigned-integer binary type, you could then define a new type,
id3-tag-size, using a short-form define-binary-type. The new version of
unsigned-integer is just like the old version except with bits-per-byte used
everywhere the old version hardwired the number eight. It looks like this:

(define-binary-type unsigned-integer (bytes bits-per-byte)
(:reader (in)
(loop with value = 0

331

for low-bit downfrom (* bits-per-byte (1- bytes)) to 0 by bits-per-byte do
(setf (ldb (byte bits-per-byte low-bit) value) (read-byte in))

finally (return value)))
(:writer (out value)
(loop for low-bit downfrom (* bits-per-byte (1- bytes)) to 0 by bits-per-byte

do (write-byte (ldb (byte bits-per-byte low-bit) value) out))))

The definition of id3-tag-size is then trivial.

(define-binary-type id3-tag-size () (unsigned-integer :bytes 4 :bits-per-byte 7))

You’ll also have to change the definitions of u1 through u4 to specify eight bits
per byte like this:

(define-binary-type u1 () (unsigned-integer :bytes 1 :bits-per-byte 8))
(define-binary-type u2 () (unsigned-integer :bytes 2 :bits-per-byte 8))
(define-binary-type u3 () (unsigned-integer :bytes 3 :bits-per-byte 8))
(define-binary-type u4 () (unsigned-integer :bytes 4 :bits-per-byte 8))

String Types
The other kinds of primitive types that are ubiquitous in the ID3 format are
strings. In the previous chapter I discussed some of the issues you have to
consider when dealing with strings in binary files, such as the difference between
character codes and character encodings.

ID3 uses two different character codes, ISO 8859-1 and Unicode. ISO 8859-1,
also known as Latin-1, is an eight-bit character code that extends ASCII with
characters used by the languages of Western Europe. In other words, the code
points from 0-127 map to the same characters in ASCII and ISO 8859-1, but ISO
8859-1 also provides mappings for code points up to 255. Unicode is a character
code designed to provide a code point for virtually every character of all the
world’s languages. Unicode is a superset of ISO 8859-1 in the same way that
ISO 8859-1 is a superset of ASCII--the code points from 0-255 map to the same
characters in both ISO 8859-1 and Unicode. (Thus, Unicode is also a superset
of ASCII.)

Since ISO 8859-1 is an eight-bit character code, it’s encoded using one byte per
character. For Unicode strings, ID3 uses the UCS-2 encoding with a leading
byte order mark.4 I’ll discuss what a byte order mark is in a moment.

Reading and writing these two encodings isn’t a problem--it’s just a question of
reading and writing unsigned integers in various formats, and you just finished
writing the code to do that. The trick is how you translate those numeric values
to Lisp character objects.

The Lisp implementation you’re using probably uses either Unicode or ISO
8859-1 as its internal character code. And since all the values from 0-255 map
to the same characters in both ISO 8859-1 and Unicode, you can use Lisp’s
CODE-CHAR and CHAR-CODE functions to translate those values in both character

332

codes. However, if your Lisp supports only ISO 8859-1, then you’ll be able to
represent only the first 255 Unicode characters as Lisp characters. In other
words, in such a Lisp implementation, if you try to process an ID3 tag that uses
Unicode strings and if any of those strings contain characters with code points
higher than 255, you’ll get an error when you try to translate the code point to a
Lisp character. For now I’ll assume either you’re using a Unicode-based Lisp or
you won’t process any files containing characters outside the ISO 8859-1 range.

The other issue with encoding strings is how to know how many bytes to interpret
as character data. ID3 uses two strategies I mentioned in the previous chapter--
some strings are terminated with a null character, while other strings occur in
positions where you can determine the number of bytes to read, either because
the string at that position is always the same length or because the string is at
the end of a composite structure whose overall size you know. Note, however,
that the number of bytes isn’t necessarily the same as the number of characters
in the string.

Putting all these variations together, the ID3 format uses four ways to read and
write strings--two characters crossed with two ways of delimiting the string data.

Obviously, much of the logic of reading and writing strings will be quite similar.
So, you can start by defining two binary types, one for reading strings of a specific
length (in characters) and another for reading terminated strings. Both types
take advantage of that the type argument to read-value and write-value
is just another piece of data; you can make the type of character to read a
parameter of these types. This is a technique you’ll use quite a few times in this
chapter.

(define-binary-type generic-string (length character-type)
(:reader (in)
(let ((string (make-string length)))
(dotimes (i length)
(setf (char string i) (read-value character-type in)))

string))
(:writer (out string)
(dotimes (i length)
(write-value character-type out (char string i)))))

(define-binary-type generic-terminated-string (terminator character-type)
(:reader (in)
(with-output-to-string (s)
(loop for char = (read-value character-type in)

until (char= char terminator) do (write-char char s))))
(:writer (out string)
(loop for char across string

do (write-value character-type out char)
finally (write-value character-type out terminator))))

333

With these types available, there’s not much to reading ISO 8859-1 strings. Be-
cause the character-type argument you pass to read-value and write-value
of a generic-string must be the name of a binary type, you need to define an
iso-8859-1-char binary type. This also gives you a good place to put a bit of
sanity checking on the code points of characters you read and write.

(define-binary-type iso-8859-1-char ()
(:reader (in)
(let ((code (read-byte in)))
(or (code-char code)

(error "Character code ~d not supported" code))))
(:writer (out char)
(let ((code (char-code char)))
(if (<= 0 code #xff)

(write-byte code out)
(error "Illegal character for iso-8859-1 encoding: character: ~c with code: ~d" char code)))))

Now defining the ISO 8859-1 string types is trivial using the short form of
define-binary-type as follows:

(define-binary-type iso-8859-1-string (length)
(generic-string :length length :character-type ’iso-8859-1-char))

(define-binary-type iso-8859-1-terminated-string (terminator)
(generic-terminated-string :terminator terminator :character-type ’iso-8859-1-char))

Reading UCS-2 strings is only slightly more complex. The complexity arises
because you can encode a UCS-2 code point in two ways: most significant byte
first (big-endian) or least significant byte first (little-endian). UCS-2 strings
therefore start with two extra bytes, called the byte order mark, made up of
the numeric value #xfeff encoded in either big-endian form or little-endian
form. When reading a UCS-2 string, you read the byte order mark and then,
depending on its value, read either big-endian or little-endian characters. Thus,
you’ll need two different UCS-2 character types. But you need only one version
of the sanity-checking code, so you can define a parameterized binary type like
this:

(define-binary-type ucs-2-char (swap)
(:reader (in)
(let ((code (read-value ’u2 in)))
(when swap (setf code (swap-bytes code)))
(or (code-char code) (error "Character code ~d not supported" code))))

(:writer (out char)
(let ((code (char-code char)))
(unless (<= 0 code #xffff)
(error "Illegal character for ucs-2 encoding: ~c with char-code: ~d" char code))

(when swap (setf code (swap-bytes code)))
(write-value ’u2 out code))))

334

where the swap-bytes function can be defined as follows, taking advantage of
LDB being SETFable and thus ROTATEFable:

(defun swap-bytes (code)
(assert (<= code #xffff))
(rotatef (ldb (byte 8 0) code) (ldb (byte 8 8) code))
code)

Using ucs-2-char, you can define two character types that will be used as the
character-type arguments to the generic string functions.

(define-binary-type ucs-2-char-big-endian () (ucs-2-char :swap nil))

(define-binary-type ucs-2-char-little-endian () (ucs-2-char :swap t))

Then you need a function that returns the name of the character type to use
based on the value of the byte order mark.

(defun ucs-2-char-type (byte-order-mark)
(ecase byte-order-mark
(#xfeff ’ucs-2-char-big-endian)
(#xfffe ’ucs-2-char-little-endian)))

Now you can define length- and terminator-delimited string types for UCS-2-
encoded strings that read the byte order mark and use it to determine which vari-
ant of UCS-2 character to pass as the character-type argument to read-value
and write-value. The only other wrinkle is that you need to translate the
length argument, which is a number of bytes, to the number of characters to
read, accounting for the byte order mark.

(define-binary-type ucs-2-string (length)
(:reader (in)
(let ((byte-order-mark (read-value ’u2 in))

(characters (1- (/ length 2))))
(read-value
’generic-string in
:length characters
:character-type (ucs-2-char-type byte-order-mark))))

(:writer (out string)
(write-value ’u2 out #xfeff)
(write-value
’generic-string out string
:length (length string)
:character-type (ucs-2-char-type #xfeff))))

(define-binary-type ucs-2-terminated-string (terminator)
(:reader (in)
(let ((byte-order-mark (read-value ’u2 in)))
(read-value

335

’generic-terminated-string in
:terminator terminator
:character-type (ucs-2-char-type byte-order-mark))))

(:writer (out string)
(write-value ’u2 out #xfeff)
(write-value
’generic-terminated-string out string
:terminator terminator
:character-type (ucs-2-char-type #xfeff))))

ID3 Tag Header
With the basic primitive types done, you’re ready to switch to a high-level view
and start defining binary classes to represent first the ID3 tag as a whole and
then the individual frames.

If you turn first to the ID3v2.2 specification, you’ll see that the basic structure
of the tag is this header:

ID3/file identifier "ID3"
ID3 version $02 00
ID3 flags %xx000000
ID3 size 4 * %0xxxxxxx

followed by frame data and padding. Since you’ve already defined binary types
to read and write all the fields in the header, defining a class that can read the
header of an ID3 tag is just a matter of putting them together.

(define-binary-class id3-tag ()
((identifier (iso-8859-1-string :length 3))
(major-version u1)
(revision u1)
(flags u1)
(size id3-tag-size)))

If you have some MP3 files lying around, you can test this much of the code
and also see what version of ID3 tags your MP3s contain. First you can write a
function that reads an id3-tag, as just defined, from the beginning of a file. Be
aware, however, that ID3 tags aren’t required to appear at the beginning of a
file, though these days they almost always do. To find an ID3 tag elsewhere in a
file, you can scan the file looking for the sequence of bytes 73, 68, 51 (in other
words, the string "ID3").5 For now you can probably get away with assuming
the tags are the first thing in the file.

(defun read-id3 (file)
(with-open-file (in file :element-type ’(unsigned-byte 8))
(read-value ’id3-tag in)))

336

On top of this function you can build a function that takes a filename and prints
the information in the tag header along with the name of the file.

(defun show-tag-header (file)
(with-slots (identifier major-version revision flags size) (read-id3 file)
(format t "~a ~d.~d ~8,’0b ~d bytes -- ~a~%"

identifier major-version revision flags size (enough-namestring file))))

It prints output that looks like this:

ID3V2> (show-tag-header "/usr2/mp3/Kitka/Wintersongs/02 Byla Cesta.mp3")
ID3 2.0 00000000 2165 bytes -- Kitka/Wintersongs/02 Byla Cesta.mp3
NIL

Of course, to determine what versions of ID3 are most common in your MP3
library, it’d be handier to have a function that returns a summary of all the
MP3 files under a given directory. You can write one easily enough using the
walk-directory function defined in Chapter 15. First define a helper function
that tests whether a given filename has an mp3 extension.

(defun mp3-p (file)
(and
(not (directory-pathname-p file))
(string-equal "mp3" (pathname-type file))))

Then you can combine show-tag-header and mp3-p with walk-directory to
print a summary of the ID3 header in each file under a given directory.

(defun show-tag-headers (dir)
(walk-directory dir #’show-tag-header :test #’mp3-p))

However, if you have a lot of MP3s, you may just want a count of how many ID3
tags of each version you have in your MP3 collection. To get that information,
you might write a function like this:

(defun count-versions (dir)
(let ((versions (mapcar #’(lambda (x) (cons x 0)) ’(2 3 4))))
(flet ((count-version (file)

(incf (cdr (assoc (major-version (read-id3 file)) versions)))))
(walk-directory dir #’count-version :test #’mp3-p))

versions))

Another function you’ll need in Chapter 29 is one that tests whether a file
actually starts with an ID3 tag, which you can define like this:

(defun id3-p (file)
(with-open-file (in file :element-type ’(unsigned-byte 8))
(string= "ID3" (read-value ’iso-8859-1-string in :length 3))))

337

ID3 Frames
As I discussed earlier, the bulk of an ID3 tag is divided into frames. Each frame
has a structure similar to that of the tag as a whole. Each frame starts with a
header indicating what kind of frame it is and the size of the frame in bytes. The
structure of the frame header changed slightly between version 2.2 and version
2.3 of the ID3 format, and eventually you’ll have to deal with both forms. To
start, you can focus on parsing version 2.2 frames.

The header of a 2.2 frame consists of three bytes that encode a three-character
ISO 8859-1 string followed by a three-byte unsigned integer, which specifies the
size of the frame in bytes, excluding the six-byte header. The string identifies
what type of frame it is, which determines how you parse the data follow-
ing the size. This is exactly the kind of situation for which you defined the
define-tagged-binary-class macro. You can define a tagged class that reads
the frame header and then dispatches to the appropriate concrete class using a
function that maps IDs to a class names.

(define-tagged-binary-class id3-frame ()
((id (iso-8859-1-string :length 3))
(size u3))
(:dispatch (find-frame-class id)))

Now you’re ready to start implementing concrete frame classes. However, the
specification defines quite a few--63 in version 2.2 and even more in later specs.
Even considering frame types that share a common structure to be equivalent,
you’ll still find 24 unique frame types in version 2.2. But only a few of these are
used "in the wild." So rather than immediately setting to work defining classes
for each of the frame types, you can start by writing a generic frame class that
lets you read the frames in a tag without parsing the data within the frames
themselves. This will give you a way to find out what frames are actually present
in the MP3s you want to process. You’ll need this class eventually anyway
because the specification allows for experimental frames that you’ll need to be
able to read without parsing.

Since the size field of the frame header tells you exactly how many bytes long
the frame is, you can define a generic-frame class that extends id3-frame and
adds a single field, data, that will hold an array of bytes.

(define-binary-class generic-frame (id3-frame)
((data (raw-bytes :size size))))

The type of the data field, raw-bytes, just needs to hold an array of bytes. You
can define it like this:

(define-binary-type raw-bytes (size)
(:reader (in)
(let ((buf (make-array size :element-type ’(unsigned-byte 8))))
(read-sequence buf in)

338

buf))
(:writer (out buf)
(write-sequence buf out)))

For the time being, you’ll want all frames to be read as generic-frames, so
you can define the find-frame-class function used in id3-frame’s :dispatch
expression to always return generic-frame, regardless of the frame’s id.

(defun find-frame-class (id)
(declare (ignore id))
’generic-frame)

Now you need to modify id3-tag so it’ll read frames after the header fields.
There’s only one tricky bit to reading the frame data: although the tag header
tells you how many bytes long the tag is, that number includes the padding
that can follow the frame data. Since the tag header doesn’t tell you how many
frames the tag contains, the only way to tell when you’ve hit the padding is to
look for a null byte where you’d expect a frame identifier.

To handle this, you can define a binary type, id3-frames, that will be responsible
for reading the remainder of a tag, creating frame objects to represent all the
frames it finds, and then skipping over any padding. This type will take as a
parameter the tag size, which it can use to avoid reading past the end of the
tag. But the reading code will also need to detect the beginning of the padding
that can follow the tag’s frame data. Rather than calling read-value directly
in id3-frames :reader, you should use a function read-frame, which you’ll
define to return NIL when it detects padding, otherwise returning an id3-frame
object read using read-value. Assuming you define read-frame so it reads
only one byte past the end of the last frame in order to detect the start of the
padding, you can define the id3-frames binary type like this:

(define-binary-type id3-frames (tag-size)
(:reader (in)
(loop with to-read = tag-size

while (plusp to-read)
for frame = (read-frame in)
while frame
do (decf to-read (+ 6 (size frame)))
collect frame
finally (loop repeat (1- to-read) do (read-byte in))))

(:writer (out frames)
(loop with to-write = tag-size

for frame in frames
do (write-value ’id3-frame out frame)
(decf to-write (+ 6 (size frame)))
finally (loop repeat to-write do (write-byte 0 out)))))

You can use this type to add a frames slot to id3-tag.

339

(define-binary-class id3-tag ()
((identifier (iso-8859-1-string :length 3))
(major-version u1)
(revision u1)
(flags u1)
(size id3-tag-size)
(frames (id3-frames :tag-size size))))

Detecting Tag Padding
Now all that remains is to implement read-frame. This is a bit tricky since
the code that actually reads bytes from the stream is several layers down from
read-frame.

What you’d really like to do in read-frame is read one byte and return NIL if it’s
a null and otherwise read a frame with read-value. Unfortunately, if you read
the byte in read-frame, then it won’t be available to be read by read-value.6

It turns out this is a perfect opportunity to use the condition system--you can
check for null bytes in the low-level code that reads from the stream and signal
a condition when you read a null; read-frame can then handle the condition
by unwinding the stack before more bytes are read. In addition to turning out
to be a tidy solution to the problem of detecting the start of the tag’s padding,
this is also an example of how you can use conditions for purposes other than
handling errors.

You can start by defining a condition type to be signaled by the low-level code
and handled by the high-level code. This condition doesn’t need any slots--you
just need a distinct class of condition so you know no other code will be signaling
or handling it.

(define-condition in-padding () ())

Next you need to define a binary type whose :reader reads a given number of
bytes, first reading a single byte and signaling an in-padding condition if the
byte is null and otherwise reading the remaining bytes as an iso-8859-1-string
and combining it with the first byte read.

(define-binary-type frame-id (length)
(:reader (in)
(let ((first-byte (read-byte in)))
(when (= first-byte 0) (signal ’in-padding))
(let ((rest (read-value ’iso-8859-1-string in :length (1- length))))
(concatenate
’string (string (code-char first-byte)) rest))))

(:writer (out id)
(write-value ’iso-8859-1-string out id :length length)))

If you redefine id3-frame to make the type of its id slot frame-id instead

340

of iso-8859-1-string, the condition will be signaled whenever id3-frame’s
read-value method reads a null byte instead of the beginning of a frame.

(define-tagged-binary-class id3-frame ()
((id (frame-id :length 3))
(size u3))
(:dispatch (find-frame-class id)))

Now all read-frame has to do is wrap a call to read-value in a HANDLER-CASE
that handles the in-padding condition by returning NIL.

(defun read-frame (in)
(handler-case (read-value ’id3-frame in)
(in-padding () nil)))

With read-frame defined, you can now read a complete version 2.2 ID3 tag,
representing frames with instances of generic-frame. In the "What Frames
Do You Actually Need?" section, you’ll do some experiments at the REPL to
determine what frame classes you need to implement. But first let’s add support
for version 2.3 ID3 tags.

Supporting Multiple Versions of ID3
Currently, id3-tag is defined using define-binary-class, but if you
want to support multiple versions of ID3, it makes more sense to use a
define-tagged-binary-class that dispatches on the major-version value.
As it turns out, all versions of ID3v2 have the same structure up to the size
field. So, you can define a tagged binary class like the following that defines this
basic structure and then dispatches to the appropriate version-specific subclass:

(define-tagged-binary-class id3-tag ()
((identifier (iso-8859-1-string :length 3))
(major-version u1)
(revision u1)
(flags u1)
(size id3-tag-size))
(:dispatch
(ecase major-version
(2 ’id3v2.2-tag)
(3 ’id3v2.3-tag))))

Version 2.2 and version 2.3 tags differ in two ways. First, the header of a
version 2.3 tag may be extended with up to four optional extended header fields,
as determined by values in the flags field. Second, the frame format changed
between version 2.2 and version 2.3, which means you’ll have to use different
classes to represent version 2.2 frames and the corresponding version 2.3 frames.

Since the new id3-tag class is based on the one you originally wrote to represent
version 2.2 tags, it’s not surprising that the new id3v2.2-tag class is trivial,

341

inheriting most of its slots from the new id3-tag class and adding the one
missing slot, frames. Because version 2.2 and version 2.3 tags use different frame
formats, you’ll have to change the id3-frames type to be parameterized with the
type of frame to read. For now, assume you’ll do that and add a :frame-type
argument to the id3-frames type descriptor like this:

(define-binary-class id3v2.2-tag (id3-tag)
((frames (id3-frames :tag-size size :frame-type ’id3v2.2-frame))))

The id3v2.3-tag class is slightly more complex because of the optional fields.
The first three of the four optional fields are included when the sixth bit in flags
is set. They’re a four- byte integer specifying the size of the extended header,
two bytes worth of flags, and another four-byte integer specifying how many
bytes of padding are included in the tag.7 The fourth optional field, included
when the fifteenth bit of the extended header flags is set, is a four-byte cyclic
redundancy check (CRC) of the rest of the tag.

The binary data library doesn’t provide any special support for optional fields
in a binary class, but it turns out that regular parameterized binary types are
sufficient. You can define a type parameterized with the name of a type and
a value that indicates whether a value of that type should actually be read or
written.

(define-binary-type optional (type if)
(:reader (in)
(when if (read-value type in)))

(:writer (out value)
(when if (write-value type out value))))

Using if as the parameter name looks a bit strange in that code, but it makes
the optional type descriptors quite readable. For instance, here’s the definition
of id3v2.3-tag using optional slots:

(define-binary-class id3v2.3-tag (id3-tag)
((extended-header-size (optional :type ’u4 :if (extended-p flags)))
(extra-flags (optional :type ’u2 :if (extended-p flags)))
(padding-size (optional :type ’u4 :if (extended-p flags)))
(crc (optional :type ’u4 :if (crc-p flags extra-flags)))
(frames (id3-frames :tag-size size :frame-type ’id3v2.3-frame))))

where extended-p and crc-p are helper functions that test the appropriate bit
of the flags value they’re passed. To test whether an individual bit of an integer
is set, you can use LOGBITP, another bit-twiddling function. It takes an index
and an integer and returns true if the specified bit is set in the integer.

(defun extended-p (flags) (logbitp 6 flags))

(defun crc-p (flags extra-flags)
(and (extended-p flags) (logbitp 15 extra-flags)))

342

As in the version 2.2 tag class, the frames slot is defined to be of type id3-frames,
passing the name of the frame type as a parameter. You do, however, need to
make a few small changes to id3-frames and read-frame to support the extra
frame-type parameter.

(define-binary-type id3-frames (tag-size frame-type)
(:reader (in)
(loop with to-read = tag-size

while (plusp to-read)
for frame = (read-frame frame-type in)
while frame
do (decf to-read (+ (frame-header-size frame) (size frame)))
collect frame
finally (loop repeat (1- to-read) do (read-byte in))))

(:writer (out frames)
(loop with to-write = tag-size

for frame in frames
do (write-value frame-type out frame)
(decf to-write (+ (frame-header-size frame) (size frame)))
finally (loop repeat to-write do (write-byte 0 out)))))

(defun read-frame (frame-type in)
(handler-case (read-value frame-type in)
(in-padding () nil)))

The changes are in the calls to read-frame and write-value, where you need
to pass the frame-type argument and, in computing the size of the frame, where
you need to use a function frame-header-size instead of the literal value 6
since the frame header changed size between version 2.2 and version 2.3. Since
the difference in the result of this function is based on the class of the frame, it
makes sense to define it as a generic function like this:

(defgeneric frame-header-size (frame))

You’ll define the necessary methods on that generic function in the next section
after you define the new frame classes.

Versioned Frame Base Classes
Where before you defined a single base class for all frames, you’ll now have two
classes, id3v2.2-frame and id3v2.3-frame. The id3v2.2-frame class will be
essentially the same as the original id3-frame class.

(define-tagged-binary-class id3v2.2-frame ()
((id (frame-id :length 3))
(size u3))
(:dispatch (find-frame-class id)))

The id3v2.3-frame, on the other hand, requires more changes. The frame

343

identifier and size fields were extended in version 2.3 from three to four bytes
each, and two bytes worth of flags were added. Additionally, the frame, like the
version 2.3 tag, can contain optional fields, controlled by the values of three of
the frame’s flags.8 With those changes in mind, you can define the version 2.3
frame base class, along with some helper functions, like this:

(define-tagged-binary-class id3v2.3-frame ()
((id (frame-id :length 4))
(size u4)
(flags u2)
(decompressed-size (optional :type ’u4 :if (frame-compressed-p flags)))
(encryption-scheme (optional :type ’u1 :if (frame-encrypted-p flags)))
(grouping-identity (optional :type ’u1 :if (frame-grouped-p flags))))
(:dispatch (find-frame-class id)))

(defun frame-compressed-p (flags) (logbitp 7 flags))

(defun frame-encrypted-p (flags) (logbitp 6 flags))

(defun frame-grouped-p (flags) (logbitp 5 flags))

With these two classes defined, you can now implement the methods on the
generic function frame-header-size.

(defmethod frame-header-size ((frame id3v2.2-frame)) 6)

(defmethod frame-header-size ((frame id3v2.3-frame)) 10)

The optional fields in a version 2.3 frame aren’t counted as part of the header for
this computation since they’re already included in the value of the frame’s size.

Versioned Concrete Frame Classes
In the original definition, generic-frame subclassed id3-frame. But now
id3-frame has been replaced with the two version-specific base classes,
id3v2.2-frame and id3v2.3-frame. So, you need to define two new versions
of generic-frame, one for each base class. One way to define this classes would
be like this:

(define-binary-class generic-frame-v2.2 (id3v2.2-frame)
((data (raw-bytes :size size))))

(define-binary-class generic-frame-v2.3 (id3v2.3-frame)
((data (raw-bytes :size size))))

However, it’s a bit annoying that these two classes are the same except for their
superclass. It’s not too bad in this case since there’s only one additional field.
But if you take this approach for other concrete frame classes, ones that have a

344

more complex internal structure that’s identical between the two ID3 versions,
the duplication will be more irksome.

Another approach, and the one you should actually use, is to define a class
generic-frame as a mixin: a class intended to be used as a superclass along
with one of the version-specific base classes to produce a concrete, version-specific
frame class. The only tricky bit about this approach is that if generic-frame
doesn’t extend either of the frame base classes, then you can’t refer to the
size slot in its definition. Instead, you must use the current-binary-object
function I discussed at the end of the previous chapter to access the object you’re
in the midst of reading or writing and pass it to size. And you need to account
for the difference in the number of bytes of the total frame size that will be left
over, in the case of a version 2.3 frame, if any of the optional fields are included
in the frame. So, you should define a generic function data-bytes with methods
that do the right thing for both version 2.2 and version 2.3 frames.

(define-binary-class generic-frame ()
((data (raw-bytes :size (data-bytes (current-binary-object))))))

(defgeneric data-bytes (frame))

(defmethod data-bytes ((frame id3v2.2-frame))
(size frame))

(defmethod data-bytes ((frame id3v2.3-frame))
(let ((flags (flags frame)))
(- (size frame)

(if (frame-compressed-p flags) 4 0)
(if (frame-encrypted-p flags) 1 0)
(if (frame-grouped-p flags) 1 0))))

Then you can define concrete classes that extend one of the version-specific base
classes and generic-frame to define version-specific generic frame classes.

(define-binary-class generic-frame-v2.2 (id3v2.2-frame generic-frame) ())

(define-binary-class generic-frame-v2.3 (id3v2.3-frame generic-frame) ())

With these classes defined, you can redefine the find-frame-class function to
return the right versioned class based on the length of the identifier.

(defun find-frame-class (id)
(ecase (length id)
(3 ’generic-frame-v2.2)
(4 ’generic-frame-v2.3)))

345

What Frames Do You Actually Need?
With the ability to read both version 2.2 and version 2.3 tags using generic
frames, you’re ready to start implementing classes to represent the specific frames
you care about. However, before you dive in, you should take a breather and
figure out what frames you actually care about since, as I mentioned earlier, the
ID3 spec specifies many frames that are almost never used. Of course, what
frames you care about depends on what kinds of applications you’re interested
in writing. If you’re mostly interested in extracting information from existing
ID3 tags, then you need implement only the classes representing the frames
containing the information you care about. On the other hand, if you want to
write an ID3 tag editor, you may need to support all the frames.

Rather than guessing which frames will be most useful, you can use the code
you’ve already written to poke around a bit at the REPL and see what frames
are actually used in your own MP3s. To start, you need an instance of id3-tag,
which you can get with the read-id3 function.

ID3V2> (read-id3 "/usr2/mp3/Kitka/Wintersongs/02 Byla Cesta.mp3")
#<ID3V2.2-TAG @ #x727b2912>

Since you’ll want to play with this object a bit, you should save it in a variable.

ID3V2> (defparameter *id3* (read-id3 "/usr2/mp3/Kitka/Wintersongs/02 Byla Cesta.mp3"))
ID3

Now you can see, for example, how many frames it has.

ID3V2> (length (frames *id3*))
11

Not too many--let’s take a look at what they are.

ID3V2> (frames *id3*)
(#<GENERIC-FRAME-V2.2 @ #x72dabdda> #<GENERIC-FRAME-V2.2 @ #x72dabec2>
#<GENERIC-FRAME-V2.2 @ #x72dabfa2> #<GENERIC-FRAME-V2.2 @ #x72dac08a>
#<GENERIC-FRAME-V2.2 @ #x72dac16a> #<GENERIC-FRAME-V2.2 @ #x72dac24a>
#<GENERIC-FRAME-V2.2 @ #x72dac32a> #<GENERIC-FRAME-V2.2 @ #x72dac40a>
#<GENERIC-FRAME-V2.2 @ #x72dac4f2> #<GENERIC-FRAME-V2.2 @ #x72dac632>
#<GENERIC-FRAME-V2.2 @ #x72dac7b2>)

Okay, that’s not too informative. What you really want to know are what kinds
of frames are in there. In other words, you want to know the ids of those frames,
which you can get with a simple MAPCAR like this:

ID3V2> (mapcar #’id (frames *id3*))
("TT2" "TP1" "TAL" "TRK" "TPA" "TYE" "TCO" "TEN" "COM" "COM" "COM")

If you look up these identifiers in the ID3v2.2 spec, you’ll discover that all the
frames with identifiers starting with T are text information frames and have
a similar structure. And COM is the identifier for comment frames, which

346

have a structure similar to that of text information frames. The particular text
information frames identified here turn out to be the frames for representing the
song title, artist, album, track, part of set, year, genre, and encoding program.

Of course, this is just one MP3 file. Maybe other frames are used in other files.
It’s easy enough to discover. First define a function that combines the previous
MAPCAR expression with a call to read-id3 and wraps the whole thing in a
DELETE-DUPLICATES to keep things tidy. You’ll have to use a :test argument
of #'string= to DELETE-DUPLICATES to specify that you want two elements
considered the same if they’re the same string.

(defun frame-types (file)
(delete-duplicates (mapcar #’id (frames (read-id3 file))) :test #’string=))

This should give the same answer except with only one of each identifier when
passed the same filename.

ID3V2> (frame-types "/usr2/mp3/Kitka/Wintersongs/02 Byla Cesta.mp3")
("TT2" "TP1" "TAL" "TRK" "TPA" "TYE" "TCO" "TEN" "COM")

Then you can use Chapter 15’s walk-directory function along with mp3-p
to find every MP3 file under a directory and combine the results of calling
frame-types on each file. Recall that NUNION is the recycling version of the
UNION function; since frame-types makes a new list for each file, this is safe.

(defun frame-types-in-dir (dir)
(let ((ids ()))
(flet ((collect (file)

(setf ids (nunion ids (frame-types file) :test #’string=))))
(walk-directory dir #’collect :test #’mp3-p))

ids))

Now pass it the name of a directory, and it’ll tell you the set of identifiers used
in all the MP3 files under that directory. It may take a few seconds depending
how many MP3 files you have, but you’ll probably get something similar to this:

ID3V2> (frame-types-in-dir "/usr2/mp3/")
("TCON" "COMM" "TRCK" "TIT2" "TPE1" "TALB" "TCP" "TT2" "TP1" "TCM"
"TAL" "TRK" "TPA" "TYE" "TCO" "TEN" "COM")

The four-letter identifiers are the version 2.3 equivalents of the version 2.2
identifiers I discussed previously. Since the information stored in those frames is
exactly the information you’ll need in Chapter 27, it makes sense to implement
classes only for the frames actually used, namely, text information and comment
frames, which you’ll do in the next two sections. If you decide later that you
want to support other frame types, it’s mostly a matter of translating the ID3
specifications into the appropriate binary class definitions.

347

Text Information Frames
All text information frames consist of two fields: a single byte indicating which
string encoding is used in the frame and a string encoded in the remaining bytes
of the frame. If the encoding byte is zero, the string is encoded in ISO 8859-1; if
the encoding is one, the string is a UCS-2 string.

You’ve already defined binary types representing the four different kinds of strings-
-two different encodings each with two different methods of delimiting the string.
However, define-binary-class provides no direct facility for determining the
type of value to read based on other values in the object. Instead, you can define
a binary type that you pass the value of the encoding byte and that then reads
or writes the appropriate kind of string.

As long as you’re defining such a type, you can also define it to take two
parameters, :length and :terminator, and pick the right type of string based
on which argument is supplied. To implement this new type, you must first
define some helper functions. The first two return the name of the appropriate
string type based on the encoding byte.

(defun non-terminated-type (encoding)
(ecase encoding
(0 ’iso-8859-1-string)
(1 ’ucs-2-string)))

(defun terminated-type (encoding)
(ecase encoding
(0 ’iso-8859-1-terminated-string)
(1 ’ucs-2-terminated-string)))

Then string-args uses the encoding byte, the length, and the terminator to
determine several of the arguments to be passed to read-value and write-value
by the :reader and :writer of id3-encoded-string. One of the length and
terminator arguments to string-args should always be NIL.

(defun string-args (encoding length terminator)
(cond
(length
(values (non-terminated-type encoding) :length length))
(terminator
(values (terminated-type encoding) :terminator terminator))))

With those helpers, the definition of id3-encoded-string is simple. One detail
to note is that the keyword--either :length or :terminator--used in the call
to read-value and write-value is just another piece of data returned by
string-args. Although keywords in arguments lists are almost always literal
keywords, they don’t have to be.

(define-binary-type id3-encoded-string (encoding length terminator)

348

(:reader (in)
(multiple-value-bind (type keyword arg)

(string-args encoding length terminator)
(read-value type in keyword arg)))

(:writer (out string)
(multiple-value-bind (type keyword arg)

(string-args encoding length terminator)
(write-value type out string keyword arg))))

Now you can define a text-info mixin class, much the way you defined
generic-frame earlier.

(define-binary-class text-info-frame ()
((encoding u1)
(information (id3-encoded-string :encoding encoding :length (bytes-left 1)))))

As when you defined generic-frame, you need access to the size of the frame,
in this case to compute the :length argument to pass to id3-encoded-string.
Because you’ll need to do a similar computation in the next class you de-
fine, you can go ahead and define a helper function, bytes-left, that uses
current-binary-object to get at the size of the frame.

(defun bytes-left (bytes-read)
(- (size (current-binary-object)) bytes-read))

Now, as you did with the generic-frame mixin, you can define two version-
specific concrete classes with a minimum of duplicated code.

(define-binary-class text-info-frame-v2.2 (id3v2.2-frame text-info-frame) ())

(define-binary-class text-info-frame-v2.3 (id3v2.3-frame text-info-frame) ())

To wire these classes in, you need to modify find-frame-class to return the
appropriate class name when the ID indicates the frame is a text information
frame, namely, whenever the ID starts with T and isn’t TXX or TXXX.

(defun find-frame-class (name)
(cond
((and (char= (char name 0) #\T)

(not (member name ’("TXX" "TXXX") :test #’string=)))
(ecase (length name)
(3 ’text-info-frame-v2.2)
(4 ’text-info-frame-v2.3)))

(t
(ecase (length name)
(3 ’generic-frame-v2.2)
(4 ’generic-frame-v2.3)))))

349

Comment Frames
Another commonly used frame type is the comment frame, which is like a text
information frame with a few extra fields. Like a text information frame, it
starts with a single byte indicating the string encoding used in the frame. That
byte is followed by a three-character ISO 8859-1 string (regardless of the value
of the string encoding byte), which indicates what language the comment is in
using an ISO-639-2 code, for example, "eng" for English or "jpn" for Japanese.
That field is followed by two strings encoded as indicated by the first byte. The
first is a null-terminated string containing a description of the comment. The
second, which takes up the remainder of the frame, is the comment text itself.

(define-binary-class comment-frame ()
((encoding u1)
(language (iso-8859-1-string :length 3))
(description (id3-encoded-string :encoding encoding :terminator +null+))
(text (id3-encoded-string

:encoding encoding
:length (bytes-left

(+ 1 ; encoding
3 ; language
(encoded-string-length description encoding t)))))))

As in the definition of the text-info mixin, you can use bytes-left to compute
the size of the final string. However, since the description field is a variable-
length string, the number of bytes read prior to the start of text isn’t a constant.
To make matters worse, the number of bytes used to encode description is
dependent on the encoding. So, you should define a helper function that returns
the number of bytes used to encode a string given the string, the encoding
code, and a boolean indicating whether the string is terminated with an extra
character.

(defun encoded-string-length (string encoding terminated)
(let ((characters (+ (length string) (if terminated 1 0))))
(* characters (ecase encoding (0 1) (1 2)))))

And, as before, you can define the concrete version-specific comment frame
classes and wire them into find-frame-class.

(define-binary-class comment-frame-v2.2 (id3v2.2-frame comment-frame) ())

(define-binary-class comment-frame-v2.3 (id3v2.3-frame comment-frame) ())

(defun find-frame-class (name)
(cond
((and (char= (char name 0) #\T)

(not (member name ’("TXX" "TXXX") :test #’string=)))
(ecase (length name)

350

(3 ’text-info-frame-v2.2)
(4 ’text-info-frame-v2.3)))

((string= name "COM") ’comment-frame-v2.2)
((string= name "COMM") ’comment-frame-v2.3)
(t
(ecase (length name)
(3 ’generic-frame-v2.2)
(4 ’generic-frame-v2.3)))))

Extracting Information from an ID3 Tag
Now that you have the basic ability to read and write ID3 tags, you have a lot of
directions you could take this code. If you want to develop a complete ID3 tag
editor, you’ll need to implement specific classes for all the frame types. You’d also
need to define methods for manipulating the tag and frame objects in a consistent
way (for instance, if you change the value of a string in a text-info-frame,
you’ll likely need to adjust the size); as the code stands, there’s nothing to make
sure that happens.9

Or, if you just need to extract certain pieces of information about an MP3
file from its ID3 tag--as you will when you develop a streaming MP3 server in
Chapters 27, 28, and 29--you’ll need to write functions that find the appropriate
frames and extract the information you want.

Finally, to make this production-quality code, you’d have to pore over the ID3
specs and deal with the details I skipped over in the interest of space. In
particular, some of the flags in both the tag and the frame can affect the way the
contents of the tag or frame is read; unless you write some code that does the
right thing when those flags are set, there may be ID3 tags that this code won’t
be able to parse correctly. But the code from this chapter should be capable of
parsing nearly all the MP3s you actually encounter.

For now you can finish with a few functions to extract individual pieces of
information from an id3-tag. You’ll need these functions in Chapter 27 and
probably in other code that uses this library. They belong in this library because
they depend on details of the ID3 format that the users of this library shouldn’t
have to worry about.

To get, say, the name of the song of the MP3 from which an id3-tag was
extracted, you need to find the ID3 frame with a specific identifier and then
extract the information field. And some pieces of information, such as the genre,
can require further decoding. Luckily, all the frames that contain the information
you’ll care about are text information frames, so extracting a particular piece
of information mostly boils down to using the right identifier to look up the
appropriate frame. Of course, the ID3 authors decided to change all the identifiers
between ID3v2.2 and ID3v2.3, so you’ll have to account for that.

Nothing too complex--you just need to figure out the right path to get to the

351

various pieces of information. This is a perfect bit of code to develop interactively,
much the way you figured out what frame classes you needed to implement. To
start, you need an id3-tag object to play with. Assuming you have an MP3
laying around, you can use read-id3 like this:

ID3V2> (defparameter *id3* (read-id3 "Kitka/Wintersongs/02 Byla Cesta.mp3"))
ID3
ID3V2> *id3*
#<ID3V2.2-TAG @ #x73d04c1a>

replacing Kitka/Wintersongs/02 Byla Cesta.mp3 with the filename of your
MP3. Once you have your id3-tag object, you can start poking around. For
instance, you can check out the list of frame objects with the frames function.

ID3V2> (frames *id3*)
(#<TEXT-INFO-FRAME-V2.2 @ #x73d04cca>
#<TEXT-INFO-FRAME-V2.2 @ #x73d04dba>
#<TEXT-INFO-FRAME-V2.2 @ #x73d04ea2>
#<TEXT-INFO-FRAME-V2.2 @ #x73d04f9a>
#<TEXT-INFO-FRAME-V2.2 @ #x73d05082>
#<TEXT-INFO-FRAME-V2.2 @ #x73d0516a>
#<TEXT-INFO-FRAME-V2.2 @ #x73d05252>
#<TEXT-INFO-FRAME-V2.2 @ #x73d0533a>
#<COMMENT-FRAME-V2.2 @ #x73d0543a>
#<COMMENT-FRAME-V2.2 @ #x73d05612>
#<COMMENT-FRAME-V2.2 @ #x73d0586a>)

Now suppose you want to extract the song title. It’s probably in one of those
frames, but to find it, you need to find the frame with the "TT2" identifier. Well,
you can check easily enough to see if the tag contains such a frame by extracting
all the identifiers like this:

ID3V2> (mapcar #’id (frames *id3*))
("TT2" "TP1" "TAL" "TRK" "TPA" "TYE" "TCO" "TEN" "COM" "COM" "COM")

There it is, the first frame. However, there’s no guarantee it’ll always be the
first frame, so you should probably look it up by identifier rather than position.
That’s also straightforward using the FIND function.

ID3V2> (find "TT2" (frames *id3*) :test #’string= :key #’id)
#<TEXT-INFO-FRAME-V2.2 @ #x73d04cca>

Now, to get at the actual information in the frame, do this:

ID3V2> (information (find "TT2" (frames *id3*) :test #’string= :key #’id))
"Byla Cesta^@"

Whoops. That ˆ@ is how Emacs prints a null character. In a maneuver rem-
iniscent of the kludge that turned ID3v1 into ID3v1.1, the information slot
of a text information frame, though not officially a null-terminated string, can
contain a null, and ID3 readers are supposed to ignore any characters after the

352

null. So, you need a function that takes a string and returns the contents up to
the first null character, if any. That’s easy enough using the +null+ constant
from the binary data library.

(defun upto-null (string)
(subseq string 0 (position +null+ string)))

Now you can get just the title.

ID3V2> (upto-null (information (find "TT2" (frames *id3*) :test #’string= :key #’id)))
"Byla Cesta"

You could just wrap that code in a function named song that takes an id3-tag
as an argument, and you’d be done. However, the only difference between this
code and the code you’ll use to extract the other pieces of information you’ll
need (such as the album name, the artist, and the genre) is the identifier. So,
it’s better to split up the code a bit. For starters, you can write a function that
just finds a frame given an id3-tag and an identifier like this:

(defun find-frame (id3 id)
(find id (frames id3) :test #’string= :key #’id))

ID3V2> (find-frame *id3* "TT2")
#<TEXT-INFO-FRAME-V2.2 @ #x73d04cca>

Then the other bit of code, the part that extracts the information from a
text-info-frame, can go in another function.

(defun get-text-info (id3 id)
(let ((frame (find-frame id3 id)))
(when frame (upto-null (information frame)))))

ID3V2> (get-text-info *id3* "TT2")
"Byla Cesta"

Now the definition of song is just a matter of passing the right identifier.

(defun song (id3) (get-text-info id3 "TT2"))

ID3V2> (song *id3*)
"Byla Cesta"

However, this definition of song works only with version 2.2 tags since the
identifier changed from "TT2" to "TIT2" between version 2.2 and version 2.3.
And all the other tags changed too. Since the user of this library shouldn’t have
to know about different versions of the ID3 format to do something as simple as
get the song title, you should probably handle those details for them. A simple
way is to change find-frame to take not just a single identifier but a list of
identifiers like this:

(defun find-frame (id3 ids)

353

(find-if #’(lambda (x) (find (id x) ids :test #’string=)) (frames id3)))

Then change get-text-info slightly so it can take one or more identifiers using
a &rest parameter.

(defun get-text-info (id3 &rest ids)
(let ((frame (find-frame id3 ids)))
(when frame (upto-null (information frame)))))

Then the change needed to allow song to support both version 2.2 and version
2.3 tags is just a matter of adding the version 2.3 identifier.

(defun song (id3) (get-text-info id3 "TT2" "TIT2"))

Then you just need to look up the appropriate version 2.2 and version 2.3 frame
identifiers for any fields for which you want to provide an accessor function. Here
are the ones you’ll need in Chapter 27:

(defun album (id3) (get-text-info id3 "TAL" "TALB"))

(defun artist (id3) (get-text-info id3 "TP1" "TPE1"))

(defun track (id3) (get-text-info id3 "TRK" "TRCK"))

(defun year (id3) (get-text-info id3 "TYE" "TYER" "TDRC"))

(defun genre (id3) (get-text-info id3 "TCO" "TCON"))

The last wrinkle is that the way the genre is stored in the TCO or TCON frames
isn’t always human readable. Recall that in ID3v1, genres were stored as a single
byte that encoded a particular genre from a fixed list. Unfortunately, those
codes live on in ID3v2--if the text of the genre frame is a number in parentheses,
the number is supposed to be interpreted as an ID3v1 genre code. But, again,
users of this library probably won’t care about that ancient history. So, you
should provide a function that automatically translates the genre. The following
function uses the genre function just defined to extract the actual genre text
and then checks whether it starts with a left parenthesis, decoding the version 1
genre code with a function you’ll define in a moment if it does:

(defun translated-genre (id3)
(let ((genre (genre id3)))
(if (and genre (char= #\((char genre 0)))
(translate-v1-genre genre)
genre)))

Since a version 1 genre code is effectively just an index into an array of standard
names, the easiest way to implement translate-v1-genre is to extract the
number from the genre string and use it as an index into an actual array.

(defun translate-v1-genre (genre)
(aref *id3-v1-genres* (parse-integer genre :start 1 :junk-allowed t)))

354

Then all you need to do is to define the array of names. The following array of
names includes the 80 official version 1 genres plus the genres created by the
authors of Winamp:

(defparameter *id3-v1-genres*
#(
;; These are the official ID3v1 genres.
"Blues" "Classic Rock" "Country" "Dance" "Disco" "Funk" "Grunge"
"Hip-Hop" "Jazz" "Metal" "New Age" "Oldies" "Other" "Pop" "R&B" "Rap"
"Reggae" "Rock" "Techno" "Industrial" "Alternative" "Ska"
"Death Metal" "Pranks" "Soundtrack" "Euro-Techno" "Ambient"
"Trip-Hop" "Vocal" "Jazz+Funk" "Fusion" "Trance" "Classical"
"Instrumental" "Acid" "House" "Game" "Sound Clip" "Gospel" "Noise"
"AlternRock" "Bass" "Soul" "Punk" "Space" "Meditative"
"Instrumental Pop" "Instrumental Rock" "Ethnic" "Gothic" "Darkwave"
"Techno-Industrial" "Electronic" "Pop-Folk" "Eurodance" "Dream"
"Southern Rock" "Comedy" "Cult" "Gangsta" "Top 40" "Christian Rap"
"Pop/Funk" "Jungle" "Native American" "Cabaret" "New Wave"
"Psychadelic" "Rave" "Showtunes" "Trailer" "Lo-Fi" "Tribal"
"Acid Punk" "Acid Jazz" "Polka" "Retro" "Musical" "Rock & Roll"
"Hard Rock"

;; These were made up by the authors of Winamp but backported into
;; the ID3 spec.
"Folk" "Folk-Rock" "National Folk" "Swing" "Fast Fusion"
"Bebob" "Latin" "Revival" "Celtic" "Bluegrass" "Avantgarde"
"Gothic Rock" "Progressive Rock" "Psychedelic Rock" "Symphonic Rock"
"Slow Rock" "Big Band" "Chorus" "Easy Listening" "Acoustic" "Humour"
"Speech" "Chanson" "Opera" "Chamber Music" "Sonata" "Symphony"
"Booty Bass" "Primus" "Porn Groove" "Satire" "Slow Jam" "Club"
"Tango" "Samba" "Folklore" "Ballad" "Power Ballad" "Rhythmic Soul"
"Freestyle" "Duet" "Punk Rock" "Drum Solo" "A capella" "Euro-House"
"Dance Hall"

;; These were also invented by the Winamp folks but ignored by the
;; ID3 authors.
"Goa" "Drum & Bass" "Club-House" "Hardcore" "Terror" "Indie"
"BritPop" "Negerpunk" "Polsk Punk" "Beat" "Christian Gangsta Rap"
"Heavy Metal" "Black Metal" "Crossover" "Contemporary Christian"
"Christian Rock" "Merengue" "Salsa" "Thrash Metal" "Anime" "Jpop"
"Synthpop"))

Once again, it probably feels like you wrote a ton of code in this chapter. But
if you put it all in a file, or if you download the version from this book’s Web
site, you’ll see it’s just not that many lines--most of the pain of writing this
library stems from having to understand the intricacies of the ID3 format itself.
Anyway, now you have a major piece of what you’ll turn into a streaming MP3

355

server in Chapters 27, 28, and 29. The other major bit of infrastructure you’ll
need is a way to write server-side Web software, the topic of the next chapter.

1Ripping is the process by which a song on an audio CD is converted to an MP3
file on your hard drive. These days most ripping software also automatically
retrieves information about the songs being ripped from online databases such
as Gracenote (n

Copyright © 2003-2005, Peter Seibel

26. Practical: Web Programming with Alle-
groServe
In this chapter you’ll look at one way to develop Web-based programs in Common
Lisp, using the open-source AllegroServe Web server. This isn’t meant as a full
introduction to AllegroServe. And I’m certainly not going to cover anything
more than a tiny corner of the larger topic of Web programming. My goal here
is to cover enough of the basics of using AllegroServe that you’ll be able, in
Chapter 29, to develop an application for browsing a library of MP3 files and
streaming them to an MP3 client. Similarly, this chapter will serve as a brief
introduction to Web programming for folks new to the topic.

A 30-Second Intro to Server-Side Web Programming
While Web programming today typically involves quite a number of software
frameworks and different protocols, the core bits of Web programming haven’t
changed much since they were invented in the early 1990s. For simple applications,
such as the one you’ll write in Chapter 29, you need to understand only a few
key concepts, so I’ll review them quickly here. Experienced Web programmers
can skim or skip the rest of this section.1

To start, you need to understand the roles the Web browser and the Web server
play in Web programming. While a modern browser comes with a lot of bells
and whistles, the core functionality of a Web browser is to request Web pages
from a Web server and then render them. Typically those pages will be written
in the Hypertext Markup Language (HTML), which tells the browser how to
render the page, including where to insert inline images and links to other Web
pages. HTML consists of text marked up with tags that give the text a structure
that the browser uses when rendering the page. For instance, a simple HTML
document looks like this:

<html>
<head>
<title>Hello</title>
</head>

356

<body>
<p>Hello, world!</p>
<p>This is a picture: </p>
<p>This is a link to another page.</p>
</body>

</html>

Figure 26-1 shows how the browser renders this page.

Figure 26-1. Sample Web page

The browser and server communicate using a protocol called the Hypertext
Transfer Protocol (HTTP). While you don’t need to worry about the details of
the protocol, it’s worth understanding that it consists entirely of a sequence of
requests initiated by the browser and responses generated by the server. That is,
the browser connects to the Web server and sends a request that includes, at
the least, the desired URL and the version of HTTP that the browser speaks.
The browser can also include data in its request; that’s how the browser submits
HTML forms to the server.

To reply to a request, the server sends a response made up of a set of headers
and a body. The headers contain information about the body, such as what type
of data it is (for instance, HTML, plain text, or an image), and the body is the
data itself, which is then rendered by the browser. The server can also send an

357

error response telling the browser that its request couldn’t be answered for some
reason.

And that’s pretty much it. Once the browser has received the complete response
from the server, there’s no communication between the browser and the server
until the next time the browser decides to request a page from the server.2 This
is the main constraint of Web programming--there’s no way for code running on
the server to affect what the user sees in their browser unless the browser issues
a new request to the server.3

Some Web pages, called static pages, are simply HTML files stored on the Web
server and served up when requested by the browser. Dynamic pages, on the
other hand, consist of HTML generated each time the page is requested by
a browser. For instance, a dynamic page might be generated by querying a
database and then constructing HTML to represent the results of the query.4

When generating its response to a request, server-side code has four main pieces
of information to act on. The first piece of information is the requested URL.
Typically, however, the URL is used by the Web server itself to determine what
code is responsible for generating the response. Next, if the URL contains a
question mark, everything after the question mark is considered to be a query
string, which is typically ignored by the Web server except that it makes it
available to the code generating the response. Most of the time the query string
contains a set of key/value pairs. The request from the browser can also contain
post data, which also usually consists of key/value pairs. Post data is typically
used to submit HTML forms. The key/value pairs supplied in either the query
string or the post data are collectively called the query parameters.

Finally, in order to string together a sequence of individual requests from the
same browser, code running in the server can set a cookie, sending a special
header in its response to the browser that contains a bit of opaque data called
a cookie. After a cookie is set by a particular server, the browser will send the
cookie with each request it sends to that server. The browser doesn’t care about
the data in the cookie--it just echoes it back to the server for the server-side
code to interpret however it wants.

These are the primitive elements on top of which 99 percent of server-side Web
programming is built. The browser sends a request, the server finds some code to
handle the request and runs it, and the code uses query parameters and cookies
to determine what to do.

AllegroServe
You can serve Web content using Common Lisp in a number of ways; there
are at least three open-source Web servers written in Common Lisp as well as
plug-ins such as mod_lisp5 and Lisplets6 that allow the Apache Web server or
any Java Servlet container to delegate requests to a Lisp server running in a
separate process.

358

For this chapter, you’ll use a version of the open-source Web server AllegroServe,
originally written by John Foderaro at Franz Inc.. AllegroServe is included in
the version of Allegro available from Franz for use with this book. If you’re
not using Allegro, you can use PortableAllegroServe, a friendly fork of the
AllegroServe code base, which includes an Allegro compatibility layer that allows
PortableAllegroServe to run on most Common Lisps. The code you’ll write in
this chapter and in Chapter 29 should run in both vanilla AllegroServe and
PortableAllegroServe.

AllegroServe provides a programming model similar in spirit to Java Servlets-
-each time a browser requests a page, AllegroServe parses the request and
looks up an object, called an entity, which handles the request. Some entity
classes provided as part of AllegroServe know how to serve static content--either
individual files or the contents of a directory tree. Others, the ones I’ll spend
most of this chapter discussing, run arbitrary Lisp code to generate the response.7

But before I get to that, you need to know how to start AllegroServe and set
it up to serve a few files. The first step is to load the AllegroServe code into
your Lisp image. In Allegro, you can simply type (require :aserve). In
other Lisps (or in Allegro), you can load PortableAllegroServe by loading the
file INSTALL.lisp at the top of the portableaserve directory tree. Loading
AllegroServe will create three new packages, NET.ASERVE, NET.HTML.GENERATOR,
and NET.ASERVE.CLIENT.8

After loading the server, you start it with the function start in the NET.ASERVE
package. To have easy access to the symbols exported from NET.ASERVE, from
COM.GIGAMONKEYS.HTML (a package I’ll discuss in a moment), and from the rest
of Common Lisp, you should create a new package to play in like this:

CL-USER> (defpackage :com.gigamonkeys.web
(:use :cl :net.aserve :com.gigamonkeys.html))

#<The COM.GIGAMONKEYS.WEB package>

Now switch to that package with this IN-PACKAGE expression:

CL-USER> (in-package :com.gigamonkeys.web)
#<The COM.GIGAMONKEYS.WEB package>
WEB>

Now you can use the exported names from NET.ASERVE without qualification.
The function start starts the server. It takes quite a number of keyword
parameters, but the only one you need to pass is :port, which specifies the port
to listen on. You should probably use a high port such as 2001 instead of the
default port for HTTP servers, 80, because on Unix-derived operating systems
only the root user can listen on ports below 1024. To run AllegroServe listening
on port 80 on Unix, you’d need to start Lisp as root and then use the :setuid
and :setgid parameters to tell start to switch its identity after opening the
port. You can start a server listening on port 2001 like this:

WEB> (start :port 2001)

359

#<WSERVER port 2001 @ #x72511c72>

The server is now running in your Lisp. It’s possible you’ll get an error that says
something about "port already in use" when you try to start the server. This
means port 2001 is already in use by some other server on your machine. In that
case, the simplest fix is to use a different port, supplying a different argument to
start and then using that value instead of 2001 in the URLs used throughout
this chapter.

You can continue to interact with Lisp via the REPL because AllegroServe starts
its own threads to handle requests from browsers. This means, among other
things, that you can use the REPL to get a view into the guts of your server
while it’s running, which makes debugging and testing a lot easier than if the
server is a complete black box.

Assuming you’re running Lisp on the same machine as your browser, you
can check that the server is up and running by pointing your browser at
http://localhost:2001/. At this point you should get a page-not-found error
message in the browser since you haven’t published anything yet. But the error
message will be from AllegroServe; it’ll say so at the bottom of the page. On the
other hand, if the browser displays an error dialog that says something like "The
connection was refused when attempting to contact localhost:2001," it means
either that the server isn’t running or that you started it with a different port
than 2001.

Now you can publish some files. Suppose you have a file hello.html in the
directory /tmp/html with the following contents:

<html>
<head>
<title>Hello</title>
</head>
<body>
<p>Hello, world!</p>
</body>

</html>

You can publish it individually with the publish-file function.

WEB> (publish-file :path "/hello.html" :file "/tmp/html/hello.html")
#<NET.ASERVE::FILE-ENTITY @ #x725eddea>

The :path argument is the path that will appear in the URL requested by the
browser, while the :file argument is the name of the file in the file system.
After evaluating the publish-file expression, you can point your browser to
http://localhost:2001/hello.html, and it should display a page something
like Figure 26-2.

360

Figure 26-2. http://localhost:2001/hello.html

You could also publish a whole directory tree of files using the publish-directory
function. First let’s clear out the already published entity with the following
call to publish-file:

WEB> (publish-file :path "/hello.html" :remove t)
NIL

Now you can publish the whole /tmp/html/ directory (and all its subdirectories)
with the publish-directory function.

WEB> (publish-directory :prefix "/" :destination "/tmp/html/")
#<NET.ASERVE::DIRECTORY-ENTITY @ #x72625aa2>

In this case, the :prefix argument specifies the beginning of the path
part of URLs that should be handled by this entity. Thus, if the server
receives a request for http://localhost:2001/foo/bar.html, the path is
/foo/bar.html, which starts with /. This path is then translated to a filename
by replacing the prefix, /, with the destination, /tmp/html/. Thus, the URL
http://localhost:2001/hello.html will still be translated into a request for
the file /tmp/html/hello.html.

Generating Dynamic Content with AllegroServe
Publishing entities that generate dynamic content is nearly as simple as publishing
static content. The functions publish and publish-prefix are the dynamic
analogs of publish-file and publish-directory. The basic idea of these
two functions is that you publish a function that will be called to generate the
response to a request for either a specific URL or any URL with a given prefix.
The function will be called with two arguments: an object representing the
request and the published entity. Most of time you don’t need to do anything
with the entity object except to pass it along to a couple macros I’ll discuss in a
moment. On the other hand, you’ll use the request object to obtain information

361

submitted by the browser--query parameters included in the URL or data posted
using an HTML form.

For a trivial example of using a function to generate dynamic content, let’s write
a function that generates a page with a different random number each time it’s
requested.

(defun random-number (request entity)
(with-http-response (request entity :content-type "text/html")
(with-http-body (request entity)
(format
(request-reply-stream request)
"<html>~@
<head><title>Random</title></head>~@
<body>~@
<p>Random number: ~d</p>~@
</body>~@
</html>~@
"
(random 1000)))))

The macros with-http-response and with-http-body are part of AllegroServe.
The former starts the process of generating an HTTP response and can be used,
as here, to specify things such as the type of content that will be returned.
It also handles various parts of HTTP such as dealing with If-Modified-Since
requests. The with-http-body actually sends the HTTP response headers and
then executes its body, which should contain code that generates the content
of the reply. Within with-http-response but before the with-http-body,
you can add or change HTTP headers to be sent in the reply. The function
request-reply-stream is also part of AllegroServe and returns the stream to
which you should write output intended to be sent to the browser.

As this function shows, you can just use FORMAT to print HTML to the stream
returned by request-reply-stream. In the next section, I’ll show you more
convenient ways to programmatically generate HTML.9

Now you’re ready to publish this function.

WEB> (publish :path "/random-number" :function ’random-number)
#<COMPUTED-ENTITY @ #x7262bab2>

As it does in the publish-file function, the :path argument specifies the path
part of the URL that will result in this function being invoked. The :function
argument specifies either the name or an actual function object. Using the
name of a function, as shown here, allows you to redefine the function later
without republishing and have AllegroServe use the new function definition.
After evaluating the call to publish, you can point your browser at http://
localhost:2001/random-number to get a page with a random number on it, as
shown in Figure 26-3.

362

Figure 26-3. http://localhost:2001/random-number

Generating HTML
Although using FORMAT to emit HTML works fine for the simple pages I’ve
discussed so far, as you start building more elaborate pages it’d be nice to
have a more concise way to generate HTML. Several libraries are available for
generating HTML from an s-expression representation including one, htmlgen,
that’s included with AllegroServe. In this chapter you’ll use a library called
FOO,10 which is loosely modeled on Franz’s htmlgen and whose implementation
you’ll look at in more detail in Chapters 30 and 31. For now, however, you just
need to know how to use FOO.

Generating HTML from within Lisp is quite natural since s-expressions and
HTML are essentially isomorphic. You can represent HTML elements with
s-expressions by treating each element in HTML as a list "tagged" with an
appropriate first element, such as a keyword symbol of the same name as the
HTML tag. Thus, the HTML <p>foo</p> is represented by the s-expression
(:p "foo"). Because HTML elements nest the same way lists in s-expressions
do, this scheme extends to more complex HTML. For instance, this HTML:

<html>
<head>
<title>Hello</title>
</head>
<body>
<p>Hello, world!</p>
</body>

</html>

could be represented with the following s-expression:

(:html

363

(:head (:title "Hello"))
(:body (:p "Hello, world!")))

HTML elements with attributes complicate things a bit but not in an insur-
mountable way. FOO supports two ways of including attributes in a tag. One
is to simply follow the first item of the list with keyword/value pairs. The first
element that follows a keyword/value pair that’s not itself a keyword symbol
marks the beginning of the element’s contents. Thus, you’d represent this HTML:

This is a link

with the following s-expression:

(:a :href "foo.html" "This is a link")

The other syntax FOO supports is to group the tag name and attributes into
their own list like this:

((:a :href "foo.html") "This is link.")

FOO can use the s-expression representation of HTML in two ways. The function
emit-html takes an HTML s-expression and outputs the corresponding HTML.

WEB> (emit-html ’(:html (:head (:title "Hello")) (:body (:p "Hello, world!"))))
<html>
<head>
<title>Hello</title>

</head>
<body>
<p>Hello, world!</p>

</body>
</html>
T

However, emit-html isn’t always the most efficient way to generate HTML
because its argument must be a complete s-expression representation of the
HTML to be generated. While it’s easy to build such a representation, it’s
not always particularly efficient. For instance, suppose you wanted to make an
HTML page containing a list of 10,000 random numbers. You could build the
s-expression using a backquote template and then pass it to emit-html like this:

(emit-html
‘(:html

(:head
(:title "Random numbers"))

(:body
(:h1 "Random numbers")
(:p ,@(loop repeat 10000 collect (random 1000) collect " ")))))

However, this has to build a tree containing a 10,000-element list before it can
even start emitting HTML, and the whole s-expression will become garbage as

364

soon as the HTML is emitted. To avoid this inefficiency, FOO also provides a
macro html, which allows you to embed bits of Lisp code in the middle of an
HTML s-expression.

Literal values such as strings and numbers in the input to html are interpolated
into the output HTML. Likewise, symbols are treated as variable references, and
code is generated to emit their value at runtime. Thus, both of these:

(html (:p "foo"))

(let ((x "foo")) (html (:p x)))

will emit the following:

<p>foo</p>

List forms that don’t start with a keyword symbol are assumed to be code and
are embedded in the generated code. Any values the embedded code returns
will be ignored, but the code can emit more HTML by calling html itself. For
instance, to emit the contents of a list in HTML, you might write this:

(html (:ul (dolist (item (list 1 2 3)) (html (:li item)))))

which will emit the following HTML:

1
2
3

If you want to emit the value of a list form, you must wrap it in the pseudotag
:print. Thus, this expression:

(html (:p (+ 1 2)))

generates this HTML after computing and discarding the value 3:

<p></p>

To emit the 3, you must write this:

(html (:p (:print (+ 1 2))))

Or you could compute the value and store it in a variable outside the call to
html like this:

(let ((x (+ 1 2))) (html (:p x)))

Thus, you can use the html macro to generate the list of random numbers like
this:

(html
(:html
(:head

365

(:title "Random numbers"))
(:body
(:h1 "Random numbers")
(:p (loop repeat 10 do (html (:print (random 1000)) " "))))))

The macro version will be quite a bit more efficient than the emit-html version.
Not only do you never have to generate an s-expression representing the whole
page, also much of the work that emit-html does at runtime to interpret the
s-expression will be done once, when the macro is expanded, rather than every
time the code is run.

You can control where the output generated by both html and emit-html is
sent with the macro with-html-output, which is part of the FOO library. Thus,
you can use the with-html-output and html macros from FOO to rewrite
random-number like this:

(defun random-number (request entity)
(with-http-response (request entity :content-type "text/html")
(with-http-body (request entity)
(with-html-output ((request-reply-stream request))
(html
(:html
(:head (:title "Random"))
(:body
(:p "Random number: " (:print (random 1000))))))))))

HTML Macros
Another feature of FOO is that it allows you to define HTML "macros" that
can translate arbitrary forms into HTML s-expressions that the html macro
understands. For instance, suppose you frequently find yourself writing pages of
this form:

(:html
(:head (:title "Some title"))
(:body
(:h1 "Some title")
... stuff ...))

You could define an HTML macro to capture that pattern like this:

(define-html-macro :standard-page ((&key title) &body body)
‘(:html

(:head (:title ,title))
(:body
(:h1 ,title)
,@body)))

366

Now you can use the "tag" :standard-page in your s-expression HTML, and it’ll
be expanded before being interpreted or compiled. For instance, the following:

(html (:standard-page (:title "Hello") (:p "Hello, world.")))

generates the following HTML:

<html>
<head>
<title>Hello</title>

</head>
<body>
<h1>Hello</h1>
<p>Hello, world.</p>

</body>
</html>

Query Parameters
Of course, generating HTML output is only half of Web programming. The
other thing you need to do is get input from the user. As I discussed in the
"A 30-Second Intro to Server-Side Web Programming" section, when a browser
requests a page from a Web server, it can send query parameters in the URL
and post data, both of which act as input to the server-side code.

AllegroServe, like most Web programming frameworks, takes care of parsing
both these sources of input for you. By the time your published functions are
called, all the key/value pairs from the query string and/or post data have
been decoded and placed into an alist that you can retrieve from the request
object with the function request-query. The following function returns a page
showing all the query parameters it receives:

(defun show-query-params (request entity)
(with-http-response (request entity :content-type "text/html")
(with-http-body (request entity)
(with-html-output ((request-reply-stream request))
(html
(:standard-page
(:title "Query Parameters")
(if (request-query request)
(html
(:table :border 1

(loop for (k . v) in (request-query request)
do (html (:tr (:td k) (:td v))))))

(html (:p "No query parameters.")))))))))

(publish :path "/show-query-params" :function ’show-query-params)

If you give your browser a URL with a query string in it like the following:

367

http://localhost:2001/show-query-params?foo=bar&baz=10

you should get back a page similar to the one shown in Figure 26-4.

Figure 26-4. http://localhost:2001/show-query-params?foo=bar&baz=10

To generate some post data, you need an HTML form. The following function
generates a simple form, which submits its data to show-query-params:

(defun simple-form (request entity)
(with-http-response (request entity :content-type "text/html")
(with-http-body (request entity)
(let ((*html-output* (request-reply-stream request)))
(html
(:html
(:head (:title "Simple Form"))
(:body
(:form :method "POST" :action "/show-query-params"
(:table
(:tr (:td "Foo")

(:td (:input :name "foo" :size 20)))
(:tr (:td "Password")

(:td (:input :name "password" :type "password" :size 20))))
(:p (:input :name "submit" :type "submit" :value "Okay")

(:input ::type "reset" :value "Reset"))))))))))

(publish :path "/simple-form" :function ’simple-form)

Point your browser to http://localhost:2001/simple-form, and you should
see a page like the one in Figure 26-5.

If you fill in the form with the "abc" and "def" values, clicking the Okay button
should take you to a page like the one in Figure 26-6.

368

Figure 26-5. http://localhost:2001/simple-form

Figure 26-6. Result of submitting the simple form

However, most of the time you won’t need to iterate over all the query parameters;
you’ll want to pick out individual parameters. For instance, you might want to
modify random-number so the limit value you pass to RANDOM can be supplied via
a query parameter. In that case, you use the function request-query-value,
which takes the request object and the name of the parameter whose value you
want and returns the value as a string or NIL if no such parameter has been
supplied. A parameterizable version of random-number might look like this:

(defun random-number (request entity)
(with-http-response (request entity :content-type "text/html")
(with-http-body (request entity)
(let* ((*html-output* (request-reply-stream request))

(limit-string (or (request-query-value "limit" request) ""))
(limit (or (parse-integer limit-string :junk-allowed t) 1000)))

369

(html
(:html
(:head (:title "Random"))
(:body
(:p "Random number: " (:print (random limit))))))))))

Because request-query-value can return either NIL or an empty string, you
have to deal with both those cases when parsing the parameter into a number to
pass to RANDOM. You can deal with a NIL value when you bind limit-string,
binding it to "" if there’s no "limit" query parameter. Then you can use the
:junk-allowed argument to PARSE-INTEGER to ensure that it returns either NIL
(if it can’t parse an integer from the string given) or an integer. In the section
"A Small Application Framework," you’ll develop some macros to make it easier
to deal with grabbing query parameters and converting them to various types.

Cookies
In AllegroServe you can send a Set-Cookie header that tells the browser to save
a cookie and send it along with subsequent requests by calling the function
set-cookie-header within the body of with-http-response but before the
call to with-http-body. The first argument to the function is the request object,
and the remaining arguments are keyword arguments used to set the various
properties of the cookie. The only two you must pass are the :name and :value
arguments, both of which should be strings. The other possible arguments
that affect the cookie sent to the browser are :expires, :path, :domain, and
:secure.

Of these, you need to worry only about :expires. It controls how long the
browser should save the cookie. If :expires is NIL (the default), the browser
will save the cookie only until it exits. Other possible values are :never, which
means the cookie should be kept forever, or a universal time as returned by
GET-UNIVERSAL-TIME or ENCODE-UNIVERSAL-TIME. An :expires of zero tells
the client to immediately discard an existing cookie.11

After you’ve set a cookie, you can use the function get-cookie-values to get
an alist containing one name/value pair for each cookie sent by the browser.
From that alist, you can pick out individual cookie values using ASSOC and CDR.

The following function shows the names and values of all the cookies sent by the
browser:

(defun show-cookies (request entity)
(with-http-response (request entity :content-type "text/html")
(with-http-body (request entity)
(with-html-output ((request-reply-stream request))
(html
(:standard-page
(:title "Cookies")

370

(if (null (get-cookie-values request))
(html (:p "No cookies."))
(html
(:table
(loop for (key . value) in (get-cookie-values request)

do (html (:tr (:td key) (:td value)))))))))))))

(publish :path "/show-cookies" :function ’show-cookies)

The first time you load the page http://localhost:2001/show-cookies it
should say "No cookies" as shown in Figure 26-7 since you haven’t set any yet.

Figure 26-7. http://localhost:2001/show-cookies with no cookies

To set a cookie, you need another function, such as the following:

(defun set-cookie (request entity)
(with-http-response (request entity :content-type "text/html")
(set-cookie-header request :name "MyCookie" :value "A cookie value")
(with-http-body (request entity)
(with-html-output ((request-reply-stream request))
(html
(:standard-page
(:title "Set Cookie")
(:p "Cookie set.")
(:p (:a :href "/show-cookies" "Look at cookie jar."))))))))

(publish :path "/set-cookie" :function ’set-cookie)

If you enter the URL http://localhost:2001/set-cookie, your browser
should display a page like the one in Figure 26-8. Additionally, the server will
send a Set-Cookie header with a cookie named "MyCookie" with "A cookie
value" as its value. If you click the link Look at cookie jar, you’ll be taken to the
/show-cookies page where you’ll see the new cookie, as shown in Figure 26-9.

371

Because you didn’t specify an :expires argument, the browser will continue to
send the cookie with each request until you quit the browser.

Figure 26-8. http://localhost:2001/set-cookie

Figure 26-9. http://localhost:2001/show-cookies after setting a cookie

A Small Application Framework
Although AllegroServe provides fairly straightforward access to all the basic
facilities you need to write server-side Web code (access to query parameters
from both the URL’s query string and the post data; the ability to set cookies
and retrieve their values; and, of course, the ability to generate the response sent
back to the browser), there’s a fair bit of annoyingly repetitive code.

For instance, every HTML-generating function you write is going to take the argu-
ments request and entity and then will contain calls to with-http-response,
with-http-response, and--if you’re going to use FOO to generate HTML--

372

with-html-output. Then, in functions that need to get at query parameters,
there will be a bunch of calls to request-query-value and then more code to
convert the string returned to whatever type you actually want. Finally, you
need to remember to publish the function.

To reduce the amount of boilerplate you have to write, you can write a small
framework on top of AllegroServe to make it easier to define functions that
handle requests for a particular URL.

The basic approach will be to define a macro, define-url-function, that you’ll
use to define functions that will automatically be published via publish. This
macro will expand into a DEFUN that contains the appropriate boilerplate as well
as code to publish the function under a URL of the same name. It’ll also take
care of generating code to extract values from query parameters and cookies and
to bind them to variables declared in the function’s parameter list. Thus, the
basic form of a define-url-function definition is this:

(define-url-function name (request query-parameter*)
body)

where the body is the code to emit the HTML of the page. It’ll be wrapped in
a call to FOO’s html macro, so for simple pages it might contain nothing but
s-expression HTML.

Within the body, the query parameter variables will be bound to values of query
parameters with the same name or from a cookie. In the simplest case, a query
parameter’s value will be the string taken from the query parameter or post data
field of the same name. If the query parameter is specified with a list, you can
also specify an automatic type conversion, a default value, and whether to look
for and save the value of the parameter in a cookie. The complete syntax for a
query-parameter is as follows:

name | (name type [default-value] [stickiness])

The type must be a name recognized by define-url-function. I’ll discuss in
a moment how to define new types. The default-value must be a value of the
given type. Finally, stickiness, if supplied, indicates that the parameter’s value
should be taken from an appropriately named cookie if no query parameter
is supplied and that a Set-Cookie header should be sent in the response that
saves the value in the cookie of the same name. Thus, a sticky parameter, after
being explicitly supplied a value via a query parameter, will keep that value on
subsequent requests of the page even when no query parameter is supplied.

The name of the cookie used depends on the value of stickiness: with a value of
:global, the cookie will be named the same as the parameter. Thus, different
functions that use globally sticky parameters with the same name will share
the value. If stickiness is :package, then the cookie name is constructed from
the name of the parameter and the package of the function’s name; this allows
functions in the same package to share values but not have to worry about
stomping on parameters of functions in other packages. Finally, a parameter

373

with a stickiness value of :local will use a cookie made from the name of the
parameter, the package of the function name, and the function name, making it
unique to that function.

For instance, you can use define-url-function to replace the previous eleven-
line definition of random-page with this five-line version:

(define-url-function random-number (request (limit integer 1000))
(:html
(:head (:title "Random"))
(:body
(:p "Random number: " (:print (random limit))))))

If you wanted the limit argument to be sticky, you could change the limit
declaration to (limit integer 1000 :local).

The Implementation
I’ll explain the implementation of define-url-function from the top down.
The macro itself looks like this:

(defmacro define-url-function (name (request &rest params) &body body)
(with-gensyms (entity)
(let ((params (mapcar #’normalize-param params)))
‘(progn

(defun ,name (,request ,entity)
(with-http-response (,request ,entity :content-type "text/html")
(let* (,@(param-bindings name request params))
,@(set-cookies-code name request params)
(with-http-body (,request ,entity)
(with-html-output ((request-reply-stream ,request))
(html ,@body))))))

(publish :path ,(format nil "/~(~a~)" name) :function ’,name)))))

Let’s take it bit by bit, starting with the first few lines.

(defmacro define-url-function (name (request &rest params) &body body)
(with-gensyms (entity)
(let ((params (mapcar #’normalize-param params)))

Up to here you’re just getting ready to generate code. You GENSYM a symbol to
use later as the name of the entity parameter in the DEFUN. Then you normalize
the parameters, converting plain symbols to list form using this function:

(defun normalize-param (param)
(etypecase param
(list param)
(symbol ‘(,param string nil nil))))

374

In other words, declaring a parameter with just a symbol is the same as declaring
a nonsticky, string parameter with no default value.

Then comes the PROGN. You must expand into a PROGN because you need to
generate code to do two things: define a function with DEFUN and call publish.
You should define the function first so if there’s an error in the definition, the
function won’t be published. The first two lines of the DEFUN are just boilerplate.

(defun ,name (,request ,entity)
(with-http-response (,request ,entity :content-type "text/html")

Now you do the real work. The following two lines generate the bindings for
the parameters specified in define-url-function other than request and the
code that calls set-cookie-header for the sticky parameters. Of course, the
real work is done by helper functions that you’ll look at in a moment.12

(let* (,@(param-bindings name request params))
,@(set-cookies-code name request params)

The rest is just more boilerplate, putting the body from the define-url-function
definition in the appropriate context of with-http-body, with-html-output,
and html macros. Then comes the call to publish.

(publish :path ,(format nil "/~(~a~)" name) :function ’,name)

The expression (format nil "/~(~a~)" name) is evaluated at macro expansion
time, generating a string consisting of /, followed by an all-lowercase version of
the name of the function you’re about to define. That string becomes the :path
argument to publish, while the function name is interpolated as the :function
argument.

Now let’s look at the helper functions used to generate the DEFUN form. To
generate parameter bindings, you need to loop over the params and collect a
snippet of code for each one, generated by param-binding. That snippet will
be a list containing the name of the variable to bind and the code that will
compute the value of that variable. The exact form of code used to compute
the value will depend on the type of the parameter, whether it’s sticky, and the
default value, if any. Because you already normalized the params, you can use
DESTRUCTURING-BIND to take them apart in param-binding.

(defun param-bindings (function-name request params)
(loop for param in params

collect (param-binding function-name request param)))

(defun param-binding (function-name request param)
(destructuring-bind (name type &optional default sticky) param
(let ((query-name (symbol->query-name name))

(cookie-name (symbol->cookie-name function-name name sticky)))
‘(,name (or

(string->type ’,type (request-query-value ,query-name ,request))

375

,@(if cookie-name
(list ‘(string->type ’,type (get-cookie-value ,request ,cookie-name))))

,default)))))

The function string->type, which you use to convert strings obtained from the
query parameters and cookies to the desired type, is a generic function with the
following signature:

(defgeneric string->type (type value))

To make a particular name usable as a type name for a query parameter, you
just need to define a method on string->type. You’ll need to define at least
a method specialized on the symbol string since that’s the default type. Of
course, that’s pretty easy. Since browsers sometimes submit forms with empty
strings to indicate no value was supplied for a particular value, you’ll want to
convert an empty string to NIL as this method does:

(defmethod string->type ((type (eql ’string)) value)
(and (plusp (length value)) value))

You can add conversions for other types needed by your application. For instance,
to make integer usable as a query parameter type so you can handle the limit
parameter of random-page, you might define this method:

(defmethod string->type ((type (eql ’integer)) value)
(parse-integer (or value "") :junk-allowed t))

Another helper function used in the code generated by param-binding is
get-cookie-value, which is just a bit of sugar around the get-cookie-values
function provided by AllegroServe. It looks like this:

(defun get-cookie-value (request name)
(cdr (assoc name (get-cookie-values request) :test #’string=)))

The functions that compute the query parameter and cookies names are similarly
straightforward.

(defun symbol->query-name (sym)
(string-downcase sym))

(defun symbol->cookie-name (function-name sym sticky)
(let ((package-name (package-name (symbol-package function-name))))
(when sticky
(ecase sticky
(:global
(string-downcase sym))

(:package
(format nil "~(~a:~a~)" package-name sym))

(:local
(format nil "~(~a:~a:~a~)" package-name function-name sym))))))

376

To generate the code that sets cookies for sticky parameters, you again loop
over the list of parameters, this time collecting a snippet of code for each sticky
param. You can use the whenand collect it LOOP forms to collect only the
non-NIL values returned by set-cookie-code.

(defun set-cookies-code (function-name request params)
(loop for param in params

when (set-cookie-code function-name request param) collect it))

(defun set-cookie-code (function-name request param)
(destructuring-bind (name type &optional default sticky) param
(declare (ignore type default))
(if sticky
‘(when ,name

(set-cookie-header
,request
:name ,(symbol->cookie-name function-name name sticky)
:value (princ-to-string ,name))))))

One of the advantages of defining macros in terms of helper functions like this
is that it’s easy to make sure the individual bits of code you’re generating look
right. For instance, you can check that the following set-cookie-code:

(set-cookie-code ’foo ’request ’(x integer 20 :local))

generates something like this:

(WHEN X
(SET-COOKIE-HEADER REQUEST
:NAME "com.gigamonkeys.web:foo:x"
:VALUE (PRINC-TO-STRING X)))

Assuming this code will occur in a context where x is the name of a variable,
this looks good.

Once again, macros have allowed you to distill the code you need to write down
to its essence--in this case, the data you want to extract from the request and
the HTML you want to generate. That said, this framework isn’t meant to be
the be-all and end-all of Web application frameworks--it’s just a little sugar to
make it a bit easier to write simple apps like the one you’ll write in Chapter 29.

But before you can get to that, you need to write the guts of the application for
which the Chapter 29 application will be the user interface. You’ll start in the
next chapter with a souped-up version of the database you wrote in Chapter 3,
this time to keep track of ID3 data extracted from MP3 files.

1Readers new to Web programming will probably need to supplement this
introduction with a more in-depth tutorial or two. You can find a good set of
online tutorials at http://www.jmarshall.com/easy/.

377

2Loading a single Web page may actually involve multiple requests--to render the
HTML of a page containing inline images, the browser must request each image
individually and then insert each into the appropriate place in the rendered
HTML.
3Much of the complexity around Web programming is a result of trying to work
around this fundamental limitation in order to provide a user experience that’s
more like the interactivity provided by desktop applications.
4Unfortunately, dynamic is somewhat overloaded in the Web world. The phrase
Dynamic HTML refers to HTML containing embedded code, usually in the
language JavaScript, that can be executed in the browser without further com-
munication with the Web server. Used with some discretion, Dynamic HTML
can improve the usability of a Web-based application since, even with high-
speed Internet connections, making a request to a Web server, receiving the
response, and rendering the new page can take a noticeable amount of time. To
further confuse things, dynamically generated pages (in other words, generated
on the server) could also contain Dynamic HTML (code to be run on the client.)
For the purposes of this book, you’ll stick to dynamically generating plain old
nondynamic HTML.
5http://www.fractalconcept.com/asp/html/mod_lisp.html
6http://lisplets.sourceforge.net/
7AllegroServe also provides a framework called Webactions that’s analogous to
JSPs in the Java world--instead of writing code that generates HTML, with
Webactions you write pages that are essentially HTML with a bit of magic foo
that turns into code to be run when the page is served. I won’t cover Webactions
in this book.
8Loading PortableAllegroServe will create some other packages for the compati-
bility libraries, but the packages you’ll care about are those three.
9The ~@ followed by a newline tells FORMAT to ignore whitespace after the newline,
which allows you to indent your code nicely without adding a bunch of whitespace
to the HTML. Since white-space is typically not significant in HTML, this doesn’t
matter to the browser, but it makes the generated HTML source look a bit nicer
to humans.
10FOO is a recursive tautological acronym for FOO Outputs Output.
11For information about the meaning of the other parameters, see the Alle-
groServe documentation and RFC 2109, which describes the cookie mechanism.
12You need to use LET* rather than a LET to allow the default value forms for
parameters to refer to parameters that appear earlier in the parameter list. For
example, you could write this:

(define-url-function (request (x integer 10) (y integer (* 2 x))) ...)

and the value of y, if not explicitly supplied, would be twice the value of x.

378

Copyright © 2003-2005, Peter Seibel

27. Practical: An MP3 Database
In this chapter you’ll revisit the idea first explored in Chapter 3 of building an
in-memory database out of basic Lisp data structures. This time your goal is
to hold information that you’ll extract from a collection of MP3 files using the
ID3v2 library from Chapter 25. You’ll then use this database in Chapters 28 and
29 as part of a Web-based streaming MP3 server. Of course, this time around
you can use some of the language features you’ve learned since Chapter 3 to
build a more sophisticated version.

The Database
The main problem with the database in Chapter 3 is that there’s only one table,
the list stored in the variable *db*. Another is that the code doesn’t know
anything about what type of values are stored in different columns. In Chapter
3 you got away with that by using the fairly general-purpose EQUAL method to
compare column values when selecting rows from the database, but you would’ve
been in trouble if you had wanted to store values that couldn’t be compared
with EQUAL or if you had wanted to sort the rows in the database since there’s
no ordering function that’s as general as EQUAL.

This time you’ll solve both problems by defining a class, table, to represent
individual database tables. Each table instance will consist of two slots--one to
hold the table’s data and another to hold information about the columns in the
table that database operations will be able to use. The class looks like this:

(defclass table ()
((rows :accessor rows :initarg :rows :initform (make-rows))
(schema :accessor schema :initarg :schema)))

As in Chapter 3, you can represent the individual rows with plists, but this time
around you’ll create an abstraction that will make that an implementation detail
you can change later without too much trouble. And this time you’ll store the
rows in a vector rather than a list since certain operations that you’ll want to
support, such as random access to rows by a numeric index and the ability to
sort a table, can be more efficiently implemented with vectors.

The function make-rows used to initialize the rows slot can be a simple wrapper
around MAKE-ARRAY that builds an empty, adjustable,vector with a fill pointer.

The Package

The package for the code you’ll develop in this chapter looks like this:

(defpackage :com.gigamonkeys.mp3-database
(:use :common-lisp

:com.gigamonkeys.pathnames

379

:com.gigamonkeys.macro-utilities
:com.gigamonkeys.id3v2)

(:export :*default-table-size*
:*mp3-schema*
:*mp3s*
:column
:column-value
:delete-all-rows
:delete-rows
:do-rows
:extract-schema
:in
:insert-row
:load-database
:make-column
:make-schema
:map-rows
:matching
:not-nullable
:nth-row
:random-selection
:schema
:select
:shuffle-table
:sort-rows
:table
:table-size
:with-column-values))

The :use section gives you access to the functions and macros whose names are
exported from the packages defined in Chapter 15, 8, and 25 and the :export
section exports the API this library will provide, which you’ll use in Chapter 29.

(defparameter *default-table-size* 100)

(defun make-rows (&optional (size *default-table-size*))
(make-array size :adjustable t :fill-pointer 0))

To represent a table’s schema, you need to define another class, column, each
instance of which will contain information about one column in the table: its
name, how to compare values in the column for equality and ordering, a default
value, and a function that will be used to normalize the column’s values when
inserting data into the table and when querying the table. The schema slot will
hold a list of column objects. The class definition looks like this:

(defclass column ()
((name
:reader name

380

:initarg :name)

(equality-predicate
:reader equality-predicate
:initarg :equality-predicate)

(comparator
:reader comparator
:initarg :comparator)

(default-value
:reader default-value
:initarg :default-value
:initform nil)

(value-normalizer
:reader value-normalizer
:initarg :value-normalizer
:initform #’(lambda (v column) (declare (ignore column)) v))))

The equality-predicate and comparator slots of a column object hold func-
tions used to compare values from the given column for equivalence and or-
dering. Thus, a column containing string values might have STRING= as its
equality-predicate and STRING< as its comparator, while a column contain-
ing numbers might have = and <.

The default-value and value-normalizer slots are used when inserting rows
into the database and, in the case of value-normalizer, when querying the
database. When you insert a row into the database, if no value is provided for a
particular column, you can use the value stored in the column’s default-value
slot. Then the value--defaulted or otherwise--is normalized by passing it and
the column object to the function stored in the value-normalizer slot. You
pass the column in case the value-normalizer function needs to use some data
associated with the column object. (You’ll see an example of this in the next
section.) You should also normalize values passed in queries before comparing
them with values in the database.

Thus, the value-normalizer’s responsibility is primarily to return a value that
can be safely and correctly passed to the equality-predicate and comparator
functions. If the value-normalizer can’t figure out an appropriate value to
return, it can signal an error.

The other reason to normalize values before you store them in the database
is to save both memory and CPU cycles. For instance, if you have a column
that’s going to contain string values but the number of distinct strings that will
be stored in the column is small--for instance, the genre column in the MP3
database--you can save space and speed by using the value-normalizer to
intern the strings (translate all STRING= values to a single string object). Thus,

381

you’ll need only as many strings as there are distinct values, regardless of how
many rows are in the table, and you can use EQL to compare column values
rather than the slower STRING=.1

Defining a Schema
Thus, to make an instance of table, you need to build a list of column objects.
You could build the list by hand, using LIST and MAKE-INSTANCE. But you’ll
soon notice that you’re frequently making a lot column objects with the same
comparator and equality-predicate combinations. This is because the combination
of a comparator and equality predicate essentially defines a column type. It’d
be nice if there was a way to give those types names that would allow you to
say simply that a given column is a string column, rather than having to specify
STRING< as its comparator and STRING= as its equality predicate. One way is to
define a generic function, make-column, like this:

(defgeneric make-column (name type &optional default-value))

Now you can implement methods on this generic function that specialize on
type with EQL specializers and return column objects with the slots filled in
with appropriate values. Here’s the generic function and methods that define
column types for the type names string and number:

(defmethod make-column (name (type (eql ’string)) &optional default-value)
(make-instance
’column
:name name
:comparator #’string<
:equality-predicate #’string=
:default-value default-value
:value-normalizer #’not-nullable))

(defmethod make-column (name (type (eql ’number)) &optional default-value)
(make-instance
’column
:name name
:comparator #’<
:equality-predicate #’=
:default-value default-value))

The following function, not-nullable, used as the value-normalizer for
string columns, simply returns the value it’s given unless the value is NIL,
in which case it signals an error:

(defun not-nullable (value column)
(or value (error "Column ~a can’t be null" (name column))))

This is important because STRING< and STRING= will signal an error if called on
NIL; it’s better to catch bad values before they go into the table rather than

382

when you try to use them.2

Another column type you’ll need for the MP3 database is an interned-string
whose values are interned as discussed previously. Since you need a hash
table in which to intern values, you should define a subclass of column,
interned-values-column, that adds a slot whose value is the hash table you
use to intern.

To implement the actual interning, you’ll also need to provide an :initform
for value-normalizer of a function that interns the value in the column’s
interned-values hash table. And because one of the main reasons to intern
values is to allow you to use EQL as the equality predicate, you should also add
an :initform for the equality-predicate of #'eql.

(defclass interned-values-column (column)
((interned-values
:reader interned-values
:initform (make-hash-table :test #’equal))

(equality-predicate :initform #’eql)
(value-normalizer :initform #’intern-for-column)))

(defun intern-for-column (value column)
(let ((hash (interned-values column)))
(or (gethash (not-nullable value column) hash)

(setf (gethash value hash) value))))

You can then define a make-column method specialized on the name
interned-string that returns an instance of interned-values-column.

(defmethod make-column (name (type (eql ’interned-string)) &optional default-value)
(make-instance
’interned-values-column
:name name
:comparator #’string<
:default-value default-value))

With these methods defined on make-column, you can now define a function,
make-schema, that builds a list of column objects from a list of column specifi-
cations consisting of a column name, a column type name, and, optionally, a
default value.

(defun make-schema (spec)
(mapcar #’(lambda (column-spec) (apply #’make-column column-spec)) spec))

For instance, you can define the schema for the table you’ll use to store data
extracted from MP3s like this:

(defparameter *mp3-schema*
(make-schema
’((:file string)

383

(:genre interned-string "Unknown")
(:artist interned-string "Unknown")
(:album interned-string "Unknown")
(:song string)
(:track number 0)
(:year number 0)
(:id3-size number))))

To make an actual table for holding information about MP3s, you pass
mp3-schema as the :schema initarg to MAKE-INSTANCE.

(defparameter *mp3s* (make-instance ’table :schema *mp3-schema*))

Inserting Values
Now you’re ready to define your first table operation, insert-row, which takes a
plist of names and values and a table and adds a row to the table containing the
given values. The bulk of the work is done in a helper function, normalize-row,
that builds a plist with a defaulted, normalized value for each column, using
the values from names-and-values if available and the default-value for the
column if not.

(defun insert-row (names-and-values table)
(vector-push-extend (normalize-row names-and-values (schema table)) (rows table)))

(defun normalize-row (names-and-values schema)
(loop

for column in schema
for name = (name column)
for value = (or (getf names-and-values name) (default-value column))
collect name
collect (normalize-for-column value column)))

It’s worth defining a separate helper function, normalize-for-column, that
takes a value and a column object and returns the normalized value because
you’ll need to perform the same normalization on query arguments.

(defun normalize-for-column (value column)
(funcall (value-normalizer column) value column))

Now you’re ready to combine this database code with code from previous chapters
to build a database of data extracted from MP3 files. You can define a function,
file->row, that uses read-id3 from the ID3v2 library to extract an ID3 tag
from a file and turns it into a plist that you can pass to insert-row.

(defun file->row (file)
(let ((id3 (read-id3 file)))
(list
:file (namestring (truename file))

384

:genre (translated-genre id3)
:artist (artist id3)
:album (album id3)
:song (song id3)
:track (parse-track (track id3))
:year (parse-year (year id3))
:id3-size (size id3))))

You don’t have to worry about normalizing the values since insert-row takes
care of that for you. You do, however, have to convert the string values returned
by the track and year into numbers. The track number in an ID3 tag is
sometimes stored as the ASCII representation of the track number and sometimes
as a number followed by a slash followed by the total number of tracks on the
album. Since you care only about the actual track number, you should use the
:end argument to PARSE-INTEGER to specify that it should parse only up to the
slash, if any.3

(defun parse-track (track)
(when track (parse-integer track :end (position #\/ track))))

(defun parse-year (year)
(when year (parse-integer year)))

Finally, you can put all these functions together, along with walk-directory
from the portable pathnames library and mp3-p from the ID3v2 library, to define
a function that loads an MP3 database with data extracted from all the MP3
files it can find under a given directory.

(defun load-database (dir db)
(let ((count 0))
(walk-directory
dir
#’(lambda (file)

(princ #\.)
(incf count)
(insert-row (file->row file) db))

:test #’mp3-p)
(format t "~&Loaded ~d files into database." count)))

Querying the Database
Once you’ve loaded your database with data, you’ll need a way to query it. For
the MP3 application you’ll need a slightly more sophisticated query function
than you wrote in Chapter 3. This time around you want not only to be able to
select rows matching particular criteria but also to limit the results to particular
columns, to limit the results to unique rows, and perhaps to sort the rows by
particular columns. In keeping with the spirit of relational database theory, the

385

result of a query will be a new table object containing the desired rows and
columns.

The query function you’ll write, select, is loosely modeled on the SELECT
statement from Structured Query Language (SQL). It’ll take five keyword
parameters: :from, :columns, :where, :distinct, and :order-by. The :from
argument is the table object you want to query. The :columns argument
specifies which columns should be included in the result. The value should be
a list of column names, a single column name, or a T, the default, meaning
return all columns. The :where argument, if provided, should be a function
that accepts a row and returns true if it should be included in the results. In
a moment, you’ll write two functions, matching and in, that return functions
appropriate for use as :where arguments. The :order-by argument, if supplied,
should be a list of column names; the results will be sorted by the named columns.
As with the :columns argument, you can specify a single column using just the
name, which is equivalent to a one-item list containing the same name. Finally,
the :distinct argument is a boolean that says whether to eliminate duplicate
rows from the results. The default value for :distinct is NIL.

Here are some examples of using select:

;; Select all rows where the :artist column is "Green Day"
(select :from *mp3s* :where (matching *mp3s* :artist "Green Day"))

;; Select a sorted list of artists with songs in the genre "Rock"
(select
:columns :artist
:from *mp3s*
:where (matching *mp3s* :genre "Rock")
:distinct t
:order-by :artist)

The implementation of select with its immediate helper functions looks like
this:

(defun select (&key (columns t) from where distinct order-by)
(let ((rows (rows from))

(schema (schema from)))

(when where
(setf rows (restrict-rows rows where)))

(unless (eql columns ’t)
(setf schema (extract-schema (mklist columns) schema))
(setf rows (project-columns rows schema)))

(when distinct
(setf rows (distinct-rows rows schema)))

386

(when order-by
(setf rows (sorted-rows rows schema (mklist order-by))))

(make-instance ’table :rows rows :schema schema)))

(defun mklist (thing)
(if (listp thing) thing (list thing)))

(defun extract-schema (column-names schema)
(loop for c in column-names collect (find-column c schema)))

(defun find-column (column-name schema)
(or (find column-name schema :key #’name)

(error "No column: ~a in schema: ~a" column-name schema)))

(defun restrict-rows (rows where)
(remove-if-not where rows))

(defun project-columns (rows schema)
(map ’vector (extractor schema) rows))

(defun distinct-rows (rows schema)
(remove-duplicates rows :test (row-equality-tester schema)))

(defun sorted-rows (rows schema order-by)
(sort (copy-seq rows) (row-comparator order-by schema)))

Of course, the really interesting part of select is how you implement the
functions extractor, row-equality-tester, and row-comparator.

As you can tell by how they’re used, each of these functions must return a
function. For instance, project-columns uses the value returned by extractor
as the function argument to MAP. Since the purpose of project-columns is
to return a set of rows with only certain column values, you can infer that
extractor returns a function that takes a row as an argument and returns a
new row containing only the columns specified in the schema it’s passed. Here’s
how you can implement it:

(defun extractor (schema)
(let ((names (mapcar #’name schema)))
#’(lambda (row)

(loop for c in names collect c collect (getf row c)))))

Note how you can do the work of extracting the names from the schema outside
the body of the closure: since the closure will be called many times, you want it
to do as little work as possible each time it’s called.

387

The functions row-equality-tester and row-comparator are implemented in
a similar way. To decide whether two rows are equivalent, you need to apply
the appropriate equality predicate for each column to the appropriate column
values. Recall from Chapter 22 that the LOOP clause always will return NIL as
soon as a pair of values fails their test or will cause the LOOP to return T.

(defun row-equality-tester (schema)
(let ((names (mapcar #’name schema))

(tests (mapcar #’equality-predicate schema)))
#’(lambda (a b)

(loop for name in names and test in tests
always (funcall test (getf a name) (getf b name))))))

Ordering two rows is a bit more complex. In Lisp, comparator functions return
true if their first argument should be sorted ahead of the second and NIL
otherwise. Thus, a NIL can mean that the second argument should be sorted
ahead of the first or that they’re equivalent. You want your row comparators
to behave the same way: return T if the first row should be sorted ahead of the
second and NIL otherwise.

Thus, to compare two rows, you should compare the values from the columns
you’re sorting by, in order, using the appropriate comparator for each column.
First call the comparator with the value from the first row as the first argument.
If the comparator returns true, that means the first row should definitely be
sorted ahead of the second row, so you can immediately return T.

But if the column comparator returns NIL, then you need to determine whether
that’s because the second value should sort ahead of the first value or because
they’re equivalent. So you should call the comparator again with the arguments
reversed. If the comparator returns true this time, it means the second column
value sorts ahead of the first and thus the second row ahead of the first row, so
you can return NIL immediately. Otherwise, the column values are equivalent,
and you need to move onto the next column. If you get through all the columns
without one row’s value ever winning the comparison, then the rows are equivalent,
and you return NIL. A function that implements this algorithm looks like this:

(defun row-comparator (column-names schema)
(let ((comparators (mapcar #’comparator (extract-schema column-names schema))))
#’(lambda (a b)

(loop
for name in column-names
for comparator in comparators
for a-value = (getf a name)
for b-value = (getf b name)
when (funcall comparator a-value b-value) return t
when (funcall comparator b-value a-value) return nil
finally (return nil)))))

388

Matching Functions
The :where argument to select can be any function that takes a row object and
returns true if it should be included in the results. In practice, however, you’ll
rarely need the full power of arbitrary code to express query criteria. So you
should provide two functions, matching and in, that will build query functions
that allow you to express the common kinds of queries and that take care of
using the proper equality predicates and value normalizers for each column.

The workhouse query-function constructor will be matching, which returns a
function that will match rows with specific column values. You saw how it was
used in the earlier examples of select. For instance, this call to matching:

(matching *mp3s* :artist "Green Day")

returns a function that matches rows whose :artist value is "Green Day". You
can also pass multiple names and values; the returned function matches when all
the columns match. For example, the following returns a closure that matches
rows where the artist is "Green Day" and the album is "American Idiot":

(matching *mp3s* :artist "Green Day" :album "American Idiot")

You have to pass matching the table object because it needs access to the table’s
schema in order to get at the equality predicates and value normalizer functions
for the columns it matches against.

You build up the function returned by matching out of smaller functions, each
responsible for matching one column’s value. To build these functions, you
should define a function, column-matcher, that takes a column object and an
unnormalized value you want to match and returns a function that accepts
a single row and returns true when the value of the given column in the row
matches the normalized version of the given value.

(defun column-matcher (column value)
(let ((name (name column))

(predicate (equality-predicate column))
(normalized (normalize-for-column value column)))

#’(lambda (row) (funcall predicate (getf row name) normalized))))

You then build a list of column-matching functions for the names and values
you care about with the following function, column-matchers:

(defun column-matchers (schema names-and-values)
(loop for (name value) on names-and-values by #’cddr

when value collect
(column-matcher (find-column name schema) value)))

Now you can implement matching. Again, note that you do as much work as
possible outside the closure in order to do it only once rather than once per row
in the table.

389

(defun matching (table &rest names-and-values)
"Build a where function that matches rows with the given column values."
(let ((matchers (column-matchers (schema table) names-and-values)))
#’(lambda (row)

(every #’(lambda (matcher) (funcall matcher row)) matchers))))

This function is a bit of a twisty maze of closures, but it’s worth contemplating
for a moment to get a flavor of the possibilities of programming with functions
as first-class objects.

The job of matching is to return a function that will be invoked on each row
in a table to determine whether it should be included in the new table. So,
matching returns a closure with one parameter, row.

Now recall that the function EVERY takes a predicate function as its first argument
and returns true if, and only if, that function returns true each time it’s applied
to an element of the list passed as EVERY’s second argument. However, in this
case, the list you pass to EVERY is itself a list of functions, the column matchers.
What you want to know is that every column matcher, when invoked on the row
you’re currently testing, returns true. So, as the predicate argument to EVERY,
you pass yet another closure that FUNCALLs the column matcher, passing it the
row.

Another matching function that you’ll occasionally find useful is in, which
returns a function that matches rows where a particular column is in a given set
of values. You’ll define in to take two arguments: a column name and a table
that contains the values you want to match. For instance, suppose you wanted
to find all the songs in the MP3 database that have names the same as a song
performed by the Dixie Chicks. You can write that where clause using in and a
subselect like this:4

(select
:columns ’(:artist :song)
:from *mp3s*
:where (in :song

(select
:columns :song
:from *mp3s*
:where (matching *mp3s* :artist "Dixie Chicks"))))

Although the queries are more complex, the definition of in is much simpler
than that of matching.

(defun in (column-name table)
(let ((test (equality-predicate (find-column column-name (schema table))))

(values (map ’list #’(lambda (r) (getf r column-name)) (rows table))))
#’(lambda (row)

(member (getf row column-name) values :test test))))

390

Getting at the Results
Since select returns another table, you need to think a bit about how you
want to get at the individual row and column values in a table. If you’re sure
you’ll never want to change the way you represent the data in a table, you
can just make the structure of a table part of the API--that table has a slot
rows that’s a vector of plists--and use all the normal Common Lisp functions
for manipulating vectors and plists to get at the values in the table. But that
representation is really an internal detail that you might want to change. Also,
you don’t necessarily want other code manipulating the data structures directly-
-for instance, you don’t want anyone to use SETF to put an unnormalized column
value into a row. So it might be a good idea to define a few abstractions that
provide the operations you want to support. Then if you decide to change the
internal representation later, you’ll need to change only the implementation of
these functions and macros. And while Common Lisp doesn’t enable you to
absolutely prevent folks from getting at "internal" data, by providing an official
API you at least make it clear where the boundary is.

Probably the most common thing you’ll need to do with the results of a query is
to iterate over the individual rows and extract specific column values. So you
need to provide a way to do both those things without touching the rows vector
directly or using GETF to get at the column values within a row.

For now these operations are trivial to implement; they’re merely wrappers
around the code you’d write if you didn’t have these abstractions. You can
provide two ways to iterate over the rows of a table: a macro do-rows, which
provides a basic looping construct, and a function map-rows, which builds a list
containing the results of applying a function to each row in the table.5

(defmacro do-rows ((row table) &body body)
‘(loop for ,row across (rows ,table) do ,@body))

(defun map-rows (fn table)
(loop for row across (rows table) collect (funcall fn row)))

To get at individual column values within a row, you should provide a function,
column-value, that takes a row and a column name and returns the appropriate
value. Again, it’s a trivial wrapper around the code you’d write otherwise. But
if you change the internal representation of a table later, users of column-value
needn’t be any the wiser.

(defun column-value (row column-name)
(getf row column-name))

While column-value is a sufficient abstraction for getting at column values,
you’ll often want to get at the values of multiple columns at once. So you can
provide a bit of syntactic sugar, a macro, with-column-values, that binds a set
of variables to the values extracted from a row using the corresponding keyword
names. Thus, instead of writing this:

391

(do-rows (row table)
(let ((song (column-value row :song))

(artist (column-value row :artist))
(album (column-value row :album)))

(format t "~a by ~a from ~a~%" song artist album)))

you can simply write the following:

(do-rows (row table)
(with-column-values (song artist album) row
(format t "~a by ~a from ~a~%" song artist album)))

Again, the actual implementation isn’t complicated if you use the once-only
macro from Chapter 8.

(defmacro with-column-values ((&rest vars) row &body body)
(once-only (row)
‘(let ,(column-bindings vars row) ,@body)))

(defun column-bindings (vars row)
(loop for v in vars collect ‘(,v (column-value ,row ,(as-keyword v)))))

(defun as-keyword (symbol)
(intern (symbol-name symbol) :keyword))

Finally, you should provide abstractions for getting at the number of rows in a
table and for accessing a specific row by numeric index.

(defun table-size (table)
(length (rows table)))

(defun nth-row (n table)
(aref (rows table) n))

Other Database Operations
Finally, you’ll implement a few other database operations that you’ll need in
Chapter 29. The first two are analogs of the SQL DELETE statement. The
function delete-rows is used to delete rows from a table that match particular
criteria. Like select, it takes :from and :where keyword arguments. Unlike
select, it doesn’t return a new table--it actually modifies the table passed as
the :from argument.

(defun delete-rows (&key from where)
(loop

with rows = (rows from)
with store-idx = 0
for read-idx from 0
for row across rows

392

do (setf (aref rows read-idx) nil)
unless (funcall where row) do
(setf (aref rows store-idx) row)
(incf store-idx)

finally (setf (fill-pointer rows) store-idx)))

In the interest of efficiency, you might want to provide a separate function for
deleting all the rows from a table.

(defun delete-all-rows (table)
(setf (rows table) (make-rows *default-table-size*)))

The remaining table operations don’t really map to normal relational database
operations but will be useful in the MP3 browser application. The first is a
function to sort the rows of a table in place.

(defun sort-rows (table &rest column-names)
(setf (rows table) (sort (rows table) (row-comparator column-names (schema table))))
table)

On the flip side, in the MP3 browser application, you’ll need a function that
shuffles a table’s rows in place using the function nshuffle-vector from Chapter
23.

(defun shuffle-table (table)
(nshuffle-vector (rows table))
table)

And finally, again for the purposes of the MP3 browser, you should provide a
function that selects n random rows, returning the results as a new table. It
also uses nshuffle-vector along with a version of random-sample based on
Algorithm S from Donald Knuth’s The Art of Computer Programming, Volume
2: Seminumerical Algorithms, Third Edition (Addison-Wesley, 1998) that I
discussed in Chapter 20.

(defun random-selection (table n)
(make-instance
’table
:schema (schema table)
:rows (nshuffle-vector (random-sample (rows table) n))))

(defun random-sample (vector n)
"Based on Algorithm S from Knuth. TAOCP, vol. 2. p. 142"
(loop with selected = (make-array n :fill-pointer 0)

for idx from 0
do
(loop

with to-select = (- n (length selected))
for remaining = (- (length vector) idx)
while (>= (* remaining (random 1.0)) to-select)

393

do (incf idx))
(vector-push (aref vector idx) selected)

when (= (length selected) n) return selected))

With this code you’ll be ready, in Chapter 29, to build a Web interface for
browsing a collection of MP3 files. But before you get to that, you need to
implement the part of the server that streams MP3s using the Shoutcast protocol,
which is the topic of the next chapter.

1The general theory behind interning objects is that if you’re going to compare
a particular value many times, it’s worth it to pay the cost of interning it.
The value-normalizer runs once when you insert a value into the table and,
as you’ll see, once at the beginning of each query. Since a query can involve
invoking the equality-predicate once per row in the table, the amortized cost
of interning the values will quickly approach zero.
2As always, the first causality of concise exposition in programming books is
proper error handling; in production code you’d probably want to define your
own error type, such as the following, and signal it instead:

(error ’illegal-column-value :value value :column column)

Then you’d want to think about where you can add restarts that might be able
to recover from this condition. And, finally, in any given application you could
establish condition handlers that would choose from among those restarts.
3If any MP3 files have malformed data in the track and year frames,
PARSE-INTEGER could signal an error. One way to deal with that is to pass
PARSE-INTEGER the :junk-allowed argument of T, which will cause it to ignore
any non-numeric junk following the number and to return NIL if no number can
be found in the string. Or, if you want practice at using the condition system,
you could define an error and signal it from these functions when the data is
malformed and also establish a few restarts to allow these functions to recover.
4This query will also return all the songs performed by the Dixie Chicks. If
you want to limit it to songs by artists other than the Dixie Chicks, you need a
more complex :where function. Since the :where argument can be any function,
it’s certainly possible; you could remove the Dixie Chicks’ own songs with this
query:

(let* ((dixie-chicks (matching *mp3s* :artist "Dixie Chicks"))
(same-song (in :song (select :columns :song :from *mp3s* :where dixie-chicks)))
(query #’(lambda (row) (and (not (funcall dixie-chicks row)) (funcall same-song row)))))

(select :columns ’(:artist :song) :from *mp3s* :where query))

This obviously isn’t quite as convenient. If you were going to write an application
that needed to do lots of complex queries, you might want to consider coming
up with a more expressive query language.

394

5The version of LOOP implemented at M.I.T. before Common Lisp was standard-
ized included a mechanism for extending the LOOP grammar to support iteration
over new data structures. Some Common Lisp implementations that inherited
their LOOP implementation from that code base may still support that facility,
which would make do-rows and map-rows less necessary.

Copyright © 2003-2005, Peter Seibel

28. Practical: A Shoutcast Server
In this chapter you’ll develop another important part of what will eventually be a
Web-based application for streaming MP3s, namely, the server that implements
the Shoutcast protocol for actually streaming MP3s to clients such as iTunes,
XMMS,1 or Winamp.

The Shoutcast Protocol
The Shoutcast protocol was invented by the folks at Nullsoft, the makers of the
Winamp MP3 software. It was designed to support Internet audio broadcasting-
-Shoutcast DJs send audio data from their personal computers to a central
Shoutcast server that then turns around and streams it out to any connected
listeners.

The server you’ll build is actually only half a true Shoutcast server--you’ll use
the protocol that Shoutcast servers use to stream MP3s to listeners, but your
server will be able to serve only songs already stored on the file system of the
computer where the server is running.

You need to worry about only two parts of the Shoutcast protocol: the request
that a client makes in order to start receiving a stream and the format of
the response, including the mechanism by which metadata about what song is
currently playing is embedded in the stream.

The initial request from the MP3 client to the Shoutcast server is formatted as a
normal HTTP request. In response, the Shoutcast server sends an ICY response
that looks like an HTTP response except with the string "ICY"2 in place of
the normal HTTP version string and with different headers. After sending the
headers and a blank line, the server streams a potentially endless amount of
MP3 data.

The only tricky thing about the Shoutcast protocol is the way metadata about
the songs being streamed is embedded in the data sent to the client. The problem
facing the Shoutcast designers was to provide a way for the Shoutcast server to
communicate new title information to the client each time it started playing a
new song so the client could display it in its UI. (Recall from Chapter 25 that
the MP3 format doesn’t make any provision for encoding metadata.) While one
of the design goals of ID3v2 had been to make it better suited for use when
streaming MP3s, the Nullsoft folks decided to go their own route and invent

395

a new scheme that’s fairly easy to implement on both the client side and the
server side. That, of course, was ideal for them since they were also the authors
of their own MP3 client.

Their scheme was to simply ignore the structure of MP3 data and embed a chunk
of self-delimiting metadata every n bytes. The client would then be responsible
for stripping out this metadata so it wasn’t treated as MP3 data. Since metadata
sent to a client that isn’t ready for it will cause glitches in the sound, the server is
supposed to send metadata only if the client’s original request contains a special
Icy-Metadata header. And in order for the client to know how often to expect
metadata, the server must send back a header Icy-Metaint whose value is the
number of bytes of MP3 data that will be sent between each chunk of metadata.

The basic content of the metadata is a string of the form "StreamTitle=’title’;"
where title is the title of the current song and can’t contain single quote marks.
This payload is encoded as a length-delimited array of bytes: a single byte is
sent indicating how many 16-byte blocks follow, and then that many blocks are
sent. They contain the string payload as an ASCII string, with the final block
padded out with null bytes as necessary.

Thus, the smallest legal metadata chunk is a single byte, zero, indicating zero
subsequent blocks. If the server doesn’t need to update the metadata, it can
send such an empty chunk, but it must send at least the one byte so the client
doesn’t throw away actual MP3 data.

Song Sources
Because a Shoutcast server has to keep streaming songs to the client for as
long as it’s connected, you need to provide your server with a source of songs
to draw on. In the Web-based application, each connected client will have a
playlist that can be manipulated via the Web interface. But in the interest of
avoiding excessive coupling, you should define an interface that the Shoutcast
server can use to obtain songs to play. You can write a simple implementation of
this interface now and then a more complex one as part of the Web application
you’ll build in Chapter 29.

The Package

The package for the code you’ll develop in this chapter looks like this:

(defpackage :com.gigamonkeys.shoutcast
(:use :common-lisp

:net.aserve
:com.gigamonkeys.id3v2)

(:export :song
:file
:title
:id3-size
:find-song-source

396

:current-song
:still-current-p
:maybe-move-to-next-song
:*song-source-type*))

The idea behind the interface is that the Shoutcast server will find a source of
songs based on an ID extracted from the AllegroServe request object. It can
then do three things with the song source it’s given.

• Get the current song from the source
• Tell the song source that it’s done with the current song
• Ask the source whether the song it was given earlier is still the current

song

The last operation is necessary because there may be ways--and will be in
Chapter 29--to manipulate the songs source outside the Shoutcast server. You
can express the operations the Shoutcast server needs with the following generic
functions:

(defgeneric current-song (source)
(:documentation "Return the currently playing song or NIL."))

(defgeneric maybe-move-to-next-song (song source)
(:documentation
"If the given song is still the current one update the value

returned by current-song."))

(defgeneric still-current-p (song source)
(:documentation
"Return true if the song given is the same as the current-song."))

The function maybe-move-to-next-song is defined the way it is so a single
operation checks whether the song is current and, if it is, moves the song source
to the next song. This will be important in the next chapter when you need
to implement a song source that can be safely manipulated from two different
threads.3

To represent the information about a song that the Shoutcast server needs, you
can define a class, song, with slots to hold the name of the MP3 file, the title to
send in the Shoutcast metadata, and the size of the ID3 tag so you can skip it
when serving up the file.

(defclass song ()
((file :reader file :initarg :file)
(title :reader title :initarg :title)
(id3-size :reader id3-size :initarg :id3-size)))

The value returned by current-song (and thus the first argument to
still-current-p and maybe-move-to-next-song) will be an instance of song.

397

In addition, you need to define a generic function that the server can use to
find a song source based on the type of source desired and the request object.
Methods will specialize the type parameter in order to return different kinds
of song source and will pull whatever information they need from the request
object to determine which source to return.

(defgeneric find-song-source (type request)
(:documentation "Find the song-source of the given type for the given request."))

However, for the purposes of this chapter, you can use a trivial implementation
of this interface that always uses the same object, a simple queue of song objects
that you can manipulate from the REPL. You can start by defining a class,
simple-song-queue, and a global variable, *songs*, that holds an instance of
this class.

(defclass simple-song-queue ()
((songs :accessor songs :initform (make-array 10 :adjustable t :fill-pointer 0))
(index :accessor index :initform 0)))

(defparameter *songs* (make-instance ’simple-song-queue))

Then you can define a method on find-song-source that specializes type with
an EQL specializer on the symbol singleton and returns the instance stored in
songs.

(defmethod find-song-source ((type (eql ’singleton)) request)
(declare (ignore request))
songs)

Now you just need to implement methods on the three generic functions that
the Shoutcast server will use.

(defmethod current-song ((source simple-song-queue))
(when (array-in-bounds-p (songs source) (index source))
(aref (songs source) (index source))))

(defmethod still-current-p (song (source simple-song-queue))
(eql song (current-song source)))

(defmethod maybe-move-to-next-song (song (source simple-song-queue))
(when (still-current-p song source)
(incf (index source))))

And for testing purposes you should provide a way to add songs to this queue.

(defun add-file-to-songs (file)
(vector-push-extend (file->song file) (songs *songs*)))

(defun file->song (file)
(let ((id3 (read-id3 file)))

398

(make-instance
’song
:file (namestring (truename file))
:title (format nil "~a by ~a from ~a" (song id3) (artist id3) (album id3))
:id3-size (size id3))))

Implementing Shoutcast
Now you’re ready to implement the Shoutcast server. Since the Shoutcast
protocol is loosely based on HTTP, you can implement the server as a function
within AllegroServe. However, since you need to interact with some of the low-
level features of AllegroServe, you can’t use the define-url-function macro
from Chapter 26. Instead, you need to write a regular function that looks like
this:

(defun shoutcast (request entity)
(with-http-response

(request entity :content-type "audio/MP3" :timeout *timeout-seconds*)
(prepare-icy-response request *metadata-interval*)
(let ((wants-metadata-p (header-slot-value request :icy-metadata)))
(with-http-body (request entity)
(play-songs
(request-socket request)
(find-song-source *song-source-type* request)
(if wants-metadata-p *metadata-interval*))))))

Then publish that function under the path /stream.mp3 like this:4

(publish :path "/stream.mp3" :function ’shoutcast)

In the call to with-http-response, in addition to the usual request and
entity arguments, you need to pass :content-type and :timeout arguments.
The :content-type argument tells AllegroServe how to set the Content-Type
header it sends. And the :timeout argument specifies the number of seconds
AllegroServe gives the function to generate its response. By default AllegroServe
times out each request after five minutes. Because you’re going to stream an
essentially endless sequence of MP3s, you need much more time. There’s no way
to tell AllegroServe to never time out the request, so you should set it to the
value of *timeout-seconds*, which you can define to some suitably large value
such as the number of seconds in ten years.

(defparameter *timeout-seconds* (* 60 60 24 7 52 10))

Then, within the body of the with-http-response and before the call
to with-http-body that will cause the response headers to be sent, you
need to manipulate the reply that AllegroServe will send. The func-
tion prepare-icy-response encapsulates the necessary manipulations:
changing the protocol string from the default of "HTTP" to "ICY" and
adding the Shoutcast-specific headers.5 You also need, in order to work

399

around a bug in iTunes, to tell AllegroServe not to use chunked transfer-
encoding.6 The functions request-reply-protocol-string, request-uri, and
reply-header-slot-value are all part of AllegroServe.

(defun prepare-icy-response (request metadata-interval)
(setf (request-reply-protocol-string request) "ICY")
(loop for (k v) in (reverse

‘((:|icy-metaint| ,(princ-to-string metadata-interval))
(:|icy-notice1| "
This stream blah blah blah
")
(:|icy-notice2| "More blah")
(:|icy-name| "MyLispShoutcastServer")
(:|icy-genre| "Unknown")
(:|icy-url| ,(request-uri request))
(:|icy-pub| "1")))

do (setf (reply-header-slot-value request k) v))
;; iTunes, despite claiming to speak HTTP/1.1, doesn’t understand
;; chunked Transfer-encoding. Grrr. So we just turn it off.
(turn-off-chunked-transfer-encoding request))

(defun turn-off-chunked-transfer-encoding (request)
(setf (request-reply-strategy request)

(remove :chunked (request-reply-strategy request))))

Within the with-http-body of shoutcast, you actually stream the MP3 data.
The function play-songs takes the stream to which it should write the data, the
song source, and the metadata interval it should use or NIL if the client doesn’t
want metadata. The stream is the socket obtained from the request object, the
song source is obtained by calling find-song-source, and the metadata interval
comes from the global variable *metadata-interval*. The type of song source
is controlled by the variable *song-source-type*, which for now you can set to
singleton in order to use the simple-song-queue you implemented previously.

(defparameter *metadata-interval* (expt 2 12))

(defparameter *song-source-type* ’singleton)

The function play-songs itself doesn’t do much--it loops calling the function
play-current, which does all the heavy lifting of sending the contents of a
single MP3 file, skipping the ID3 tag and embedding ICY metadata. The only
wrinkle is that you need to keep track of when to send the metadata.

Since you must send metadata chunks at a fixed intervals, regardless of when you
happen to switch from one MP3 file to the next, each time you call play-current
you need to tell it when the next metadata is due, and when it returns, it must
tell you the same thing so you can pass the information to the next call to
play-current. If play-current gets NIL from the song source, it returns NIL,
which allows the play-songs LOOP to end.

In addition to handling the looping, play-songs also provides a HANDLER-CASE

400

to trap the error that will be signaled when the MP3 client disconnects from the
server and one of the writes to the socket, down in play-current, fails. Since
the HANDLER-CASE is outside the LOOP, handling the error will break out of the
loop, allowing play-songs to return.

(defun play-songs (stream song-source metadata-interval)
(handler-case

(loop
for next-metadata = metadata-interval
then (play-current

stream
song-source
next-metadata
metadata-interval)

while next-metadata)
(error (e) (format *trace-output* "Caught error in play-songs: ~a" e))))

Finally, you’re ready to implement play-current, which actually sends the
Shoutcast data. The basic idea is that you get the current song from the song
source, open the song’s file, and then loop reading data from the file and writing
it to the socket until either you reach the end of the file or the current song is
no longer the current song.

There are only two complications: One is that you need to make sure you send
the metadata at the correct interval. The other is that if the file starts with an
ID3 tag, you want to skip it. If you don’t worry too much about I/O efficiency,
you can implement play-current like this:

(defun play-current (out song-source next-metadata metadata-interval)
(let ((song (current-song song-source)))
(when song
(let ((metadata (make-icy-metadata (title song))))
(with-open-file (mp3 (file song))
(unless (file-position mp3 (id3-size song))
(error "Can’t skip to position ~d in ~a" (id3-size song) (file song)))

(loop for byte = (read-byte mp3 nil nil)
while (and byte (still-current-p song song-source)) do
(write-byte byte out)
(decf next-metadata)

when (and (zerop next-metadata) metadata-interval) do
(write-sequence metadata out)
(setf next-metadata metadata-interval))

(maybe-move-to-next-song song song-source)))
next-metadata)))

This function gets the current song from the song source and gets a buffer contain-
ing the metadata it’ll need to send by passing the title to make-icy-metadata.

401

Then it opens the file and skips past the ID3 tag using the two-argument form
of FILE-POSITION. Then it commences reading bytes from the file and writing
them to the request stream.7

It’ll break out of the loop either when it reaches the end of the file or when the
song source’s current song changes out from under it. In the meantime, whenever
next-metadata gets to zero (if you’re supposed to send metadata at all), it
writes metadata to the stream and resets next-metadata. Once it finishes the
loop, it checks to see if the song is still the song source’s current song; if it is,
that means it broke out of the loop because it read the whole file, in which case
it tells the song source to move to the next song. Otherwise, it broke out of
the loop because someone changed the current song out from under it, and it
just returns. In either case, it returns the number of bytes left before the next
metadata is due so it can be passed in the next call to play-current.8

The function make-icy-metadata, which takes the title of the current song
and generates an array of bytes containing a properly formatted chunk of ICY
metadata, is also straightforward.9

(defun make-icy-metadata (title)
(let* ((text (format nil "StreamTitle=’~a’;" (substitute #\Space #\’ title)))

(blocks (ceiling (length text) 16))
(buffer (make-array (1+ (* blocks 16))

:element-type ’(unsigned-byte 8)
:initial-element 0)))

(setf (aref buffer 0) blocks)
(loop

for char across text
for i from 1
do (setf (aref buffer i) (char-code char)))

buffer))

Depending on how your particular Lisp implementation handles its streams, and
also how many MP3 clients you want to serve at once, the simple version of
play-current may or may not be efficient enough.

The potential problem with the simple implementation is that you have to call
READ-BYTE and WRITE-BYTE for every byte you transfer. It’s possible that each
call may result in a relatively expensive system call to read or write one byte.
And even if Lisp implements its own streams with internal buffering so not
every call to READ-BYTE or WRITE-BYTE results in a system call, function calls
still aren’t free. In particular, in implementations that provide user-extensible
streams using so-called Gray Streams, READ-BYTE and WRITE-BYTE may result
in a generic function call under the covers to dispatch on the class of the stream
argument. While generic function dispatch is normally speedy enough that you
don’t have to worry about it, it’s a bit more expensive than a nongeneric function
call and thus not something you necessarily want to do several million times in
a few minutes if you can avoid it.

402

A more efficient, if slightly more complex, way to implement play-current is
to read and write multiple bytes at a time using the functions READ-SEQUENCE
and WRITE-SEQUENCE. This also gives you a chance to match your file reads with
the natural block size of the file system, which will likely give you the best disk
throughput. Of course, no matter what buffer size you use, keeping track of
when to send the metadata becomes a bit more complicated. A more efficient
version of play-current that uses READ-SEQUENCE and WRITE-SEQUENCE might
look like this:

(defun play-current (out song-source next-metadata metadata-interval)
(let ((song (current-song song-source)))
(when song
(let ((metadata (make-icy-metadata (title song)))

(buffer (make-array size :element-type ’(unsigned-byte 8))))
(with-open-file (mp3 (file song))
(labels ((write-buffer (start end)

(if metadata-interval
(write-buffer-with-metadata start end)
(write-sequence buffer out :start start :end end)))

(write-buffer-with-metadata (start end)
(cond
((> next-metadata (- end start))
(write-sequence buffer out :start start :end end)
(decf next-metadata (- end start)))
(t
(let ((middle (+ start next-metadata)))
(write-sequence buffer out :start start :end middle)
(write-sequence metadata out)
(setf next-metadata metadata-interval)
(write-buffer-with-metadata middle end))))))

(multiple-value-bind (skip-blocks skip-bytes)
(floor (id3-size song) (length buffer))

(unless (file-position mp3 (* skip-blocks (length buffer)))
(error "Couldn’t skip over ~d ~d byte blocks."

skip-blocks (length buffer)))

(loop for end = (read-sequence buffer mp3)
for start = skip-bytes then 0
do (write-buffer start end)
while (and (= end (length buffer))

(still-current-p song song-source)))

(maybe-move-to-next-song song song-source)))))

403

next-metadata)))

Now you’re ready to put all the pieces together. In the next chapter you’ll write
a Web interface to the Shoutcast server developed in this chapter, using the
MP3 database from Chapter 27 as the source of songs.

1The version of XMMS shipped with Red Hat 8.0 and 9.0 and Fedora no longer
knows how to play MP3s because the folks at Red Hat were worried about the
licensing issues related to the MP3 codec. To get an XMMS with MP3 support
on these versions of Linux, you can grab the source from http://www.xmms.org
and build it yourself. Or, see http://www.fedorafaq.org/#xmms-mp3 for infor-
mation about other possibilities.
2To further confuse matters, there’s a different streaming protocol called Icecast.
There seems to be no connection between the ICY header used by Shoutcast
and the Icecast protocol.
3Technically, the implementation in this chapter will also be manipulated from
two threads--the AllegroServe thread running the Shoutcast server and the REPL
thread. But you can live with the race condition for now. I’ll discuss how to use
locking to make code thread safe in the next chapter.
4Another thing you may want to do while working on this code is to evaluate the
form (net.aserve::debug-on :notrap). This tells AllegroServe to not trap
errors signaled by your code, which will allow you to debug them in the normal
Lisp debugger. In SLIME this will pop up a SLIME debugger buffer just like
any other error.
5Shoutcast headers are usually sent in lowercase, so you need to escape the names
of the keyword symbols used to identify them to AllegroServe to keep the Lisp
reader from converting them to all uppercase. Thus, you’d write :|icy-metaint|
rather than :icy-metaint. You could also write :\i\c\y-\m\e\t\a\i\n\t, but
that’d be silly.
6The function turn-off-chunked-transfer-encoding is a bit of a kludge.
There’s no way to turn off chunked transfer encoding via AllegroServe’s official
APIs without specifying a content length because any client that advertises itself
as an HTTP/1.1 client, which iTunes does, is supposed to understand it. But
this does the trick.
7Most MP3-playing software will display the metadata somewhere in the user
interface. However, the XMMS program on Linux by default doesn’t. To get
XMMS to display Shoutcast metadata, press Ctrl+P to see the Preferences
pane. Then in the Audio I/O Plugins tab (the leftmost tab in version 1.2.10),
select the MPEG Layer 1/2/3 Player (libmpg123.so) and hit the Configure
button. Then select the Streaming tab on the configuration window, and at
the bottom of the tab in the SHOUTCAST/Icecast section, check the "Enable
SHOUTCAST/Icecast title streaming" box.

404

8Folks coming to Common Lisp from Scheme might wonder why play-current
can’t just call itself recursively. In Scheme that would work fine since Scheme
implementations are required by the Scheme specification to support "an un-
bounded number of active tail calls." Common Lisp implementations are allowed
to have this property, but it isn’t required by the language standard. Thus, in
Common Lisp the idiomatic way to write loops is with a looping construct, not
with recursion.
9This function assumes, as has other code you’ve written, that your Lisp imple-
mentation’s internal character encoding is ASCII or a superset of ASCII, so you
can use CHAR-CODE to translate Lisp CHARACTER objects to bytes of ASCII data.

Copyright © 2003-2005, Peter Seibel

29. Practical: An MP3 Browser
The final step in building the MP3 streaming application is to provide a Web
interface that allows a user to find the songs they want to listen to and add
them to a playlist that the Shoutcast server will draw upon when the user’s
MP3 client requests the stream URL. For this component of the application,
you’ll pull together several bits of code from the previous few chapters: the MP3
database, the define-url-function macro from Chapter 26, and, of course,
the Shoutcast server itself.

Playlists
The basic idea behind the interface will be that each MP3 client that connects to
the Shoutcast server gets its own playlist, which serves as the source of songs for
the Shoutcast server. A playlist will also provide facilities beyond those needed
by the Shoutcast server: through the Web interface the user will be able to add
songs to the playlist, delete songs already in the playlist, and reorder the playlist
by sorting and shuffling.

You can define a class to represent playlists like this:

(defclass playlist ()
((id :accessor id :initarg :id)
(songs-table :accessor songs-table :initform (make-playlist-table))
(current-song :accessor current-song :initform *empty-playlist-song*)
(current-idx :accessor current-idx :initform 0)
(ordering :accessor ordering :initform :album)
(shuffle :accessor shuffle :initform :none)
(repeat :accessor repeat :initform :none)
(user-agent :accessor user-agent :initform "Unknown")
(lock :reader lock :initform (make-process-lock))))

The id of a playlist is the key you extract from the request object passed to
find-song-source when looking up a playlist. You don’t actually need to store

405

it in the playlist object, but it makes debugging a bit easier if you can find
out from an arbitrary playlist object what its id is.

The heart of the playlist is the songs-table slot, which will hold a table object.
The schema for this table will be the same as for the main MP3 database. The
function make-playlist-table, which you use to initialize songs-table, is
simply this:

(defun make-playlist-table ()
(make-instance ’table :schema *mp3-schema*))

The Package

You can define the package for the code in this chapter with the following
DEFPACKAGE:

(defpackage :com.gigamonkeys.mp3-browser
(:use :common-lisp

:net.aserve
:com.gigamonkeys.html
:com.gigamonkeys.shoutcast
:com.gigamonkeys.url-function
:com.gigamonkeys.mp3-database
:com.gigamonkeys.id3v2)

(:import-from :acl-socket
:ipaddr-to-dotted
:remote-host)

(:import-from :multiprocessing
:make-process-lock
:with-process-lock)

(:export :start-mp3-browser))

Because this is a high-level application, it uses a lot of lower-level packages. It
also imports three symbols from the ACL-SOCKET package and two more from
MULTIPROCESSING since it just needs those five and not the other 139 symbols
those two packages export.

By storing the list of songs as a table, you can use the database functions
from Chapter 27 to manipulate the playlist: you can add to the playlist with
insert-row, delete songs with delete-rows, and reorder the playlist with
sort-rows and shuffle-table.

The current-song and current-idx slots keep track of which song is playing:
current-song is an actual song object, while current-idx is the index into
the songs-table of the row representing the current song. You’ll see in the
section "Manipulating the Playlist" how to make sure current-song is updated
whenever current-idx changes.

The ordering and shuffle slots hold information about how the songs in
songs-table are to be ordered. The ordering slot holds a keyword that tells

406

how the songs-table should be sorted when it’s not shuffled. The legal values
are :genre, :artist, :album, and :song. The shuffle slot holds one of the
keywords :none, :song, or :album, which specifies how songs-table should be
shuffled, if at all.

The repeat slot also holds a keyword, one of :none, :song, or :all, which
specifies the repeat mode for the playlist. If repeat is :none, after the last
song in the songs-table has been played, the current-song goes back to a
default MP3. When :repeat is :song, the playlist keeps returning the same
current-song forever. And if it’s :all, after the last song, current-song goes
back to the first song.

The user-agent slot holds the value of the User-Agent header sent by the MP3
client in its request for the stream. You need to hold onto this value purely
for use in the Web interface--the User-Agent header identifies the program that
made the request, so you can display the value on the page that lists all the
playlists to make it easier to tell which playlist goes with which connection when
multiple clients connect.

Finally, the lock slot holds a process lock created with the function
make-process-lock, which is part of Allegro’s MULTIPROCESSING package.
You’ll need to use that lock in certain functions that manipulate playlist
objects to ensure that only one thread at a time manipulates a given playlist
object. You can define the following macro, built upon the with-process-lock
macro from MULTIPROCESSING, to give an easy way to wrap a body of code that
should be performed while holding a playlist’s lock:

(defmacro with-playlist-locked ((playlist) &body body)
‘(with-process-lock ((lock ,playlist))

,@body))

The with-process-lock macro acquires exclusive access to the process lock
given and then executes the body forms, releasing the lock afterward. By default,
with-process-lock allows recursive locks, meaning the same thread can safely
acquire the same lock multiple times.

Playlists As Song Sources
To use playlists as a source of songs for the Shoutcast server, you’ll need to
implement a method on the generic function find-song-source from Chapter
28. Since you’re going to have multiple playlists, you need a way to find the right
one for each client that connects to the server. The mapping part is easy--you
can define a variable that holds an EQUAL hash table that you can use to map
from some identifier to the playlist object.

(defvar *playlists* (make-hash-table :test #’equal))

You’ll also need to define a process lock to protect access to this hash table like
this:

407

(defparameter *playlists-lock* (make-process-lock :name "playlists-lock"))

Then define a function that looks up a playlist given an ID, creating a new
playlist object if necessary and using with-process-lock to ensure that only
one thread at a time manipulates the hash table.1

(defun lookup-playlist (id)
(with-process-lock (*playlists-lock*)
(or (gethash id *playlists*)

(setf (gethash id *playlists*) (make-instance ’playlist :id id)))))

Then you can implement find-song-source on top of that function and an-
other, playlist-id, that takes an AllegroServe request object and returns the
appropriate playlist identifier. The find-song-source function is also where
you grab the User-Agent string out of the request object and stash it in the
playlist object.

(defmethod find-song-source ((type (eql ’playlist)) request)
(let ((playlist (lookup-playlist (playlist-id request))))
(with-playlist-locked (playlist)
(let ((user-agent (header-slot-value request :user-agent)))
(when user-agent (setf (user-agent playlist) user-agent))))

playlist))

The trick, then, is how you implement playlist-id, the function that extracts
the identifier from the request object. You have a couple options, each with
different implications for the user interface. You can pull whatever information
you want out of the request object, but however you decide to identify the client,
you need some way for the user of the Web interface to get hooked up to the
right playlist.

For now you can take an approach that "just works" as long as there’s only
one MP3 client per machine connecting to the server and as long as the user is
browsing the Web interface from the machine running the MP3 client: you’ll use
the IP address of the client machine as the identifier. This way you can find the
right playlist for a request regardless of whether the request is from the MP3
client or a Web browser. You will, however, provide a way in the Web interface
to select a different playlist from the browser, so the only real constraint this
choice puts on the application is that there can be only one connected MP3 client
per client IP address.2 The implementation of playlist-id looks like this:

(defun playlist-id (request)
(ipaddr-to-dotted (remote-host (request-socket request))))

The function request-socket is part of AllegroServe, while remote-host and
ipaddr-to-dotted are part of Allegro’s socket library.

To make a playlist usable as a song source by the Shoutcast server,
you need to define methods on current-song, still-current-p, and
maybe-move-to-next-song that specialize their source parameter on

408

playlist. The current-song method is already taken care of: by defining
the accessor current-song on the eponymous slot, you automatically got a
current-song method specialized on playlist that returns the value of that
slot. However, to make accesses to the playlist thread safe, you need to lock
the playlist before accessing the current-song slot. In this case, the easiest
way is to define an :around method like the following:

(defmethod current-song :around ((playlist playlist))
(with-playlist-locked (playlist) (call-next-method)))

Implementing still-current-p is also quite simple, assuming you can be sure
that current-song gets updated with a new song object only when the current
song actually changes. Again, you need to acquire the process lock to ensure
you get a consistent view of the playlist’s state.

(defmethod still-current-p (song (playlist playlist))
(with-playlist-locked (playlist)
(eql song (current-song playlist))))

The trick, then, is to make sure the current-song slot gets updated at the right
times. However, the current song can change in a number of ways. The obvious
one is when the Shoutcast server calls maybe-move-to-next-song. But it can
also change when songs are added to the playlist, when the Shoutcast server has
run out of songs, or even if the playlist’s repeat mode is changed.

Rather than trying to write code specific to every situation to deter-
mine whether to update current-song, you can define a function,
update-current-if-necessary, that updates current-song if the song
object in current-song no longer matches the file that the current-idx slot
says should be playing. Then, if you call this function after any manipulation
of the playlist that could possibly put those two slots out of sync, you’re sure
to keep current-song set properly. Here are update-current-if-necessary
and its helper functions:

(defun update-current-if-necessary (playlist)
(unless (equal (file (current-song playlist))

(file-for-current-idx playlist))
(reset-current-song playlist)))

(defun file-for-current-idx (playlist)
(if (at-end-p playlist)
nil
(column-value (nth-row (current-idx playlist) (songs-table playlist)) :file)))

(defun at-end-p (playlist)
(>= (current-idx playlist) (table-size (songs-table playlist))))

You don’t need to add locking to these functions since they’ll be called only from
functions that will take care of locking the playlist first.

409

The function reset-current-song introduces one more wrinkle: because you
want the playlist to provide an endless stream of MP3s to the client, you don’t
want to ever set current-song to NIL. Instead, when a playlist runs out of
songs to play--when songs-table is empty or after the last song has been played
and repeat is set to :none--then you need to set current-song to a special
song whose file is an MP3 of silence3 and whose title explains why no music is
playing. Here’s some code to define two parameters, *empty-playlist-song*
and *end-of-playlist-song*, each set to a song with the file named by
silence-mp3 as their file and an appropriate title:

(defparameter *silence-mp3* ...)

(defun make-silent-song (title &optional (file *silence-mp3*))
(make-instance
’song
:file file
:title title
:id3-size (if (id3-p file) (size (read-id3 file)) 0)))

(defparameter *empty-playlist-song* (make-silent-song "Playlist empty."))

(defparameter *end-of-playlist-song* (make-silent-song "At end of playlist."))

reset-current-song uses these parameters when the current-idx doesn’t
point to a row in songs-table. Otherwise, it sets current-song to a song
object representing the current row.

(defun reset-current-song (playlist)
(setf
(current-song playlist)
(cond
((empty-p playlist) *empty-playlist-song*)
((at-end-p playlist) *end-of-playlist-song*)
(t (row->song (nth-row (current-idx playlist) (songs-table playlist)))))))

(defun row->song (song-db-entry)
(with-column-values (file song artist album id3-size) song-db-entry
(make-instance
’song
:file file
:title (format nil "~a by ~a from ~a" song artist album)
:id3-size id3-size)))

(defun empty-p (playlist)
(zerop (table-size (songs-table playlist))))

Now, at last, you can implement the method on maybe-move-to-next-song
that moves current-idx to its next value, based on the playlist’s repeat mode,

410

and then calls update-current-if-necessary. You don’t change current-idx
when it’s already at the end of the playlist because you want it to keep its current
value, so it’ll point at the next song you add to the playlist. This function must
lock the playlist before manipulating it since it’s called by the Shoutcast server
code, which doesn’t do any locking.

(defmethod maybe-move-to-next-song (song (playlist playlist))
(with-playlist-locked (playlist)
(when (still-current-p song playlist)
(unless (at-end-p playlist)
(ecase (repeat playlist)
(:song) ; nothing changes
(:none (incf (current-idx playlist)))
(:all (setf (current-idx playlist)

(mod (1+ (current-idx playlist))
(table-size (songs-table playlist)))))))

(update-current-if-necessary playlist))))

Manipulating the Playlist
The rest of the playlist code is functions used by the Web interface to manipulate
playlist objects, including adding and deleting songs, sorting and shuffling,
and setting the repeat mode. As in the helper functions in the previous section,
you don’t need to worry about locking in these functions because, as you’ll see,
the lock will be acquired in the Web interface function that calls these.

Adding and deleting is mostly a question of manipulating the songs-table. The
only extra work you have to do is to keep the current-song and current-idx in
sync. For instance, whenever the playlist is empty, its current-idx will be zero,
and the current-song will be the *empty-playlist-song*. If you add a song to
an empty playlist, then the index of zero is now in bounds, and you should change
the current-song to the newly added song. By the same token, when you’ve
played all the songs in a playlist and current-song is *end-of-playlist-song*,
adding a song should cause current-song to be reset. All this really means,
though, is that you need to call update-current-if-necessary at the appro-
priate points.

Adding songs to a playlist is a bit involved because of the way the Web interface
communicates which songs to add. For reasons I’ll discuss in the next section,
the Web interface code can’t just give you a simple set of criteria to use in
selecting songs from the database. Instead, it gives you the name of a column
and a list of values, and you’re supposed to add all the songs from the main
database where the given column has a value in the list of values. Thus, to add
the right songs, you need to first build a table object containing the desired
values, which you can then use with an in query against the song database. So,
add-songs looks like this:

(defun add-songs (playlist column-name values)

411

(let ((table (make-instance
’table
:schema (extract-schema (list column-name) (schema *mp3s*)))))

(dolist (v values) (insert-row (list column-name v) table))
(do-rows (row (select :from *mp3s* :where (in column-name table)))
(insert-row row (songs-table playlist))))

(update-current-if-necessary playlist))

Deleting songs is a bit simpler; you just need to be able to delete songs from the
songs-table that match particular criteria--either a particular song or all songs
in a particular genre, by a particular artist, or from a particular album. So, you
can provide a delete-songs function that takes keyword/value pairs, which are
used to construct a matching :where clause you can pass to the delete-rows
database function.

Another complication that arises when deleting songs is that current-idx may
need to change. Assuming the current song isn’t one of the ones just deleted,
you’d like it to remain the current song. But if songs before it in songs-table
are deleted, it’ll be in a different position in the table after the delete. So after
a call to delete-rows, you need to look for the row containing the current
song and reset current-idx. If the current song has itself been deleted, then,
for lack of anything better to do, you can reset current-idx to zero. After
updating current-idx, calling update-current-if-necessary will take care
of updating current-song. And if current-idx changed but still points at the
same song, current-song will be left alone.

(defun delete-songs (playlist &rest names-and-values)
(delete-rows
:from (songs-table playlist)
:where (apply #’matching (songs-table playlist) names-and-values))
(setf (current-idx playlist) (or (position-of-current playlist) 0))
(update-current-if-necessary playlist))

(defun position-of-current (playlist)
(let* ((table (songs-table playlist))

(matcher (matching table :file (file (current-song playlist))))
(pos 0))

(do-rows (row table)
(when (funcall matcher row)
(return-from position-of-current pos))

(incf pos))))

You can also provide a function to completely clear the playlist, which uses
delete-all-rows and doesn’t have to worry about finding the current song
since it has obviously been deleted. The call to update-current-if-necessary
will take care of setting current-song to NIL.

(defun clear-playlist (playlist)

412

(delete-all-rows (songs-table playlist))
(setf (current-idx playlist) 0)
(update-current-if-necessary playlist))

Sorting and shuffling the playlist are related in that the playlist is always either
sorted or shuffled. The shuffle slot says whether the playlist should be shuffled
and if so how. If it’s set to :none, then the playlist is ordered according to
the value in the ordering slot. When shuffle is :song, the playlist will be
randomly permuted. And when it’s set to :album, the list of albums is randomly
permuted, but the songs within each album are listed in track order. Thus, the
sort-playlist function, which will be called by the Web interface code whenever
the user selects a new ordering, needs to set ordering to the desired ordering
and set shuffle to :none before calling order-playlist, which actually does
the sort. As in delete-songs, you need to use position-of-current to reset
current-idx to the new location of the current song. However, this time you
don’t need to call update-current-if-necessary since you know the current
song is still in the table.

(defun sort-playlist (playlist ordering)
(setf (ordering playlist) ordering)
(setf (shuffle playlist) :none)
(order-playlist playlist)
(setf (current-idx playlist) (position-of-current playlist)))

In order-playlist, you can use the database function sort-rows to actually
perform the sort, passing a list of columns to sort by based on the value of
ordering.

(defun order-playlist (playlist)
(apply #’sort-rows (songs-table playlist)
(case (ordering playlist)
(:genre ’(:genre :album :track))
(:artist ’(:artist :album :track))
(:album ’(:album :track))
(:song ’(:song)))))

The function shuffle-playlist, called by the Web interface code when the
user selects a new shuffle mode, works in a similar fashion except it doesn’t
need to change the value of ordering. Thus, when shuffle-playlist is called
with a shuffle of :none, the playlist goes back to being sorted according to
the most recent ordering. Shuffling by songs is simple--just call shuffle-table
on songs-table. Shuffling by albums is a bit more involved but still not rocket
science.

(defun shuffle-playlist (playlist shuffle)
(setf (shuffle playlist) shuffle)
(case shuffle
(:none (order-playlist playlist))
(:song (shuffle-by-song playlist))

413

(:album (shuffle-by-album playlist)))
(setf (current-idx playlist) (position-of-current playlist)))

(defun shuffle-by-song (playlist)
(shuffle-table (songs-table playlist)))

(defun shuffle-by-album (playlist)
(let ((new-table (make-playlist-table)))
(do-rows (album-row (shuffled-album-names playlist))
(do-rows (song (songs-for-album playlist (column-value album-row :album)))
(insert-row song new-table)))

(setf (songs-table playlist) new-table)))

(defun shuffled-album-names (playlist)
(shuffle-table
(select
:columns :album
:from (songs-table playlist)
:distinct t)))

(defun songs-for-album (playlist album)
(select
:from (songs-table playlist)
:where (matching (songs-table playlist) :album album)
:order-by :track))

The last manipulation you need to support is setting the playlist’s repeat mode.
Most of the time you don’t need to take any extra action when setting repeat--its
value comes into play only in maybe-move-to-next-song. However, you need
to update the current-song as a result of changing repeat in one situation,
namely, if current-idx is at the end of a nonempty playlist and repeat is being
changed to :song or :all. In that case, you want to continue playing, either
repeating the last song or starting at the beginning of the playlist. So, you
should define an :after method on the generic function (setf repeat).

(defmethod (setf repeat) :after (value (playlist playlist))
(if (and (at-end-p playlist) (not (empty-p playlist)))
(ecase value
(:song (setf (current-idx playlist) (1- (table-size (songs-table playlist)))))
(:none)
(:all (setf (current-idx playlist) 0)))

(update-current-if-necessary playlist)))

Now you have all the underlying bits you need. All that remains is the code
that will provide a Web-based user interface for browsing the MP3 database
and manipulating playlists. The interface will consist of three main functions
defined with define-url-function: one for browsing the song database, one for

414

viewing and manipulating a single playlist, and one for listing all the available
playlists.

But before you get to writing these three functions, you need to start with some
helper functions and HTML macros that they’ll use.

Query Parameter Types
Since you’ll be using define-url-function, you need to define a few methods on
the string->type generic function from Chapter 28 that define-url-function
uses to convert string query parameters into Lisp objects. In this application,
you’ll need methods to convert strings to integers, keyword symbols, and a list
of values.

The first two are quite simple.

(defmethod string->type ((type (eql ’integer)) value)
(parse-integer (or value "") :junk-allowed t))

(defmethod string->type ((type (eql ’keyword)) value)
(and (plusp (length value)) (intern (string-upcase value) :keyword)))

The last string->type method is slightly more complex. For reasons I’ll get to
in a moment, you’ll need to generate pages that display a form that contains a
hidden field whose value is a list of strings. Since you’re responsible for generating
the value in the hidden field and for parsing it when it comes back, you can use
whatever encoding is convenient. You could use the functions WRITE-TO-STRING
and READ-FROM-STRING, which use the Lisp printer and reader to write and
read data to and from strings, except the printed representation of strings
can contain quotation marks and other characters that may cause problems
when embedded in the value attribute of an INPUT element. So, you’ll need to
escape those characters somehow. Rather than trying to come up with your
own escaping scheme, you can just use base 64, an encoding commonly used to
protect binary data sent through e-mail. AllegroServe comes with two functions,
base64-encode and base64-decode, that do the encoding and decoding for you,
so all you have to do is write a pair of functions: one that encodes a Lisp object
by converting it to a readable string with WRITE-TO-STRING and then base 64
encoding it and, conversely, another to decode such a string by base 64 decoding
it and passing the result to READ-FROM-STRING. You’ll want to wrap the calls
to WRITE-TO-STRING and READ-FROM-STRING in WITH-STANDARD-IO-SYNTAX to
make sure all the variables that affect the printer and reader are set to their
standard values. However, because you’re going to be reading data that’s
coming in from the network, you’ll definitely want to turn off one feature of
the reader--the ability to evaluate arbitrary Lisp code while reading!4 You can
define your own macro with-safe-io-syntax, which wraps its body forms in
WITH-STANDARD-IO-SYNTAX wrapped around a LET that binds *READ-EVAL* to
NIL.

415

(defmacro with-safe-io-syntax (&body body)
‘(with-standard-io-syntax

(let ((*read-eval* nil))
,@body)))

Then the encoding and decoding functions are trivial.

(defun obj->base64 (obj)
(base64-encode (with-safe-io-syntax (write-to-string obj))))

(defun base64->obj (string)
(ignore-errors
(with-safe-io-syntax (read-from-string (base64-decode string)))))

Finally, you can use these functions to define a method on string->type that
defines the conversion for the query parameter type base64-list.

(defmethod string->type ((type (eql ’base-64-list)) value)
(let ((obj (base64->obj value)))
(if (listp obj) obj nil)))

Boilerplate HTML
Next you need to define some HTML macros and helper functions to make it
easy to give the different pages in the application a consistent look and feel. You
can start with an HTML macro that defines the basic structure of a page in the
application.

(define-html-macro :mp3-browser-page ((&key title (header title)) &body body)
‘(:html

(:head
(:title ,title)
(:link :rel "stylesheet" :type "text/css" :href "mp3-browser.css"))

(:body
(standard-header)
(when ,header (html (:h1 :class "title" ,header)))
,@body
(standard-footer))))

You should define standard-header and standard-footer as separate functions
for two reasons. First, during development you can redefine those functions and
see the effect immediately without having to recompile functions that use the
:mp3-browser-page macro. Second, it turns out that one of the pages you’ll
write later won’t be defined with :mp3-browser-page but will still need the
standard header and footers. They look like this:

(defparameter *r* 25)

(defun standard-header ()

416

(html
((:p :class "toolbar")
"[" (:a :href (link "/browse" :what "genre") "All genres") "] "
"[" (:a :href (link "/browse" :what "genre" :random *r*) "Random genres") "] "
"[" (:a :href (link "/browse" :what "artist") "All artists") "] "
"[" (:a :href (link "/browse" :what "artist" :random *r*) "Random artists") "] "
"[" (:a :href (link "/browse" :what "album") "All albums") "] "
"[" (:a :href (link "/browse" :what "album" :random *r*) "Random albums") "] "
"[" (:a :href (link "/browse" :what "song" :random *r*) "Random songs") "] "
"[" (:a :href (link "/playlist") "Playlist") "] "
"[" (:a :href (link "/all-playlists") "All playlists") "]")))

(defun standard-footer ()
(html (:hr) ((:p :class "footer") "MP3 Browser v" *major-version* "." *minor-version*)))

A couple of smaller HTML macros and helper functions automate other common
patterns. The :table-row HTML macro makes it easier to generate the HTML
for a single row of a table. It uses a feature of FOO that I’ll discuss in Chapter
31, an &attributes parameter, which causes uses of the macro to be parsed
just like normal s-expression HTML forms, with any attributes gathered into a
list that will be bound to the &attributes parameter. It looks like this:

(define-html-macro :table-row (&attributes attrs &rest values)
‘(:tr ,@attrs ,@(loop for v in values collect ‘(:td ,v))))

And the link function generates a URL back into the application to be used
as the HREF attribute with an A element, building a query string out of a set of
keyword/value pairs and making sure all special characters are properly escaped.
For instance, instead of writing this:

(:a :href "browse?what=artist&genre=Rhythm+%26+Blues" "Artists")

you can write the following:

(:a :href (link "browse" :what "artist" :genre "Rhythm & Blues") "Artists")

It looks like this:

(defun link (target &rest attributes)
(html
(:attribute
(:format "~a~@[?~{~(~a~)=~a~^&~}~]" target (mapcar #’urlencode attributes)))))

To URL encode the keys and values, you use the helper function urlencode,
which is a wrapper around the function encode-form-urlencoded, which is a
nonpublic function from AllegroServe. This is--on one hand--bad form; since the
name encode-form-urlencoded isn’t exported from NET.ASERVE, it’s possible
that encode-form-urlencoded may go away or get renamed out from under
you. On the other hand, using this unexported symbol for the time being lets
you get work done for the moment; by wrapping encode-form-urlencoded in

417

your own function, you isolate the crufty code to one function, which you could
rewrite if you had to.

(defun urlencode (string)
(net.aserve::encode-form-urlencoded string))

Finally, you need the CSS style sheet mp3-browser.css used by :mp3-browser-page.
Since there’s nothing dynamic about it, it’s probably easiest to just publish a
static file with publish-file.

(publish-file :path "/mp3-browser.css" :file filename :content-type "text/css")

A sample style sheet is included with the source code for this chapter on the
book’s Web site. You’ll define a function, at the end of this chapter, that starts
the MP3 browser application. It’ll take care of, among other things, publishing
this file.

The Browse Page
The first URL function will generate a page for browsing the MP3 database.
Its query parameters will tell it what kind of thing the user is browsing and
provide the criteria of what elements of the database they’re interested in. It’ll
give them a way to select database entries that match a specific genre, artist,
or album. In the interest of serendipity, you can also provide a way to select
a random subset of matching items. When the user is browsing at the level of
individual songs, the title of the song will be a link that causes that song to be
added to the playlist. Otherwise, each item will be presented with links that
let the user browse the listed item by some other category. For example, if the
user is browsing genres, the entry "Blues" will contain links to browse all albums,
artists, and songs in the genre Blues. Additionally, the browse page will feature
an "Add all" button that adds every song matching the page’s criteria to the
user’s playlist. The function looks like this:

(define-url-function browse
(request (what keyword :genre) genre artist album (random integer))

(let* ((values (values-for-page what genre artist album random))
(title (browse-page-title what random genre artist album))
(single-column (if (eql what :song) :file what))
(values-string (values->base-64 single-column values)))

(html
(:mp3-browser-page
(:title title)
((:form :method "POST" :action "playlist")
(:input :name "values" :type "hidden" :value values-string)
(:input :name "what" :type "hidden" :value single-column)
(:input :name "action" :type "hidden" :value :add-songs)
(:input :name "submit" :type "submit" :value "Add all"))

418

(:ul (do-rows (row values) (list-item-for-page what row)))))))

This function starts by using the function values-for-page to get a table
containing the values it needs to present. When the user is browsing by song--
when the what parameter is :song--you want to select complete rows from the
database. But when they’re browsing by genre, artist, or album, you want to
select only the distinct values for the given category. The database function
select does most of the heavy lifting, with values-for-page mostly responsible
for passing the right arguments depending on the value of what. This is also
where you select a random subset of the matching rows if necessary.

(defun values-for-page (what genre artist album random)
(let ((values

(select
:from *mp3s*
:columns (if (eql what :song) t what)
:where (matching *mp3s* :genre genre :artist artist :album album)
:distinct (not (eql what :song))
:order-by (if (eql what :song) ’(:album :track) what))))

(if random (random-selection values random) values)))

To generate the title for the browse page, you pass the browsing criteria to the
following function, browse-page-title:

(defun browse-page-title (what random genre artist album)
(with-output-to-string (s)
(when random (format s "~:(~r~) Random " random))
(format s "~:(~a~p~)" what random)
(when (or genre artist album)
(when (not (eql what :song)) (princ " with songs" s))
(when genre (format s " in genre ~a" genre))
(when artist (format s " by artist ~a " artist))
(when album (format s " on album ~a" album)))))

Once you have the values you want to present, you need to do two things with
them. The main task, of course, is to present them, which happens in the do-rows
loop, leaving the rendering of each row to the function list-item-for-page.
That function renders :song rows one way and all other kinds another way.

(defun list-item-for-page (what row)
(if (eql what :song)
(with-column-values (song file album artist genre) row
(html
(:li
(:a :href (link "playlist" :file file :action "add-songs") (:b song)) " from "
(:a :href (link "browse" :what :song :album album) album) " by "
(:a :href (link "browse" :what :song :artist artist) artist) " in genre "
(:a :href (link "browse" :what :song :genre genre) genre))))

(let ((value (column-value row what)))

419

(html
(:li value " - "

(browse-link :genre what value)
(browse-link :artist what value)
(browse-link :album what value)
(browse-link :song what value))))))

(defun browse-link (new-what what value)
(unless (eql new-what what)
(html
"["
(:a :href (link "browse" :what new-what what value) (:format "~(~as~)" new-what))
"] ")))

The other thing on the browse page is a form with several hidden INPUT fields
and an "Add all" submit button. You need to use an HTML form instead of a
regular link to keep the application stateless--to make sure all the information
needed to respond to a request comes in the request itself. Because the browse
page results can be partially random, you need to submit a fair bit of data for
the server to be able to reconstitute the list of songs to add to the playlist. If you
didn’t allow the browse page to return randomly generated results, you wouldn’t
need much data--you could just submit a request to add songs with whatever
search criteria the browse page used. But if you added songs that way, with
criteria that included a random argument, then you’d end up adding a different
set of random songs than the user was looking at on the page when they hit the
"Add all" button.

The solution you’ll use is to send back a form that has enough information stashed
away in a hidden INPUT element to allow the server to reconstitute the list of songs
matching the browse page criteria. That information is the list of values returned
by values-for-page and the value of the what parameter. This is where you
use the base64-list parameter type; the function values->base64 extracts
the values of a specified column from the table returned by values-for-page
into a list and then makes a base 64-encoded string out of that list to embed in
the form.

(defun values->base-64 (column values-table)
(flet ((value (r) (column-value r column)))
(obj->base64 (map-rows #’value values-table))))

When that parameter comes back as the value of the values query parameter
to a URL function that declares values to be of type base-64-list, it’ll be
automatically converted back to a list. As you’ll see in a moment, that list can
then be used to construct a query that’ll return the correct list of songs.5 When
you’re browsing by :song, you use the values from the :file column since they
uniquely identify the actual songs while the song names may not.

420

The Playlist
This brings me to the next URL function, playlist. This is the most complex
page of the three--it’s responsible for displaying the current contents of the user’s
playlist as well as for providing the interface to manipulate the playlist. But
with most of the tedious bookkeeping handled by define-url-function, it’s
not too hard to see how playlist works. Here’s the beginning of the definition,
with just the parameter list:

(define-url-function playlist
(request
(playlist-id string (playlist-id request) :package)
(action keyword) ; Playlist manipulation action
(what keyword :file) ; for :add-songs action
(values base-64-list) ; "
file ; for :add-songs and :delete-songs actions
genre ; for :delete-songs action
artist ; "
album ; "
(order-by keyword) ; for :sort action
(shuffle keyword) ; for :shuffle action
(repeat keyword)) ; for :set-repeat action

In addition to the obligatory request parameter, playlist takes a number of
query parameters. The most important in some ways is playlist-id, which
identifies which playlist object the page should display and manipulate. For this
parameter, you can take advantage of define-url-function’s "sticky parameter"
feature. Normally, the playlist-id won’t be supplied explicitly, defaulting to
the value returned by the playlist-id function, namely, the IP address of
the client machine on which the browser is running. However, users can also
manipulate their playlists from different machines than the ones running their
MP3 clients by allowing this value to be explicitly specified. And if it’s specified
once, define-url-function will arrange for it to "stick" by setting a cookie
in the browser. Later you’ll define a URL function that generates a list of all
existing playlists, which users can use to pick a playlist other than the one for
the machines they’re browsing from.

The action parameter specifies some action to take on the user’s playlist object.
The value of this parameter, which will be converted to a keyword symbol
for you, can be :add-songs, :delete-songs, :clear, :sort, :shuffle, or
:set-repeat. The :add-songs action is used by the "Add all" button in the
browse page and also by the links used to add individual songs. The other
actions are used by the links on the playlist page itself.

The file, what, and values parameters are used with the :add-songs action.
By declaring values to be of type base-64-list, the define-url-function
infrastructure will take care of decoding the value submitted by the "Add all" form.
The other parameters are used with other actions as noted in the comments.

421

Now let’s look at the body of playlist. The first thing you need to do is use
the playlist-id to look up the queue object and then acquire the playlist’s
lock with the following two lines:

(let ((playlist (lookup-playlist playlist-id)))
(with-playlist-locked (playlist)

Since lookup-playlist will create a new playlist if necessary, this will always
return a playlist object. Then you take care of any necessary queue manipula-
tion, dispatching on the value of the action parameter in order to call one of
the playlist functions.

(case action
(:add-songs (add-songs playlist what (or values (list file))))
(:delete-songs (delete-songs

playlist
:file file :genre genre
:artist artist :album album))

(:clear (clear-playlist playlist))
(:sort (sort-playlist playlist order-by))
(:shuffle (shuffle-playlist playlist shuffle))
(:set-repeat (setf (repeat playlist) repeat)))

All that’s left of the playlist function is the actual HTML generation. Again,
you can use the :mp3-browser-page HTML macro to make sure the basic form
of the page matches the other pages in the application, though this time you
pass NIL to the :header argument in order to leave out the H1 header. Here’s
the rest of the function:

(html
(:mp3-browser-page
(:title (:format "Playlist - ~a" (id playlist)) :header nil)
(playlist-toolbar playlist)
(if (empty-p playlist)
(html (:p (:i "Empty.")))
(html
((:table :class "playlist")
(:table-row "#" "Song" "Album" "Artist" "Genre")
(let ((idx 0)

(current-idx (current-idx playlist)))
(do-rows (row (songs-table playlist))
(with-column-values (track file song album artist genre) row
(let ((row-style (if (= idx current-idx) "now-playing" "normal")))
(html
((:table-row :class row-style)
track
(:progn song (delete-songs-link :file file))
(:progn album (delete-songs-link :album album))

422

(:progn artist (delete-songs-link :artist artist))
(:progn genre (delete-songs-link :genre genre)))))

(incf idx))))))))))))

The function playlist-toolbar generates a toolbar containing links
to playlist to perform the various :action manipulations. And
delete-songs-link generates a link to playlist with the :action pa-
rameter set to :delete-songs and the appropriate arguments to delete an
individual file, or all files on an album, by a particular artist or in a specific
genre.

(defun playlist-toolbar (playlist)
(let ((current-repeat (repeat playlist))

(current-sort (ordering playlist))
(current-shuffle (shuffle playlist)))

(html
(:p :class "playlist-toolbar"

(:i "Sort by:")
" ["
(sort-playlist-button "genre" current-sort) " | "
(sort-playlist-button "artist" current-sort) " | "
(sort-playlist-button "album" current-sort) " | "
(sort-playlist-button "song" current-sort) "] "
(:i "Shuffle by:")
" ["
(playlist-shuffle-button "none" current-shuffle) " | "
(playlist-shuffle-button "song" current-shuffle) " | "
(playlist-shuffle-button "album" current-shuffle) "] "
(:i "Repeat:")
" ["
(playlist-repeat-button "none" current-repeat) " | "
(playlist-repeat-button "song" current-repeat) " | "
(playlist-repeat-button "all" current-repeat) "] "
"[" (:a :href (link "playlist" :action "clear") "Clear") "] "))))

(defun playlist-button (action argument new-value current-value)
(let ((label (string-capitalize new-value)))
(if (string-equal new-value current-value)
(html (:b label))
(html (:a :href (link "playlist" :action action argument new-value) label)))))

(defun sort-playlist-button (order-by current-sort)
(playlist-button :sort :order-by order-by current-sort))

(defun playlist-shuffle-button (shuffle current-shuffle)
(playlist-button :shuffle :shuffle shuffle current-shuffle))

423

(defun playlist-repeat-button (repeat current-repeat)
(playlist-button :set-repeat :repeat repeat current-repeat))

(defun delete-songs-link (what value)
(html " [" (:a :href (link "playlist" :action :delete-songs what value) "x") "]"))

Finding a Playlist
The last of the three URL functions is the simplest. It presents a table listing
all the playlists that have been created. Ordinarily users won’t need to use
this page, but during development it gives you a useful view into the state of
the system. It also provides the mechanism to choose a different playlist--each
playlist ID is a link to the playlist page with an explicit playlist-id query
parameter, which will then be made sticky by the playlist URL function. Note
that you need to acquire the *playlists-lock* to make sure the *playlists*
hash table doesn’t change out from under you while you’re iterating over it.

(define-url-function all-playlists (request)
(:mp3-browser-page
(:title "All Playlists")
((:table :class "all-playlists")
(:table-row "Playlist" "# Songs" "Most recent user agent")
(with-process-lock (*playlists-lock*)
(loop for playlist being the hash-values of *playlists* do

(html
(:table-row
(:a :href (link "playlist" :playlist-id (id playlist)) (:print (id playlist)))
(:print (table-size (songs-table playlist)))
(:print (user-agent playlist)))))))))

Running the App
And that’s it. To use this app, you just need to load the MP3 database with
the load-database function from Chapter 27, publish the CSS style sheet, set
song-source-type to playlist so find-song-source uses playlists instead
of the singleton song source defined in the previous chapter, and start Alle-
groServe. The following function takes care of all these steps for you, after you
fill in appropriate values for the two parameters *mp3-dir*, which is the root
directory of your MP3 collection, and *mp3-css*, the filename of the CSS style
sheet:

(defparameter *mp3-dir* ...)

(defparameter *mp3-css* ...)

(defun start-mp3-browser ()
(load-database *mp3-dir* *mp3s*)

424

(publish-file :path "/mp3-browser.css" :file *mp3-css* :content-type "text/css")
(setf *song-source-type* ’playlist)
(net.aserve::debug-on :notrap)
(net.aserve:start :port 2001))

When you invoke this function, it will print dots while it loads the ID3 information
from your ID3 files. Then you can point your MP3 client at this URL:

http://localhost:2001/stream.mp3

and point your browser at some good starting place, such as this:

http://localhost:2001/browse

which will let you start browsing by the default category, Genre. After you’ve
added some songs to the playlist, you can press Play on the MP3 client, and it
should start playing the first song.

Obviously, you could improve the user interface in any of a number of ways--for
instance, if you have a lot of MP3s in your library, it might be useful to be able to
browse artists or albums by the first letter of their names. Or maybe you could
add a "Play whole album" button to the playlist page that causes the playlist to
immediately put all the songs from the same album as the currently playing song
at the top of the playlist. Or you could change the playlist class, so instead of
playing silence when there are no songs queued up, it picks a random song from
the database. But all those ideas fall in the realm of application design, which
isn’t really the topic of this book. Instead, the next two chapters will drop back
to the level of software infrastructure to cover how the FOO HTML generation
library works.

1The intricacies of concurrent programming are beyond the scope of this book.
The basic idea is that if you have multiple threads of control--as you will in
this application with some threads running the shoutcast function and other
threads responding to requests from the browser--then you need to make sure
only one thread at a time manipulates an object in order to prevent one thread
from seeing the object in an inconsistent state while another thread is working
on it. In this function, for instance, if two new MP3 clients are connecting
at the same time, they’d both try to add an entry to *playlists* and might
interfere with each other. The with-process-lock ensures that each thread
gets exclusive access to the hash table for long enough to do the work it needs
to do.
2This approach also assumes that every client machine has a unique IP address.
This assumption should hold as long as all the users are on the same LAN but
may not hold if clients are connecting from behind a firewall that does network
address translation. Deploying this application outside a LAN will require some
modifications, but if you want to deploy this application to the wider Internet,

425

you’d better know enough about networking to figure out an appropriate scheme
yourself.
3Unfortunately, because of licensing issues around the MP3 format, it’s not clear
that it’s legal for me to provide you with such an MP3 without paying licensing
fees to Fraunhofer IIS. I got mine as part of the software that came with my
Slimp3 from Slim Devices. You can grab it from their Subversion repository
via the Web at http://svn.slimdevices.com/*checkout*/trunk/server/
HTML/EN/html/silentpacket.mp3?rev=2. Or buy a Squeezebox, the new, wire-
less version of Slimp3, and you’ll get silentpacket.mp3 as part of the software
that comes with it. Or find an MP3 of John Cage’s piece 4’33".
4The reader supports a bit of syntax, #., that causes the following s-expression
to be evaluated at read time. This is occasionally useful in source code but
obviously opens a big security hole when you read untrusted data. However, you
can turn off this syntax by setting *READ-EVAL* to NIL, which will cause the
reader to signal an error if it encounters #..
5This solution has its drawbacks--if a browse page returns a lot of results, a fair
bit of data is going back and forth under the covers. Also, the database queries
aren’t necessarily the most efficient. But it does keep the application stateless.
An alternative approach is to squirrel away, on the server side, information about
the results returned by browse and then, when a request to add songs come in,
find the appropriate bit of information in order to re-create the correct set of
songs. For instance, you could just save the values list instead of sending it back
in the form. Or you could copy the RANDOM-STATE object before you generate
the browse results so you can later re-create the same "random" results. But
this approach causes its own problems. For instance, you’d then need to worry
about when you can get rid of the squirreled-away information; you never know
when the user might hit the Back button on their browser to return to an old
browse page and then hit the "Add all" button. Welcome to the wonderful world
of Web programming.

Copyright © 2003-2005, Peter Seibel

30. Practical: An HTML Generation Library, the
Interpreter
In this chapter and the next you’ll take a look under the hood of the FOO
HTML generator that you’ve been using in the past few chapters. FOO is
an example of a kind of programming that’s quite common in Common Lisp
and relatively uncommon in non-Lisp languages, namely, language-oriented
programming. Rather than provide an API built primarily out of functions,
classes, and macros, FOO provides language processors for a domain-specific
language that you can embed in your Common Lisp programs.

FOO provides two language processors for the same s-expression language. One

426

is an interpreter that takes a FOO "program" as data and interprets it to generate
HTML. The other is a compiler that compiles FOO expressions, possibly with
embedded Common Lisp code, into Common Lisp that generates HTML and
runs the embedded code. The interpreter is exposed as the function emit-html
and the compiler as the macro html, which you used in previous chapters.

In this chapter you’ll look at some of the infrastructure shared between the
interpreter and the compiler and then at the implementation of the interpreter.
In the next chapter, I’ll show you how the compiler works.

Designing a Domain-Specific Language
Designing an embedded language requires two steps: first, design the language
that’ll allow you to express the things you want to express, and second, implement
a processor, or processors, that accepts a "program" in that language and either
performs the actions indicated by the program or translates the program into
Common Lisp code that’ll perform equivalent behaviors.

So, step one is to design the HTML-generating language. The key to designing
a good domain-specific language is to strike the right balance between expres-
siveness and concision. For instance, a highly expressive but not very concise
"language" for generating HTML is the language of literal HTML strings. The
legal "forms" of this language are strings containing literal HTML. Language
processors for this "language" could process such forms by simply emitting them
as-is.

(defvar *html-output* *standard-output*)

(defun emit-html (html)
"An interpreter for the literal HTML language."
(write-sequence html *html-output*))

(defmacro html (html)
"A compiler for the literal HTML language."
‘(write-sequence ,html *html-output*))

This "language" is highly expressive since it can express any HTML you could
possibly want to generate.1 On the other hand, this language doesn’t win a lot
of points for its concision because it gives you zero compression--its input is its
output.

To design a language that gives you some useful compression without sacrificing
too much expressiveness, you need to identify the details of the output that
are either redundant or uninteresting. You can then make those aspects of the
output implicit in the semantics of the language.

For instance, because of the structure of HTML, every opening tag is paired
with a matching closing tag.2 When you write HTML by hand, you have to write

427

those closing tags, but you can improve the concision of your HTML-generating
language by making the closing tags implicit.

Another way you can gain concision at a slight cost in expressiveness is to
make the language processors responsible for adding appropriate whitespace
between elements--blank lines and indentation. When you’re generating HTML
programmatically, you typically don’t care much about which elements have line
breaks before or after them or about whether different elements are indented
relative to their parent elements. Letting the language processor insert whitespace
according to some rule means you don’t have to worry about it. As it turns
out, FOO actually supports two modes--one that uses the minimum amount of
whitespace, which allows it to generate extremely efficient code and compact
HTML, and another that generates nicely formatted HTML with different
elements indented and separated from other elements according to their role.

Another detail that’s best moved into the language processor is the escaping
of certain characters that have a special meaning in HTML such as <, >, and
&. Obviously, if you generate HTML by just printing strings to a stream, then
it’s up to you to replace any occurrences of those characters in the string with
the appropriate escape sequences, <, > and &. But if the language
processor can know which strings are to be emitted as element data, then it can
take care of automatically escaping those characters for you.

The FOO Language
So, enough theory. I’ll give you a quick overview of the language implemented
by FOO, and then you’ll look at the implementation of the two FOO language
processors--the interpreter, in this chapter, and the compiler, in the next.

Like Lisp itself, the basic syntax of the FOO language is defined in terms of
forms made up of Lisp objects. The language defines how each legal FOO form
is translated into HTML.

The simplest FOO forms are self-evaluating Lisp objects such as strings, numbers,
and keyword symbols.3 You’ll need a function self-evaluating-p that tests
whether a given object is self-evaluating for FOO’s purposes.

(defun self-evaluating-p (form)
(and (atom form) (if (symbolp form) (keywordp form) t)))

Objects that satisfy this predicate will be emitted by converting them to strings
with PRINC-TO-STRING and then escaping any reserved characters, such as <, >,
or &. When the value is being emitted as an attribute, the characters ", and ' are
also escaped. Thus, you can invoke the html macro on a self-evaluating object
to emit it to *html-output* (which is initially bound to *STANDARD-OUTPUT*).
Table 30-1 shows how a few different self-evaluating values will be output.

Table 30-1. FOO Output for Self-Evaluating Objects

428

FOO Form Generated HTML
"foo" foo
10 10
:foo FOO
"foo & bar" foo & bar

Of course, most HTML consists of tagged elements. The three pieces of infor-
mation that describe each element are the tag, a set of attributes, and a body
containing text and/or more HTML elements. Thus, you need a way to represent
these three pieces of information as Lisp objects, preferably ones that the Lisp
reader already knows how to read.4 If you forget about attributes for a moment,
there’s an obvious mapping between Lisp lists and HTML elements: any HTML
element can be represented by a list whose FIRST is a symbol where the name is
the name of the element’s tag and whose REST is a list of self-evaluating objects
or lists representing other HTML elements. Thus:

<p>Foo</p> <==> (:p "Foo")

<p><i>Now</i> is the time</p> <==> (:p (:i "Now") " is the time")

Now the only problem is where to squeeze in the attributes. Since most elements
have no attributes, it’d be nice if you could use the preceding syntax for elements
without attributes. FOO provides two ways to notate elements with attributes.
The first is to simply include the attributes in the list immediately following
the symbol, alternating keyword symbols naming the attributes and objects
representing the attribute value forms. The body of the element starts with the
first item in the list that’s in a position to be an attribute name and isn’t a
keyword symbol. Thus:

HTML> (html (:p "foo"))
<p>foo</p>
NIL
HTML> (html (:p "foo " (:i "bar") " baz"))
<p>foo <i>bar</i> baz</p>
NIL
HTML> (html (:p :style "foo" "Foo"))
<p style=’foo’>Foo</p>
NIL
HTML> (html (:p :id "x" :style "foo" "Foo"))
<p id=’x’ style=’foo’>Foo</p>
NIL

For folks who prefer a bit more obvious delineation between the element’s
attributes and its body, FOO supports an alternative syntax: if the first element
of a list is itself a list with a keyword as its first element, then the outer list
represents an HTML element with that keyword indicating the tag, with the

429

REST of the nested list as the attributes, and with the REST of the outer list as
the body. Thus, you could write the previous two expressions like this:

HTML> (html ((:p :style "foo") "Foo"))
<p style=’foo’>Foo</p>
NIL
HTML> (html ((:p :id "x" :style "foo") "Foo"))
<p id=’x’ style=’foo’>Foo</p>
NIL

The following function tests whether a given object matches either of these
syntaxes:

(defun cons-form-p (form &optional (test #’keywordp))
(and (consp form)

(or (funcall test (car form))
(and (consp (car form)) (funcall test (caar form))))))

You should parameterize the test function because later you’ll need to test the
same two syntaxes with a slightly different predicate on the name.

To completely abstract the differences between the two syntax variants, you
can define a function, parse-cons-form, that takes a form and parses it into
three elements, the tag, the attributes plist, and the body list, returning them
as multiple values. The code that actually evaluates cons forms will use this
function and not have to worry about which syntax was used.

(defun parse-cons-form (sexp)
(if (consp (first sexp))
(parse-explicit-attributes-sexp sexp)
(parse-implicit-attributes-sexp sexp)))

(defun parse-explicit-attributes-sexp (sexp)
(destructuring-bind ((tag &rest attributes) &body body) sexp
(values tag attributes body)))

(defun parse-implicit-attributes-sexp (sexp)
(loop with tag = (first sexp)

for rest on (rest sexp) by #’cddr
while (and (keywordp (first rest)) (second rest))
when (second rest)
collect (first rest) into attributes and
collect (second rest) into attributes

end
finally (return (values tag attributes rest))))

Now that you have the basic language specified, you can think about how you’re
actually going to implement the language processors. How do you get from a
series of FOO forms to the desired HTML? As I mentioned previously, you’ll

430

be implementing two language processors for FOO: an interpreter that walks a
tree of FOO forms and emits the corresponding HTML directly and a compiler
that walks a tree and translates it into Common Lisp code that’ll emit the same
HTML. Both the interpreter and compiler will be built on top of a common
foundation of code, which provides support for things such as escaping reserved
characters and generating nicely indented output, so it makes sense to start
there.

Character Escaping
The first bit of the foundation you’ll need to lay is the code that knows how
to escape characters with a special meaning in HTML. There are three such
characters, and they must not appear in the text of an element or in an attribute
value; they are <, >, and &. In element text or attribute values, these characters
must be replaced with the character reference entities <, >, and &.
Similarly, in attribute values, the quotation marks used to delimit the value
must be escaped, ' with ' and " with ". Additionally, any character
can be represented by a numeric character reference entity consisting of an
ampersand, followed by a sharp sign, followed by the numeric code as a base 10
integer, and followed by a semicolon. These numeric escapes are sometimes used
to embed non-ASCII characters in HTML.

The Package

Since FOO is a low-level library, the package you develop it in doesn’t rely on
much external code--just the usual dependency on names from the COMMON-LISP
package and, almost as usual, on the names of the macro-writing macros from
COM.GIGAMONKEYS.MACRO-UTILITIES. On the other hand, the package needs to
export all the names needed by code that uses FOO. Here’s the DEFPACKAGE
from the source that you can download from the book’s Web site:

(defpackage :com.gigamonkeys.html
(:use :common-lisp :com.gigamonkeys.macro-utilities)
(:export :with-html-output

:in-html-style
:define-html-macro
:html
:emit-html
:&attributes))

The following function accepts a single character and returns a string containing
a character reference entity for that character:

(defun escape-char (char)
(case char
(#\& "&")
(#\< "<")
(#\> ">")

431

(#\’ "'")
(#\" """)
(t (format nil "&#~d;" (char-code char)))))

You can use this function as the basis for a function, escape, that takes a
string and a sequence of characters and returns a copy of the first argument
with all occurrences of the characters in the second argument replaced with the
corresponding character entity returned by escape-char.

(defun escape (in to-escape)
(flet ((needs-escape-p (char) (find char to-escape)))
(with-output-to-string (out)
(loop for start = 0 then (1+ pos)

for pos = (position-if #’needs-escape-p in :start start)
do (write-sequence in out :start start :end pos)
when pos do (write-sequence (escape-char (char in pos)) out)
while pos))))

You can also define two parameters: *element-escapes*, which con-
tains the characters you need to escape in normal element data, and
attribute-escapes, which contains the set of characters to be escaped in
attribute values.

(defparameter *element-escapes* "<>&")
(defparameter *attribute-escapes* "<>&\"’")

Here are some examples:

HTML> (escape "foo & bar" *element-escapes*)
"foo & bar"
HTML> (escape "foo & ’bar’" *element-escapes*)
"foo & ’bar’"
HTML> (escape "foo & ’bar’" *attribute-escapes*)
"foo & 'bar'"

Finally, you’ll need a variable, *escapes*, that will be bound to the set of charac-
ters that need to be escaped. It’s initially set to the value of *element-escapes*,
but when generating attributes, it will, as you’ll see, be rebound to the value of
attribute-escapes.

(defvar *escapes* *element-escapes*)

Indenting Printer
To handle generating nicely indented output, you can define a class
indenting-printer, which wraps around an output stream, and functions that
use an instance of that class to emit strings to the stream while keeping track of
when it’s at the beginning of the line. The class looks like this:

(defclass indenting-printer ()

432

((out :accessor out :initarg :out)
(beginning-of-line-p :accessor beginning-of-line-p :initform t)
(indentation :accessor indentation :initform 0)
(indenting-p :accessor indenting-p :initform t)))

The main function that operates on indenting-printers is emit, which takes
the printer and a string and emits the string to the printer’s output stream,
keeping track of when it emits a newline so it can reset the beginning-of-line-p
slot.

(defun emit (ip string)
(loop for start = 0 then (1+ pos)

for pos = (position #\Newline string :start start)
do (emit/no-newlines ip string :start start :end pos)
when pos do (emit-newline ip)
while pos))

To actually emit the string, it uses the function emit/no-newlines, which emits
any needed indentation, via the helper indent-if-necessary, and then writes
the string to the stream. This function can also be called directly by other code
to emit a string that’s known not to contain any newlines.

(defun emit/no-newlines (ip string &key (start 0) end)
(indent-if-necessary ip)
(write-sequence string (out ip) :start start :end end)
(unless (zerop (- (or end (length string)) start))
(setf (beginning-of-line-p ip) nil)))

The helper indent-if-necessary checks beginning-of-line-p and
indenting-p to determine whether it needs to emit indentation and, if
they’re both true, emits as many spaces as indicated by the value of
indentation. Code that uses the indenting-printer can control the indenta-
tion by manipulating the indentation and indenting-p slots. Incrementing
and decrementing indentation changes the number of leading spaces, while
setting indenting-p to NIL can temporarily turn off indentation.

(defun indent-if-necessary (ip)
(when (and (beginning-of-line-p ip) (indenting-p ip))
(loop repeat (indentation ip) do (write-char #\Space (out ip)))
(setf (beginning-of-line-p ip) nil)))

The last two functions in the indenting-printer API are emit-newline and
emit-freshline, which are both used to emit a newline character, similar
to the ~% and ~& FORMAT directives. That is, the only difference is that
emit-newline always emits a newline, while emit-freshline does so only
if beginning-of-line-p is false. Thus, multiple calls to emit-freshline with-
out any intervening emits won’t result in a blank line. This is handy when one
piece of code wants to generate some output that should end with a newline
while another piece of code wants to generate some output that should start on

433

a newline but you don’t want a blank line between the two bits of output.

(defun emit-newline (ip)
(write-char #\Newline (out ip))
(setf (beginning-of-line-p ip) t))

(defun emit-freshline (ip)
(unless (beginning-of-line-p ip) (emit-newline ip)))

With those preliminaries out of the way, you’re ready to get to the guts of the
FOO processor.

HTML Processor Interface
Now you’re ready to define the interface that’ll be used by the FOO language
processor to emit HTML. You can define this interface as a set of generic functions
because you’ll need two implementations--one that actually emits HTML and
another that the html macro can use to collect a list of actions that need to be
performed, which can then be optimized and compiled into code that emits the
same output in a more efficient way. I’ll call this set of generic functions the
backend interface. It consists of the following eight generic functions:

(defgeneric raw-string (processor string &optional newlines-p))

(defgeneric newline (processor))

(defgeneric freshline (processor))

(defgeneric indent (processor))

(defgeneric unindent (processor))

(defgeneric toggle-indenting (processor))

(defgeneric embed-value (processor value))

(defgeneric embed-code (processor code))

While several of these functions have obvious correspondence to indenting-printer
functions, it’s important to understand that these generic functions define the
abstract operations that are used by the FOO language processors and won’t
always be implemented in terms of calls to the indenting-printer functions.

That said, perhaps the easiest way to understand the semantics of these abstract
operations is to look at the concrete implementations of the methods specialized
on html-pretty-printer, the class used to generate human-readable HTML.

434

The Pretty Printer Backend
You can start by defining a class with two slots--one to hold an instance of
indenting-printer and one to hold the tab width--the number of spaces you
want to increase the indentation for each level of nesting of HTML elements.

(defclass html-pretty-printer ()
((printer :accessor printer :initarg :printer)
(tab-width :accessor tab-width :initarg :tab-width :initform 2)))

Now you can implement methods specialized on html-pretty-printer on the
eight generic functions that make up the backend interface.

The FOO processors use the raw-string function to emit strings that don’t
need character escaping, either because you actually want to emit normally
reserved characters or because all reserved characters have already been escaped.
Usually raw-string is invoked with strings that don’t contain newlines, so the
default behavior is to use emit/no-newlines unless the caller specifies a non-NIL
newlines-p argument.

(defmethod raw-string ((pp html-pretty-printer) string &optional newlines-p)
(if newlines-p
(emit (printer pp) string)
(emit/no-newlines (printer pp) string)))

The functions newline, freshline, indent, unindent, and toggle-indenting
implement fairly straightforward manipulations of the underlying indenting-printer.
The only wrinkle is that the HTML pretty printer generates pretty output
only when the dynamic variable *pretty* is true. When it’s NIL, you should
generate compact HTML with no unnecessary whitespace. So, these methods,
with the exception of newline, all check *pretty* before doing anything:5

(defmethod newline ((pp html-pretty-printer))
(emit-newline (printer pp)))

(defmethod freshline ((pp html-pretty-printer))
(when *pretty* (emit-freshline (printer pp))))

(defmethod indent ((pp html-pretty-printer))
(when *pretty*
(incf (indentation (printer pp)) (tab-width pp))))

(defmethod unindent ((pp html-pretty-printer))
(when *pretty*
(decf (indentation (printer pp)) (tab-width pp))))

(defmethod toggle-indenting ((pp html-pretty-printer))
(when *pretty*
(with-slots (indenting-p) (printer pp)

435

(setf indenting-p (not indenting-p)))))

Finally, the functions embed-value and embed-code are used only by the FOO
compiler--embed-value is used to generate code that’ll emit the value of a
Common Lisp expression, while embed-code is used to embed a bit of code to be
run and its result discarded. In the interpreter, you can’t meaningfully evaluate
embedded Lisp code, so the methods on these functions always signal an error.

(defmethod embed-value ((pp html-pretty-printer) value)
(error "Can’t embed values when interpreting. Value: ~s" value))

(defmethod embed-code ((pp html-pretty-printer) code)
(error "Can’t embed code when interpreting. Code: ~s" code))

Using Conditions to Have Your Cake and Eat It Too

An alternate approach would be to use EVAL to evaluate Lisp expressions in the
interpreter. The problem with this approach is that EVAL has no access to the
lexical environment. Thus, there’s no way to make something like this work:

(let ((x 10)) (emit-html ’(:p x)))

when x is a lexical variable. The symbol x that’s passed to emit-html at runtime
has no particular connection to the lexical variable named with the same symbol.
The Lisp compiler arranges for references to x in the code to refer to the variable,
but after the code is compiled, there’s no longer necessarily any association
between the name x and that variable. This is the main reason that when you
think EVAL is the solution to your problem, you’re probably wrong.

However, if x was a dynamic variable, declared with DEFVAR or DEFPARAMETER
(and likely named *x* instead of x), EVAL could get at its value. Thus, it might
be useful to allow the FOO interpreter to use EVAL in some situations. But it’s a
bad idea to always use EVAL. You can get the best of both worlds by combining
the idea of using EVAL with the condition system.

First define some error classes that you can signal when embed-value and
embed-code are called in the interpreter.

(define-condition embedded-lisp-in-interpreter (error)
((form :initarg :form :reader form)))

(define-condition value-in-interpreter (embedded-lisp-in-interpreter) ()
(:report
(lambda (c s)
(format s "Can’t embed values when interpreting. Value: ~s" (form c)))))

(define-condition code-in-interpreter (embedded-lisp-in-interpreter) ()
(:report
(lambda (c s)
(format s "Can’t embed code when interpreting. Code: ~s" (form c)))))

436

Now you can implement embed-value and embed-code to signal those errors
and provide a restart that’ll evaluate the form with EVAL.

(defmethod embed-value ((pp html-pretty-printer) value)
(restart-case (error ’value-in-interpreter :form value)
(evaluate ()
:report (lambda (s) (format s "EVAL ~s in null lexical environment." value))
(raw-string pp (escape (princ-to-string (eval value)) *escapes*) t))))

(defmethod embed-code ((pp html-pretty-printer) code)
(restart-case (error ’code-in-interpreter :form code)
(evaluate ()
:report (lambda (s) (format s "EVAL ~s in null lexical environment." code))
(eval code))))

Now you can do something like this:

HTML> (defvar *x* 10)
X
HTML> (emit-html ’(:p *x*))

and you’ll get dropped into the debugger with this message:

Can’t embed values when interpreting. Value: *X*
[Condition of type VALUE-IN-INTERPRETER]

Restarts:
0: [EVALUATE] EVAL *X* in null lexical environment.
1: [ABORT] Abort handling SLIME request.
2: [ABORT] Abort entirely from this process.

If you invoke the evaluate restart, embed-value will EVAL *x*, get the value
10, and generate this HTML:

<p>10</p>

Then, as a convenience, you can provide restart functions--functions that invoke
the evaluate restart--in certain situations. The evaluate restart function uncon-
ditionally invokes the restart, while eval-dynamic-variables and eval-code
invoke it only if the form in the condition is a dynamic variable or potential
code.

(defun evaluate (&optional condition)
(declare (ignore condition))
(invoke-restart ’evaluate))

(defun eval-dynamic-variables (&optional condition)
(when (and (symbolp (form condition)) (boundp (form condition)))
(evaluate)))

(defun eval-code (&optional condition)
(when (consp (form condition))

437

(evaluate)))

Now you can use HANDLER-BIND to set up a handler to automatically invoke the
evaluate restart for you.

HTML> (handler-bind ((value-in-interpreter #’evaluate)) (emit-html ’(:p *x*)))
<p>10</p>
T

Finally, you can define a macro to provide a nicer syntax for binding handlers
for the two kinds of errors.

(defmacro with-dynamic-evaluation ((&key values code) &body body)
‘(handler-bind (

,@(if values ‘((value-in-interpreter #’evaluate)))
,@(if code ‘((code-in-interpreter #’evaluate))))

,@body))

With this macro defined, you can write this:

HTML> (with-dynamic-evaluation (:values t) (emit-html ’(:p *x*)))
<p>10</p>
T

The Basic Evaluation Rule
Now to connect the FOO language to the processor interface, all you need is a
function that takes an object and processes it, invoking the appropriate processor
functions to generate HTML. For instance, when given a simple form like this:

(:p "Foo")

this function might execute this sequence of calls on the processor:

(freshline processor)
(raw-string processor "<p" nil)
(raw-string processor ">" nil)
(raw-string processor "Foo" nil)
(raw-string processor "</p>" nil)
(freshline processor)

For now you can define a simple function that just checks whether a form is, in fact,
a legal FOO form and, if it is, hands it off to the function process-sexp-html
for processing. In the next chapter, you’ll add some bells and whistles to this
function to allow it to handle macros and special operators. But for now it looks
like this:

(defun process (processor form)
(if (sexp-html-p form)
(process-sexp-html processor form)
(error "Malformed FOO form: ~s" form)))

438

The function sexp-html-p determines whether the given object is a legal FOO
expression, either a self-evaluating form or a properly formatted cons.

(defun sexp-html-p (form)
(or (self-evaluating-p form) (cons-form-p form)))

Self-evaluating forms are easily handled: just convert to a string with
PRINC-TO-STRING and escape the characters in the variable *escapes*, which,
as you’ll recall, is initially bound to the value of *element-escapes*. Cons
forms you pass off to process-cons-sexp-html.

(defun process-sexp-html (processor form)
(if (self-evaluating-p form)
(raw-string processor (escape (princ-to-string form) *escapes*) t)
(process-cons-sexp-html processor form)))

The function process-cons-sexp-html is then responsible for emitting the
opening tag, any attributes, the body, and the closing tag. The main complication
here is that to generate pretty HTML, you need to emit fresh lines and adjust
the indentation according to the type of the element being emitted. You can
categorize all the elements defined in HTML into one of three categories: block,
paragraph, and inline. Block elements--such as body and ul--are emitted with
fresh lines before and after both their opening and closing tags and with their
contents indented one level. Paragraph elements--such as p, li, and blockquote-
-are emitted with a fresh line before the opening tag and after the closing tag.
Inline elements are simply emitted in line. The following three parameters list
the elements of each type:

(defparameter *block-elements*
’(:body :colgroup :dl :fieldset :form :head :html :map :noscript :object
:ol :optgroup :pre :script :select :style :table :tbody :tfoot :thead
:tr :ul))

(defparameter *paragraph-elements*
’(:area :base :blockquote :br :button :caption :col :dd :div :dt :h1
:h2 :h3 :h4 :h5 :h6 :hr :input :li :link :meta :option :p :param
:td :textarea :th :title))

(defparameter *inline-elements*
’(:a :abbr :acronym :address :b :bdo :big :cite :code :del :dfn :em
:i :img :ins :kbd :label :legend :q :samp :small :span :strong :sub
:sup :tt :var))

The functions block-element-p and paragraph-element-p test whether a given
tag is a member of the corresponding list.6

(defun block-element-p (tag) (find tag *block-elements*))

(defun paragraph-element-p (tag) (find tag *paragraph-elements*))

439

Two other categorizations with their own predicates are the elements that are
always empty, such as br and hr, and the three elements, pre, style, and
script, in which whitespace is supposed to be preserved. The former are
handled specially when generating regular HTML (in other words, not XHTML)
since they’re not supposed to have a closing tag. And when emitting the three
tags in which whitespace is preserved, you can temporarily turn off indentation
so the pretty printer doesn’t add any spaces that aren’t part of the element’s
actual contents.

(defparameter *empty-elements*
’(:area :base :br :col :hr :img :input :link :meta :param))

(defparameter *preserve-whitespace-elements* ’(:pre :script :style))

(defun empty-element-p (tag) (find tag *empty-elements*))

(defun preserve-whitespace-p (tag) (find tag *preserve-whitespace-elements*))

The last piece of information you need when generating HTML is whether you’re
generating XHTML since that affects how you emit empty elements.

(defparameter *xhtml* nil)

With all that information, you’re ready to process a cons FOO form. You use
parse-cons-form to parse the list into three parts, the tag symbol, a possibly
empty plist of attribute key/value pairs, and a possibly empty list of body forms.
You then emit the opening tag, the body, and the closing tag with the helper
functions emit-open-tag, emit-element-body, and emit-close-tag.

(defun process-cons-sexp-html (processor form)
(when (string= *escapes* *attribute-escapes*)
(error "Can’t use cons forms in attributes: ~a" form))

(multiple-value-bind (tag attributes body) (parse-cons-form form)
(emit-open-tag processor tag body attributes)
(emit-element-body processor tag body)
(emit-close-tag processor tag body)))

In emit-open-tag you have to call freshline when appropriate and then emit
the attributes with emit-attributes. You need to pass the element’s body to
emit-open-tag so when it’s emitting XHTML, it knows whether to finish the
tag with /> or >.

(defun emit-open-tag (processor tag body-p attributes)
(when (or (paragraph-element-p tag) (block-element-p tag))
(freshline processor))

(raw-string processor (format nil "<~(~a~)" tag))
(emit-attributes processor attributes)
(raw-string processor (if (and *xhtml* (not body-p)) "/>" ">")))

In emit-attributes the attribute names aren’t evaluated since they must be

440

keyword symbols, but you should invoke the top-level process function to
evaluate the attribute values, binding *escapes* to *attribute-escapes*. As
a convenience for specifying boolean attributes, whose value should be the name
of the attribute, if the value is T--not just any true value but actually T--then
you replace the value with the name of the attribute.7

(defun emit-attributes (processor attributes)
(loop for (k v) on attributes by #’cddr do

(raw-string processor (format nil " ~(~a~)=’" k))
(let ((*escapes* *attribute-escapes*))
(process processor (if (eql v t) (string-downcase k) v)))

(raw-string processor "’")))

Emitting the element’s body is similar to emitting the attribute values: you
can loop through the body calling process to evaluate each form. The rest of
the code is dedicated to emitting fresh lines and adjusting the indentation as
appropriate for the type of element.

(defun emit-element-body (processor tag body)
(when (block-element-p tag)
(freshline processor)
(indent processor))

(when (preserve-whitespace-p tag) (toggle-indenting processor))
(dolist (item body) (process processor item))
(when (preserve-whitespace-p tag) (toggle-indenting processor))
(when (block-element-p tag)
(unindent processor)
(freshline processor)))

Finally, emit-close-tag, as you’d probably expect, emits the closing tag (unless
no closing tag is necessary, such as when the body is empty and you’re either
emitting XHTML or the element is one of the special empty elements). Regardless
of whether you actually emit a close tag, you need to emit a final fresh line for
block and paragraph elements.

(defun emit-close-tag (processor tag body-p)
(unless (and (or *xhtml* (empty-element-p tag)) (not body-p))
(raw-string processor (format nil "</~(~a~)>" tag)))

(when (or (paragraph-element-p tag) (block-element-p tag))
(freshline processor)))

The function process is the basic FOO interpreter. To make it a bit easier
to use, you can define a function, emit-html, that invokes process, passing it
an html-pretty-printer and a form to evaluate. You can define and use a
helper function, get-pretty-printer, to get the pretty printer, which returns
the current value of *html-pretty-printer* if it’s bound; otherwise, it makes
a new instance of html-pretty-printer with *html-output* as its output
stream.

441

(defun emit-html (sexp) (process (get-pretty-printer) sexp))

(defun get-pretty-printer ()
(or *html-pretty-printer*

(make-instance
’html-pretty-printer
:printer (make-instance ’indenting-printer :out *html-output*))))

With this function, you can emit HTML to *html-output*. Rather than expose
the variable *html-output* as part of FOO’s public API, you should define a
macro, with-html-output, that takes care of binding the stream for you. It
also lets you specify whether you want pretty HTML output, defaulting to the
value of the variable *pretty*.

(defmacro with-html-output ((stream &key (pretty *pretty*)) &body body)
‘(let* ((*html-output* ,stream)

(*pretty* ,pretty))
,@body))

So, if you wanted to use emit-html to generate HTML to a file, you could write
the following:

(with-open-file (out "foo.html" :direction output)
(with-html-output (out :pretty t)
(emit-html *some-foo-expression*)))

What’s Next?
In the next chapter, you’ll look at how to implement a macro that compiles
FOO expressions into Common Lisp so you can embed HTML generation code
directly into your Lisp programs. You’ll also extend the FOO language to make
it a bit more expressive by adding its own flavor of special operators and macros.

1In fact, it’s probably too expressive since it can also generate all sorts of output
that’s not even vaguely legal HTML. Of course, that might be a feature if you
need to generate HTML that’s not strictly correct to compensate for buggy Web
browsers. Also, it’s common for language processors to accept programs that
are syntactically correct and otherwise well formed that’ll nonetheless provoke
undefined behavior when run.
2Well, almost every tag. Certain tags such as IMG and BR don’t. You’ll deal with
those in the section "The Basic Evaluation Rule."
3In the strict language of the Common Lisp standard, keyword symbols aren’t
self-evaluating, though they do, in fact, evaluate to themselves. See section
3.1.2.1.3 of the language standard or HyperSpec for a brief discussion.
4The requirement to use objects that the Lisp reader knows how to read isn’t a

442

hard-and-fast one. Since the Lisp reader is itself customizable, you could also
define a new reader-level syntax for a new kind of object. But that tends to be
more trouble than it’s worth.
5Another, more purely object-oriented, approach would be to define two classes,
perhaps html-pretty-printer and html-raw-printer, and then define no-op
methods specialized on html-raw-printer for the methods that should do stuff
only when *pretty* is true. However, in this case, after defining all the no-op
methods, you’d end up with more code, and then you’d have the hassle of making
sure you created an instance of the right class at the right time. But in general,
using polymorphism to replace conditionals is a good strategy.
6You don’t need a predicate for *inline-elements* since you only ever test for
block and paragraph elements. I include the parameter here for completeness.
7While XHTML requires boolean attributes to be notated with their name as the
value to indicate a true value, in HTML it’s also legal to simply include the name
of the attribute with no value, for example, <option selected> rather than
<option selected='selected'>. All HTML 4.0-compatible browsers should
understand both forms, but some buggy browsers understand only the no-value
form for certain attributes. If you need to generate HTML for such browsers,
you’ll need to hack emit-attributes to emit those attributes a bit differently.

Copyright © 2003-2005, Peter Seibel

31. Practical: An HTML Generation Library, the
Compiler
Now you’re ready to look at how the FOO compiler works. The main difference
between a compiler and an interpreter is that an interpreter processes a program
and directly generates some behavior--generating HTML in the case of a FOO
interpreter--but a compiler processes the same program and generates code in
some other language that will exhibit the same behavior. In FOO, the compiler
is a Common Lisp macro that translates FOO into Common Lisp so it can
be embedded in a Common Lisp program. Compilers, in general, have the
advantage over interpreters that, because compilation happens in advance, they
can spend a bit of time optimizing the code they generate to make it more
efficient. The FOO compiler does that, merging literal text as much as possible
in order to emit the same HTML with a smaller number of writes than the
interpreter uses. When the compiler is a Common Lisp macro, you also have the
advantage that it’s easy for the language understood by the compiler to contain
embedded Common Lisp--the compiler just has to recognize it and embed it in
the right place in the generated code. The FOO compiler will take advantage of
this capability.

443

The Compiler
The basic architecture of the compiler consists of three layers. First you’ll
implement a class html-compiler that has one slot that holds an adjustable
vector that’s used to accumulate ops representing the calls made to the generic
functions in the backend interface during the execution of process.

You’ll then implement methods on the generic functions in the backend interface
that will store the sequence of actions in the vector. Each op is represented by
a list consisting of a keyword naming the operation and the arguments passed
to the function that generated the op. The function sexp->ops implements the
first phase of the compiler, compiling a list of FOO forms by calling process on
each form with an instance of html-compiler.

This vector of ops stored by the compiler is then passed to a function that
optimizes it, merging consecutive raw-string ops into a single op that emits
the combined string in one go. The optimization function can also, optionally,
strip out ops that are needed only for pretty printing, which is mostly important
because it allows you to merge more raw-string ops.

Finally, the optimized ops vector is passed to a third function, generate-code,
that returns a list of Common Lisp expressions that will actually output the
HTML. When *pretty* is true, generate-code generates code that uses
the methods specialized on html-pretty-printer to output pretty HTML.
When *pretty* is NIL, it generates code that writes directly to the stream
html-output.

The macro html actually generates a body that contains two expansions, one
generated with *pretty* bound to T and one with *pretty* bound to NIL.
Which expansion is used is determined by the runtime value of *pretty*. Thus,
every function that contains a call to html will contain code to generate both
pretty and compact output.

The other significant difference between the compiler and the interpreter is that
the compiler can embed Lisp forms in the code it generates. To take advantage
of that, you need to modify the process function so it calls the embed-code
and embed-value functions when asked to process an expression that’s not a
FOO form. Since all self-evaluating objects are valid FOO forms, the only
forms that won’t be passed to process-sexp-html are lists that don’t match
the syntax for FOO cons forms and non-keyword symbols, the only atoms that
aren’t self-evaluating. You can assume that any non-FOO cons is code to be run
inline and all symbols are variables whose value you should embed.

(defun process (processor form)
(cond
((sexp-html-p form) (process-sexp-html processor form))
((consp form) (embed-code processor form))
(t (embed-value processor form))))

444

Now let’s look at the compiler code. First you should define two functions that
slightly abstract the vector you’ll use to save ops in the first two phases of
compilation.

(defun make-op-buffer () (make-array 10 :adjustable t :fill-pointer 0))

(defun push-op (op ops-buffer) (vector-push-extend op ops-buffer))

Next you can define the html-compiler class and the methods specialized on it
to implement the backend interface.

(defclass html-compiler ()
((ops :accessor ops :initform (make-op-buffer))))

(defmethod raw-string ((compiler html-compiler) string &optional newlines-p)
(push-op ‘(:raw-string ,string ,newlines-p) (ops compiler)))

(defmethod newline ((compiler html-compiler))
(push-op ’(:newline) (ops compiler)))

(defmethod freshline ((compiler html-compiler))
(push-op ’(:freshline) (ops compiler)))

(defmethod indent ((compiler html-compiler))
(push-op ‘(:indent) (ops compiler)))

(defmethod unindent ((compiler html-compiler))
(push-op ‘(:unindent) (ops compiler)))

(defmethod toggle-indenting ((compiler html-compiler))
(push-op ‘(:toggle-indenting) (ops compiler)))

(defmethod embed-value ((compiler html-compiler) value)
(push-op ‘(:embed-value ,value ,*escapes*) (ops compiler)))

(defmethod embed-code ((compiler html-compiler) code)
(push-op ‘(:embed-code ,code) (ops compiler)))

With those methods defined, you can implement the first phase of the compiler,
sexp->ops.

(defun sexp->ops (body)
(loop with compiler = (make-instance ’html-compiler)

for form in body do (process compiler form)
finally (return (ops compiler))))

During this phase you don’t need to worry about the value of *pretty*: just
record all the functions called by process. Here’s what sexp->ops makes of a
simple FOO form:

445

HTML> (sexp->ops ’((:p "Foo")))
#((:FRESHLINE) (:RAW-STRING "<p" NIL) (:RAW-STRING ">" NIL)
(:RAW-STRING "Foo" T) (:RAW-STRING "</p>" NIL) (:FRESHLINE))

The next phase, optimize-static-output, takes a vector of ops and returns a
new vector containing the optimized version. The algorithm is simple--for each
:raw-string op, it writes the string to a temporary string buffer. Thus, consec-
utive :raw-string ops will build up a single string containing the concatenation
of the strings that need to be emitted. Whenever you encounter an op other than
a :raw-string op, you convert the built-up string into a sequence of alternating
:raw-string and :newline ops with the helper function compile-buffer and
then add the next op. This function is also where you strip out the pretty
printing ops if *pretty* is NIL.

(defun optimize-static-output (ops)
(let ((new-ops (make-op-buffer)))
(with-output-to-string (buf)
(flet ((add-op (op)

(compile-buffer buf new-ops)
(push-op op new-ops)))

(loop for op across ops do
(ecase (first op)
(:raw-string (write-sequence (second op) buf))
((:newline :embed-value :embed-code) (add-op op))
((:indent :unindent :freshline :toggle-indenting)
(when *pretty* (add-op op)))))

(compile-buffer buf new-ops)))
new-ops))

(defun compile-buffer (buf ops)
(loop with str = (get-output-stream-string buf)

for start = 0 then (1+ pos)
for pos = (position #\Newline str :start start)
when (< start (length str))
do (push-op ‘(:raw-string ,(subseq str start pos) nil) ops)
when pos do (push-op ’(:newline) ops)
while pos))

The last step is to translate the ops into the corresponding Common Lisp
code. This phase also pays attention to the value of *pretty*. When
pretty is true, it generates code that invokes the backend generic func-
tions on *html-pretty-printer*, which will be bound to an instance of
html-pretty-printer. When *pretty* is NIL, it generates code that writes
directly to *html-output*, the stream to which the pretty printer would send
its output.

The actual function, generate-code, is trivial.

446

(defun generate-code (ops)
(loop for op across ops collect (apply #’op->code op)))

All the work is done by methods on the generic function op->code specializing
the op argument with an EQL specializer on the name of the op.

(defgeneric op->code (op &rest operands))

(defmethod op->code ((op (eql :raw-string)) &rest operands)
(destructuring-bind (string check-for-newlines) operands
(if *pretty*
‘(raw-string *html-pretty-printer* ,string ,check-for-newlines)
‘(write-sequence ,string *html-output*))))

(defmethod op->code ((op (eql :newline)) &rest operands)
(if *pretty*
‘(newline *html-pretty-printer*)
‘(write-char #\Newline *html-output*)))

(defmethod op->code ((op (eql :freshline)) &rest operands)
(if *pretty*
‘(freshline *html-pretty-printer*)
(error "Bad op when not pretty-printing: ~a" op)))

(defmethod op->code ((op (eql :indent)) &rest operands)
(if *pretty*
‘(indent *html-pretty-printer*)
(error "Bad op when not pretty-printing: ~a" op)))

(defmethod op->code ((op (eql :unindent)) &rest operands)
(if *pretty*
‘(unindent *html-pretty-printer*)
(error "Bad op when not pretty-printing: ~a" op)))

(defmethod op->code ((op (eql :toggle-indenting)) &rest operands)
(if *pretty*
‘(toggle-indenting *html-pretty-printer*)
(error "Bad op when not pretty-printing: ~a" op)))

The two most interesting op->code methods are the ones that generate code
for the :embed-value and :embed-code ops. In the :embed-value method,
you can generate slightly different code depending on the value of the escapes
operand since if escapes is NIL, you don’t need to generate a call to escape.
And when both *pretty* and escapes are NIL, you can generate code that uses
PRINC to emit the value directly to the stream.

(defmethod op->code ((op (eql :embed-value)) &rest operands)
(destructuring-bind (value escapes) operands

447

(if *pretty*
(if escapes
‘(raw-string *html-pretty-printer* (escape (princ-to-string ,value) ,escapes) t)
‘(raw-string *html-pretty-printer* (princ-to-string ,value) t))

(if escapes
‘(write-sequence (escape (princ-to-string ,value) ,escapes) *html-output*)
‘(princ ,value *html-output*)))))

Thus, something like this:

HTML> (let ((x 10)) (html (:p x)))
<p>10</p>
NIL

works because html translates (:p x) into something like this:

(progn
(write-sequence "<p>" *html-output*)
(write-sequence (escape (princ-to-string x) "<>&") *html-output*)
(write-sequence "</p>" *html-output*))

When that code replaces the call to html in the context of the LET, you get the
following:

(let ((x 10))
(progn
(write-sequence "<p>" *html-output*)
(write-sequence (escape (princ-to-string x) "<>&") *html-output*)
(write-sequence "</p>" *html-output*)))

and the reference to x in the generated code turns into a reference to the lexical
variable from the LET surrounding the html form.

The :embed-code method, on the other hand, is interesting because it’s so
trivial. Because process passed the form to embed-code, which stashed it in
the :embed-code op, all you have to do is pull it out and return it.

(defmethod op->code ((op (eql :embed-code)) &rest operands)
(first operands))

This allows code like this to work:

HTML> (html (:ul (dolist (x ’(foo bar baz)) (html (:li x)))))

FOO
BAR
BAZ

NIL

The outer call to html expands into code that does something like this:

448

(progn
(write-sequence "" *html-output*)
(dolist (x ’(foo bar baz)) (html (:li x)))
(write-sequence "" *html-output*))))

Then if you expand the call to html in the body of the DOLIST, you’ll get
something like this:

(progn
(write-sequence "" *html-output*)
(dolist (x ’(foo bar baz))
(progn
(write-sequence "" *html-output*)
(write-sequence (escape (princ-to-string x) "<>&") *html-output*)
(write-sequence "" *html-output*)))

(write-sequence "" *html-output*))

This code will, in fact, generate the output you saw.

FOO Special Operators
You could stop there; certainly the FOO language is expressive enough to
generate nearly any HTML you’d care to. However, you can add two features
to the language, with just a bit more code, that will make it quite a bit more
powerful: special operators and macros.

Special operators in FOO are analogous to special operators in Common Lisp.
Special operators provide ways to express things in the language that can’t be
expressed in the language supported by the basic evaluation rule. Or, another way
to look at it is that special operators provide access to the primitive mechanisms
used by the language evaluator.1

To take a simple example, in the FOO compiler, the language evaluator uses the
embed-value function to generate code that will embed the value of a variable in
the output HTML. However, because only symbols are passed to embed-value,
there’s no way, in the language I’ve described so far, to embed the value of
an arbitrary Common Lisp expression; the process function passes cons cells
to embed-code rather than embed-value, so the values returned are ignored.
Typically this is what you’d want, since the main reason to embed Lisp code in
a FOO program is to use Lisp control constructs. However, sometimes you’d like
to embed computed values in the generated HTML. For example, you might like
this FOO program to generate a paragraph tag containing a random number:

(:p (random 10))

But that doesn’t work because the code is run and its value discarded.

HTML> (html (:p (random 10)))
<p></p>
NIL

449

In the language, as you’ve implemented it so far, you could work around this
limitation by computing the value outside the call to html and then embedding
it via a variable.

HTML> (let ((x (random 10))) (html (:p x)))
<p>1</p>
NIL

But that’s sort of annoying, particularly when you consider that if you could
arrange for the form (random 10) to be passed to embed-value instead of
embed-code, it’d do exactly what you want. So, you can define a special
operator, :print, that’s processed by the FOO language processor according to
a different rule than a normal FOO expression. Namely, instead of generating a
<print> element, it passes the form in its body to embed-value. Thus, you can
generate a paragraph containing a random number like this:

HTML> (html (:p (:print (random 10))))
<p>9</p>
NIL

Obviously, this special operator is useful only in compiled FOO code since
embed-value doesn’t work in the interpreter. Another special operator that
can be used in both interpreted and compiled FOO code is :format, which
lets you generate output using the FORMAT function. The arguments to the
:format special operator are a string used as a format control string and then
any arguments to be interpolated. When all the arguments to :format are
self-evaluating objects, a string is generated by passing them to FORMAT, and
that string is then emitted like any other string. This allows such :format forms
to be used in FOO passed to emit-html. In compiled FOO, the arguments to
:format can be any Lisp expressions.

Other special operators provide control over what characters are automatically
escaped and to explicitly emit newline characters: the :noescape special operator
causes all the forms in its body to be evaluated as regular FOO forms but with
escapes bound to NIL, while :attribute evaluates the forms in its body
with *escapes* bound to *attribute-escapes*. And :newline is translated
into code to emit an explicit newline.

So, how do you define special operators? There are two aspects to processing
special operators: how does the language processor recognize forms that use
special operators, and how does it know what code to run to process each special
operator?

You could hack process-sexp-html to recognize each special operator and
handle it in the appropriate manner--special operators are, logically, part of the
implementation of the language, and there aren’t going to be that many of them.
However, it’d be nice to have a slightly more modular way to add new special
operators--not because users of FOO will be able to but just for your own sanity.

Define a special form as any list whose CAR is a symbol that’s the name of a

450

special operator. You can mark the names of special operators by adding a non-
NIL value to the symbol’s property list under the key html-special-operator.
So, you can define a function that tests whether a given form is a special form
like this:

(defun special-form-p (form)
(and (consp form) (symbolp (car form)) (get (car form) ’html-special-operator)))

The code that implements each special operator is responsible for taking apart the
rest of the list however it sees fit and doing whatever the semantics of the special
operator require. Assuming you’ll also define a function process-special-form,
which will take the language processor and a special form and run the appropriate
code to generate a sequence of calls on the processor object, you can augment
the top-level process function to handle special forms like this:

(defun process (processor form)
(cond
((special-form-p form) (process-special-form processor form))
((sexp-html-p form) (process-sexp-html processor form))
((consp form) (embed-code processor form))
(t (embed-value processor form))))

You must add the special-form-p clause first because special forms can look,
syntactically, like regular FOO expressions just the way Common Lisp’s special
forms can look like regular function calls.

Now you just need to implement process-special-form. Rather than define a
single monolithic function that implements all the special operators, you should
define a macro that allows you to define special operators much like regular
functions and that also takes care of adding the html-special-operator entry
to the property list of the special operator’s name. In fact, the value you store in
the property list can be a function that implements the special operator. Here’s
the macro:

(defmacro define-html-special-operator (name (processor &rest other-parameters) &body body)
‘(eval-when (:compile-toplevel :load-toplevel :execute)

(setf (get ’,name ’html-special-operator)
(lambda (,processor ,@other-parameters) ,@body))))

This is a fairly advanced type of macro, but if you take it one line at a time,
there’s nothing all that tricky about it. To see how it works, take a simple use
of the macro, the definition of the special operator :noescape, and look at the
macro expansion. If you write this:

(define-html-special-operator :noescape (processor &rest body)
(let ((*escapes* nil))
(loop for exp in body do (process processor exp))))

it’s as if you had written this:

(eval-when (:compile-toplevel :load-toplevel :execute)

451

(setf (get ’:noescape ’html-special-operator)
(lambda (processor &rest body)
(let ((*escapes* nil))
(loop for exp in body do (process processor exp))))))

The EVAL-WHEN special operator, as I discussed in Chapter 20, ensures that
the effects of code in its body will be made visible during compilation
when you compile with COMPILE-FILE. This matters if you want to use
define-html-special-operator in a file and then use the just-defined special
operator in that same file.

Then the SETF expression sets the property html-special-operator on
the symbol :noescape to an anonymous function with the same parame-
ter list as was specified in define-html-special-operator. By defining
define-html-special-operator to split the parameter list in two parts,
processor and everything else, you ensure that all special operators accept at
least one argument.

The body of the anonymous function is then the body provided to
define-html-special-operator. The job of the anonymous function is
to implement the special operator by making the appropriate calls on the
backend interface to generate the correct HTML or the code that will generate
it. It can also use process to evaluate an expression as a FOO form.

The :noescape special operator is particularly simple--all it does is pass the
forms in its body to process with *escapes* bound to NIL. In other words,
this special operator disables the normal character escaping preformed by
process-sexp-html.

With special operators defined this way, all process-special-form has to do
is look up the anonymous function in the property list of the special operator’s
name and APPLY it to the processor and rest of the form.

(defun process-special-form (processor form)
(apply (get (car form) ’html-special-operator) processor (rest form)))

Now you’re ready to define the five remaining FOO special operators. Similar to
:noescape is :attribute, which evaluates the forms in its body with *escapes*
bound to *attribute-escapes*. This special operator is useful if you want to
write helper functions that output attribute values. If you write a function like
this:

(defun foo-value (something)
(html (:print (frob something))))

the html macro is going to generate code that escapes the characters in
element-escapes. But if you’re planning to use foo-value like this:

(html (:p :style (foo-value 42) "Foo"))

452

then you want it to generate code that uses *attribute-escapes*. So, instead,
you can write it like this:2

(defun foo-value (something)
(html (:attribute (:print (frob something)))))

The definition of :attribute looks like this:

(define-html-special-operator :attribute (processor &rest body)
(let ((*escapes* *attribute-escapes*))
(loop for exp in body do (process processor exp))))

The next two special operators, :print and :format, are used to output values.
The :print special operator, as I discussed earlier, is used in compiled FOO
programs to embed the value of an arbitrary Lisp expression. The :format
special operator is more or less equivalent to generating a string with (format
nil ...) and then embedding it. The primary reason to define :format as a
special operator is for convenience. This:

(:format "Foo: ~d" x)

is nicer than this:

(:print (format nil "Foo: ~d" x))

It also has the slight advantage that if you use :format with arguments that are
all self-evaluating, FOO can evaluate the :format at compile time rather than
waiting until runtime. The definitions of :print and :format are as follows:

(define-html-special-operator :print (processor form)
(cond
((self-evaluating-p form)
(warn "Redundant :print of self-evaluating form ~s" form)
(process-sexp-html processor form))
(t
(embed-value processor form))))

(define-html-special-operator :format (processor &rest args)
(if (every #’self-evaluating-p args)
(process-sexp-html processor (apply #’format nil args))
(embed-value processor ‘(format nil ,@args))))

The :newline special operator forces an output of a literal newline, which is
occasionally handy.

(define-html-special-operator :newline (processor)
(newline processor))

Finally, the :progn special operator is analogous to the PROGN special operator
in Common Lisp. It simply processes the forms in its body in sequence.

(define-html-special-operator :progn (processor &rest body)

453

(loop for exp in body do (process processor exp)))

In other words, the following:

(html (:p (:progn "Foo " (:i "bar") " baz")))

will generate the same code as this:

(html (:p "Foo " (:i "bar") " baz"))

This might seem like a strange thing to need since normal FOO expressions can
have any number of forms in their body. However, this special operator will
come in quite handy in one situation--when writing FOO macros, which brings
you to the last language feature you need to implement.

FOO Macros
FOO macros are similar in spirit to Common Lisp’s macros. A FOO macro
is a bit of code that accepts a FOO expression as an argument and returns a
new FOO expression as the result, which is then evaluated according to the
normal FOO evaluation rules. The actual implementation is quite similar to the
implementation of special operators.

As with special operators, you can define a predicate function to test whether a
given form is a macro form.

(defun macro-form-p (form)
(cons-form-p form #’(lambda (x) (and (symbolp x) (get x ’html-macro)))))

You use the previously defined function cons-form-p because you want to allow
macros to be used in either of the syntaxes of nonmacro FOO cons forms.
However, you need to pass a different predicate function, one that tests whether
the form name is a symbol with a non-NIL html-macro property. Also, as in
the implementation of special operators, you’ll define a macro for defining FOO
macros, which is responsible for storing a function in the property list of the
macro’s name, under the key html-macro. However, defining a macro is a bit
more complicated because FOO supports two flavors of macro. Some macros
you’ll define will behave much like normal HTML elements and may want to
have easy access to a list of attributes. Other macros will simply want raw access
to the elements of their body.

You can make the distinction between the two flavors of macros implicit: when you
define a FOO macro, the parameter list can include an &attributes parameter.
If it does, the macro form will be parsed like a regular cons form, and the macro
function will be passed two values, a plist of attributes and a list of expressions
that make up the body of the form. A macro form without an &attributes
parameter won’t be parsed for attributes, and the macro function will be invoked
with a single argument, a list containing the body expressions. The former is
useful for what are essentially HTML templates. For example:

(define-html-macro :mytag (&attributes attrs &body body)

454

‘((:div :class "mytag" ,@attrs) ,@body))

HTML> (html (:mytag "Foo"))
<div class=’mytag’>Foo</div>
NIL
HTML> (html (:mytag :id "bar" "Foo"))
<div class=’mytag’ id=’bar’>Foo</div>
NIL
HTML> (html ((:mytag :id "bar") "Foo"))
<div class=’mytag’ id=’bar’>Foo</div>
NIL

The latter kind of macro is more useful for writing macros that manipulate the
forms in their body. This type of macro can function as a kind of HTML control
construct. As a trivial example, consider the following macro that implements
an :if construct:

(define-html-macro :if (test then else)
‘(if ,test (html ,then) (html ,else)))

This macro allows you to write this:

(:p (:if (zerop (random 2)) "Heads" "Tails"))

instead of this slightly more verbose version:

(:p (if (zerop (random 2)) (html "Heads") (html "Tails")))

To determine which kind of macro you should generate, you need a function that
can parse the parameter list given to define-html-macro. This function returns
two values, the name of the &attributes parameter, or NIL if there was none,
and a list containing all the elements of args after removing the &attributes
marker and the subsequent list element.3

(defun parse-html-macro-lambda-list (args)
(let ((attr-cons (member ’&attributes args)))
(values
(cadr attr-cons)
(nconc (ldiff args attr-cons) (cddr attr-cons)))))

HTML> (parse-html-macro-lambda-list ’(a b c))
NIL
(A B C)
HTML> (parse-html-macro-lambda-list ’(&attributes attrs a b c))
ATTRS
(A B C)
HTML> (parse-html-macro-lambda-list ’(a b c &attributes attrs))
ATTRS
(A B C)

455

The element following &attributes in the parameter list can also be a destruc-
turing parameter list.

HTML> (parse-html-macro-lambda-list ’(&attributes (&key x y) a b c))
(&KEY X Y)
(A B C)

Now you’re ready to write define-html-macro. Depending on whether there
was an &attributes parameter specified, you need to generate one form or
the other of HTML macro so the main macro simply determines which kind of
HTML macro it’s defining and then calls out to a helper function to generate
the right kind of code.

(defmacro define-html-macro (name (&rest args) &body body)
(multiple-value-bind (attribute-var args)

(parse-html-macro-lambda-list args)
(if attribute-var
(generate-macro-with-attributes name attribute-var args body)
(generate-macro-no-attributes name args body))))

The functions that actually generate the expansion look like this:

(defun generate-macro-with-attributes (name attribute-args args body)
(with-gensyms (attributes form-body)
(if (symbolp attribute-args) (setf attribute-args ‘(&rest ,attribute-args)))
‘(eval-when (:compile-toplevel :load-toplevel :execute)

(setf (get ’,name ’html-macro-wants-attributes) t)
(setf (get ’,name ’html-macro)

(lambda (,attributes ,form-body)
(destructuring-bind (,@attribute-args) ,attributes
(destructuring-bind (,@args) ,form-body
,@body)))))))

(defun generate-macro-no-attributes (name args body)
(with-gensyms (form-body)
‘(eval-when (:compile-toplevel :load-toplevel :execute)

(setf (get ’,name ’html-macro-wants-attributes) nil)
(setf (get ’,name ’html-macro)

(lambda (,form-body)
(destructuring-bind (,@args) ,form-body ,@body)))))

The macro functions you’ll define accept either one or two arguments and then
use DESTRUCTURING-BIND to take them apart and bind them to the parameters
defined in the call to define-html-macro. In both expansions you need to
save the macro function in the name’s property list under html-macro and a
boolean indicating whether the macro takes an &attributes parameter under
the property html-macro-wants-attributes. You use that property in the
following function, expand-macro-form, to determine how the macro function
should be invoked:

456

(defun expand-macro-form (form)
(if (or (consp (first form))

(get (first form) ’html-macro-wants-attributes))
(multiple-value-bind (tag attributes body) (parse-cons-form form)
(funcall (get tag ’html-macro) attributes body))

(destructuring-bind (tag &body body) form
(funcall (get tag ’html-macro) body))))

The last step is to integrate macros by adding a clause to the dispatching COND
in the top-level process function.

(defun process (processor form)
(cond
((special-form-p form) (process-special-form processor form))
((macro-form-p form) (process processor (expand-macro-form form)))
((sexp-html-p form) (process-sexp-html processor form))
((consp form) (embed-code processor form))
(t (embed-value processor form))))

This is the final version of process.

The Public API
Now, at long last, you’re ready to implement the html macro, the main
entry point to the FOO compiler. The other parts of FOO’s public API
are emit-html and with-html-output, which I discussed in the previous
chapter, and define-html-macro, which I discussed in the previous section.
The define-html-macro macro needs to be part of the public API because
FOO’s users will want to write their own HTML macros. On the other
hand, define-html-special-operator isn’t part of the public API because it
requires too much knowledge of FOO’s internals to define a new special operator.
And there should be very little that can’t be done using the existing language
and special operators.4

One last element of the public API, before I get to html, is another macro,
in-html-style. This macro controls whether FOO generates XHTML or regular
HTML by setting the *xhtml* variable. The reason this needs to be a macro is
because you’ll want to wrap the code that sets *xhtml* in an EVAL-WHEN so you
can set it in a file and have it affect uses of the html macro later in that same
file.

(defmacro in-html-style (syntax)
(eval-when (:compile-toplevel :load-toplevel :execute)
(case syntax
(:html (setf *xhtml* nil))
(:xhtml (setf *xhtml* t)))))

Finally let’s look at html itself. The only tricky bit about implementing html
comes from the need to generate code that can be used to generate both pretty

457

and compact output, depending on the runtime value of the variable *pretty*.
Thus, html needs to generate an expansion that contains an IF expression and
two versions of the code, one compiled with *pretty* bound to true and one
compiled with it bound to NIL. To further complicate matters, it’s common for
one html call to contain embedded calls to html, like this:

(html (:ul (dolist (item stuff)) (html (:li item))))

If the outer html expands into an IF expression with two versions of the code,
one for when *pretty* is true and one for when it’s false, it’s silly for nested
html forms to expand into two versions too. In fact, it’ll lead to an exponential
explosion of code since the nested html is already going to be expanded twice--
once in the *pretty*-is-true branch and once in the *pretty*-is-false branch.
If each expansion generates two versions, then you’ll have four total versions.
And if the nested html form contained another nested html form, you’d end up
with eight versions of that code. If the compiler is smart, it’ll eventually realize
that most of that generated code is dead and will eliminate it, but even figuring
that out can take quite a bit of time, slowing down compilation of any function
that uses nested calls to html.

Luckily, you can easily avoid this explosion of dead code by generating an
expansion that locally redefines the html macro, using MACROLET, to generate
only the right kind of code. First you define a helper function that takes the vector
of ops returned by sexp->ops and runs it through optimize-static-output
and generate-code--the two phases that are affected by the value of *pretty*-
-with *pretty* bound to a specified value and that interpolates the resulting
code into a PROGN. (The PROGN returns NIL just to keep things tidy.).

(defun codegen-html (ops pretty)
(let ((*pretty* pretty))
‘(progn ,@(generate-code (optimize-static-output ops)) nil)))

With that function, you can then define html like this:

(defmacro html (&whole whole &body body)
(declare (ignore body))
‘(if *pretty*

(macrolet ((html (&body body) (codegen-html (sexp->ops body) t)))
(let ((*html-pretty-printer* (get-pretty-printer))) ,whole))

(macrolet ((html (&body body) (codegen-html (sexp->ops body) nil)))
,whole)))

The &whole parameter represents the original html form, and because it’s
interpolated into the expansion in the bodies of the two MACROLETs, it will be
reprocessed with each of the new definitions of html, the one that generates
pretty-printing code and the other that generates non-pretty-printing code. Note
that the variable *pretty* is used both during macro expansion and when the
resulting code is run. It’s used at macro expansion time by codegen-html to
cause generate-code to generate one kind of code or the other. And it’s used at

458

runtime, in the IF generated by the top-level html macro, to determine whether
the pretty-printing or non-pretty-printing code should actually run.

The End of the Line
As usual, you could keep working with this code to enhance it in various ways.
One interesting avenue to pursue is to use the underlying output generation
framework to emit other kinds of output. In the version of FOO you can
download from the book’s Web site, you’ll find some code that implements CSS
output that can be integrated into HTML output in both the interpreter and
compiler. That’s an interesting case because CSS’s syntax can’t be mapped to
s-expressions in such a trivial way as HTML’s can. However, if you look at that
code, you’ll see it’s still possible to define an s-expression syntax for representing
the various constructs available in CSS.

A more ambitious undertaking would be to add support for generating embedded
JavaScript. Done right, adding JavaScript support to FOO could yield two big
wins. One is that after you define an s-expression syntax that you can map
to JavaScript syntax, then you can start writing macros, in Common Lisp, to
add new constructs to the language you use to write client-side code, which
will then be compiled to JavaScript. The other is that, as part of the FOO
s-expression JavaScript to regular JavaScript translation, you could deal with the
subtle but annoying differences between JavaScript implementations in different
browsers. That is, the JavaScript code that FOO generates could either contain
the appropriate conditional code to do one thing in one browser and another in
a different browser or could generate different code depending on which browser
you wanted to support. Then if you use FOO in dynamically generated pages, it
could use information about the User-Agent making the request to generate the
right flavor of JavaScript for that browser.

But if that interests you, you’ll have to implement it yourself since this is the end
of the last practical chapter of this book. In the next chapter I’ll wrap things up,
discussing briefly some topics that I haven’t touched on elsewhere in the book
such as how to find libraries, how to optimize Common Lisp code, and how to
deliver Lisp applications.

1The analogy between FOO’s special operators, and macros, which I’ll discuss
in the next section, and Lisp’s own is fairly sound. In fact, understanding how
FOO’s special operators and macros work may give you some insight into why
Common Lisp is put together the way it is.
2The :noescape and :attribute special operators must be defined as special
operators because FOO determines what escapes to use at compile time, not
at runtime. This allows FOO to escape literal values at compile time, which is
much more efficient than having to scan all output at runtime.

459

3Note that &attributes is just another symbol; there’s nothing intrinsically
special about names that start with &.
4The one element of the underlying language-processing infrastructure that’s not
currently exposed through special operators is the indentation. If you wanted
to make FOO more flexible, albeit at the cost of making its API that much
more complex, you could add special operators for manipulating the underlying
indenting printer. But it seems like the cost of having to explain the extra special
operators would outweigh the rather small gain in expressiveness.

Copyright © 2003-2005, Peter Seibel

32. Conclusion: What’s Next?
I hope by now you’re convinced that the title of this book isn’t an oxymoron.
However, it’s quite likely there’s some area of programming that’s of great
practical importance to you that I haven’t discussed at all. For instance, I
haven’t said anything about how to develop graphical user interfaces (GUIs),
how to connect to relational databases, how to parse XML, or how to write
programs that act as clients for various network protocols. Similarly, I haven’t
discussed two topics that will become important when you write real applications
in Common Lisp: optimizing your Lisp code and packaging your application for
delivery.

I’m obviously not going to cover all these topics in depth in this final chapter.
Instead, I’ll give you a few pointers you can use to pursue whichever aspect of
Lisp programming interests you most.

Finding Lisp Libraries
While the standard library of functions, data types, and macros that comes
with Common Lisp is quite large, it provides only general-purpose program-
ming constructs. Specialized tasks such as writing GUIs, talking to databases,
and parsing XML require libraries beyond what are provided by the ANSI
standardized language.

The easiest way to obtain a library to do something you need may be simply
to check out your Lisp implementation. Most implementations provide at
least some facilities not specified in the language standard. The commercial
Common Lisp vendors tend to work especially hard at providing additional
libraries for their implementation in order to justify their prices. Franz’s Allegro
Common Lisp, Enterprise Edition, for instance, comes with libraries for parsing
XML, speaking SOAP, generating HTML, connecting to relational databases,
and building graphical interfaces in various ways, among others. LispWorks,
another prominent commercial Lisp, provides several similar libraries, including
a well-regarded portable GUI toolkit, CAPI, which can be used to develop GUI
applications that will run on any operating system LispWorks runs on.

460

The free and open-source Common Lisp implementations typically don’t include
quite so many bundled libraries, relying instead on portable free and open-source
libraries. But even those implementations usually fill in some of the more
important areas not addressed by the language standard such as networking and
multithreading.

The only disadvantage of using implementation-specific libraries is that they
tie you to the implementation that provides them. If you’re delivering end-user
apps or are deploying a server-based application on a server that you control,
that may not matter a lot. But if you want to write code to share with other
Lispers or if you simply don’t want to be tied to a particular implementation,
it’s a little more annoying.

For portable libraries--portable either because they’re written entirely in standard
Common Lisp or because they contain appropriate read-time conditionalization
to work on multiple implementations1--your best bet is to go to the Web. With
the usual caveats about URLs going stale as soon as they’re printed on paper,
these are three of the best current starting points:

• Common-Lisp.net (http://www.common-lisp.net/) is a site that hosts
free and open-source Common Lisp projects, providing version control,
mailing lists, and Web hosting of project pages. In the first year and a half
after the site went live, nearly a hundred projects were registered.

• The Common Lisp Open Code Collection (CLOCC) (http://clocc.sourceforge.net/)
is a slightly older collection of free software libraries, which are intended
to be portable between Common Lisp implementations and self-contained,
not relying on any libraries not included in CLOCC itself.

• Cliki (http://www.cliki.net/) is a wiki devoted to free software in Com-
mon Lisp. While, like any wiki, it may change at any time, typically it has
quite a few links to libraries as well to various open-source Common Lisp
implementations. The eponymous software it runs on is also written in
Common Lisp.

Linux users running the Debian or Gentoo distributions can also easily install
an ever-growing number of Lisp libraries that have been packaged with those
distributions’ packing tools, apt-get on Debian and emerge on Gentoo.

I won’t recommend any specific libraries here since the library situation is
changing every day--after years of envying the library collections of Perl, Python,
and Java, Common Lispers have, in the past couple of years, begun to take up
the challenge of giving Common Lisp the set of libraries--both open source and
commercial--that it deserves.

One area where there has been a lot of activity recently is on the GUI front.
Unlike Java and C# but like Perl, Python, and C, there’s no single way to
develop GUIs in Common Lisp. Instead, it depends both on what Common Lisp
implementation you’re using and what operating system or systems you want to
support.

461

The commercial Common Lisp implementations usually provide some way to
build GUIs for the platforms they run on. Additionally, LispWorks provides
CAPI, the previously mentioned, portable GUI API.

On the open-source side, you have a number of options. On Unix, you can write
low-level X Windows GUIs using CLX, a pure-Common Lisp implementation
of the X Windows protocol, roughly akin to xlib in C. Or you can use various
bindings to higher-level APIs and toolkits such as GTK and Tk, much the way
you might in Perl or Python.

Or, if you’re looking for something completely different, you can check out
Common Lisp Interface Manager (CLIM). A descendant of the Symbolics Lisp
Machines GUI framework, CLIM is powerful but complex. Although many
commercial Common Lisp implementations actually support it, it doesn’t seem
to have seen a lot of use. But in the past couple years, an open-source implemen-
tation of CLIM, McCLIM--now hosted at Common-Lisp.net--has been picking
up steam lately, so we may be on the verge of a CLIM renaissance.

Interfacing with Other Languages
While many useful libraries can be written in "pure" Common Lisp using only the
features specified in the language standard, and many more can be written in Lisp
using nonstandard facilities provided by a given implementation, occasionally
it’s more straightforward to use an existing library written in another language,
such as C.

The language standard doesn’t specify a mechanism for Lisp code to call code
written in another language or even require that implementations provide such a
mechanism. But these days, almost all Common Lisp implementations support
what’s called a Foreign Function Interface, or FFI for short.2 The basic job
of an FFI is to allow you to give Lisp enough information to be able to link
in the foreign code. Thus, if you’re going to call a function from a C library,
you need to tell Lisp about how to translate the Lisp objects passed to the
function into C types and the value returned by the function back into a Lisp
object. However, each implementation provides its own FFI, each with slightly
varying capabilities and syntax. Some FFIs allow callbacks from C to Lisp, and
others don’t. The Universal Foreign Function Interface (UFFI) project provides
a portability layer over the FFIs of more than a half dozen different Common
Lisp implementations. It works by defining its own macros that expand into
appropriate FFI code for the implementation it’s running in. The UFFI takes a
lowest common denominator approach, which means it can’t take advantage of
all the features of different implementations’ FFIs, but it does provide a good
way to build a simple Lisp wrapper around a basic C API.3

462

Make It Work, Make It Right, Make It Fast
As has been said many times, and variously attributed to Donald Knuth, C.A.R.
Hoare, and Edsger Dijkstra, premature optimization is the root of all evil.4
Common Lisp is an excellent language to program in if you want to heed
this wisdom yet still need high performance. This may come as a surprise if
you’ve heard the conventional wisdom that Lisp is slow. In Lisp’s earliest days,
when computers were programmed with punch cards, Lisp’s high-level features
may have doomed it to be slower than the competition, namely, assembly and
FORTRAN. But that was a long time ago. In the meantime, Lisp has been used
for everything from creating complex AI systems to writing operating systems,
and a lot of work has gone into figuring out how to compile Lisp into efficient
code. In this section I’ll talk about some of the reasons why Common Lisp is an
excellent language for writing high-performance code and some of the techniques
for doing so.

The first reason that Lisp is an excellent language for writing high-performance
code is, ironically enough, the dynamic nature of Lisp programming--the very
thing that originally made it hard to bring Lisp’s performance up to the levels
achieved by FORTRAN compilers. The reason Common Lisp’s dynamic features
make it easier to write high-performance code is that the first step to writing
efficient code is to find the right algorithms and data structures.

Common Lisp’s dynamic features keep code flexible, which makes it easier to
try different approaches. Given a finite amount of time to write a program,
you’re much more likely to end up with a high-performance version if you don’t
spend a lot of time getting into and out of dead ends. In Common Lisp, you
can try an idea, see it’s going nowhere, and move on without having spent a
ton of time convincing the compiler your code is worthy of being run and then
waiting for it to finish compiling. You can write a straightforward but inefficient
version of a function--a code sketch--to determine whether your basic approach
is sound and then replace that function with a more complex but more efficient
implementation if you determine that it is. And if the overall approach turns out
to be flawed, then you haven’t wasted a bunch of time tuning a function that’s
no longer needed, which means you have more time to find a better approach.

The next reason Common Lisp is a good language for developing high-
performance software is that most Common Lisp implementations come
with mature compilers that generate quite efficient machine code. I’ll talk
in a moment about how to help these compilers generate code that will be
competitive with code generated by C compilers, but these implementations
already are quite a bit faster than those of languages whose implementations
are less mature and use simpler compilers or interpreters. Also, since the Lisp
compiler is available at runtime, the Lisp programmer has some possibilities
that would be hard to emulate in other languages--your programs can generate
Lisp code at runtime that’s then compiled into machine code and run. If
the generated code is going to run enough times, this can be a big win. Or,

463

even without using the compiler at runtime, closures give you another way to
meld machine code with runtime data. For instance, the CL-PPCRE regular
expression library, running in CMUCL, is faster than Perl’s regular expression
engine on some benchmarks, even though Perl’s engine is written in highly
tuned C. This is presumably because in Perl a regular expression is translated
into what are essentially bytecodes that are then interpreted by the regex engine,
while CL-PPCRE translates a regular expression into a tree of compiled closures
that invoke each other via the normal function-calling machinery.5

However, even with the right algorithm and a high-quality compiler, you may
not get the raw speed you need. Then it’s time to think about profiling and
tuning. The key, in Lisp as in any language, is to profile first to find the spots
where your program is actually spending its time and then worry about speeding
up those parts.6

You have a number of different ways to approach profiling. The language
standard provides a few rudimentary tools for measuring how long certain forms
take to execute. In particular, the TIME macro can be wrapped around any form
and will return whatever values the form returns after printing a message to
TRACE-OUTPUT about how long it took to run and how much memory it used.
The exact form of the message is implementation defined.

You can use TIME for a bit of quick-and-dirty profiling to narrow your search for
bottlenecks. For instance, suppose you have a function that’s taking a long time
to run and that calls two other functions--something like this:

(defun foo ()
(bar)
(baz))

If you want to see whether bar or baz is taking more time, you can change the
definition of foo to this:

(defun foo ()
(time (bar))
(time (baz)))

Now you can call foo, and Lisp will print two reports, one for bar and one for
baz. The form is implementation dependent; here’s what it looks like in Allegro
Common Lisp:

CL-USER> (foo)
; cpu time (non-gc) 60 msec user, 0 msec system
; cpu time (gc) 0 msec user, 0 msec system
; cpu time (total) 60 msec user, 0 msec system
; real time 105 msec
; space allocation:
; 24,172 cons cells, 1,696 other bytes, 0 static bytes
; cpu time (non-gc) 540 msec user, 10 msec system
; cpu time (gc) 170 msec user, 0 msec system

464

; cpu time (total) 710 msec user, 10 msec system
; real time 1,046 msec
; space allocation:
; 270,172 cons cells, 1,696 other bytes, 0 static bytes

Of course, that’d be a bit easier to read if the output included a label. If you
use this technique a lot, it might be worth defining your own macro like this:

(defmacro labeled-time (form)
‘(progn
(format *trace-output* "~2&~a" ’,form)
(time ,form)))

If you replace TIME with labeled-time in foo, you’ll get this output:

CL-USER> (foo)

(BAR)
; cpu time (non-gc) 60 msec user, 0 msec system
; cpu time (gc) 0 msec user, 0 msec system
; cpu time (total) 60 msec user, 0 msec system
; real time 131 msec
; space allocation:
; 24,172 cons cells, 1,696 other bytes, 0 static bytes

(BAZ)
; cpu time (non-gc) 490 msec user, 0 msec system
; cpu time (gc) 190 msec user, 10 msec system
; cpu time (total) 680 msec user, 10 msec system
; real time 1,088 msec
; space allocation:
; 270,172 cons cells, 1,696 other bytes, 0 static bytes

From this output, it’s clear that most of the time in foo is spent in baz.

Of course, the output from TIME gets a bit unwieldy if the form
you want to profile is called repeatedly. You can build your own
measurement tools using the functions GET-INTERNAL-REAL-TIME and
GET-INTERNAL-RUN-TIME, which return a number that increases by the
value of the constant INTERNAL-TIME-UNITS-PER-SECOND each second.
GET-INTERNAL-REAL-TIME measures wall time, the actual amount of time
elapsed, while GET-INTERNAL-RUN-TIME measures some implementation-defined
value such as the amount of time Lisp was actually executing or the time Lisp
was executing user code and not internal bookkeeping such as the garbage
collector. Here’s a trivial but useful profiling tool built with a few macros and
GET-INTERNAL-RUN-TIME:

(defparameter *timing-data* ())

465

(defmacro with-timing (label &body body)
(with-gensyms (start)
‘(let ((,start (get-internal-run-time)))
(unwind-protect (progn ,@body)
(push (list ’,label ,start (get-internal-run-time)) *timing-data*)))))

(defun clear-timing-data ()
(setf *timing-data* ()))

(defun show-timing-data ()
(loop for (label time count time-per %-of-total) in (compile-timing-data) do

(format t "~3d% ~a: ~d ticks over ~d calls for ~d per.~%"
%-of-total label time count time-per)))

(defun compile-timing-data ()
(loop with timing-table = (make-hash-table)

with count-table = (make-hash-table)
for (label start end) in *timing-data*
for time = (- end start)
summing time into total
do
(incf (gethash label timing-table 0) time)
(incf (gethash label count-table 0))

finally
(return
(sort
(loop for label being the hash-keys in timing-table collect

(let ((time (gethash label timing-table))
(count (gethash label count-table)))

(list label time count (round (/ time count)) (round (* 100 (/ time total))))))
#’> :key #’fifth))))

This profiler lets you wrap a with-timing around any form; each time the form
is executed, the time it starts and the time it ends are recorded, associating
with a label you provide. The function show-timing-data dumps out a table
showing how much time was spent in different labeled sections of code like this:

CL-USER> (show-timing-data)
84% BAR: 650 ticks over 2 calls for 325 per.
16% FOO: 120 ticks over 5 calls for 24 per.

NIL

You could obviously make this profiling code more sophisticated in many ways.
Alternatively, your Lisp implementation most likely provides its own profiling
tools, which, since they have access to the internals of the implementation, can
get at information not necessarily available to user-level code.

Once you’ve found the bottleneck in your code, you can start tuning. The

466

first thing you should try, of course, is to find a more efficient basic algorithm--
that’s where the big gains are to be had. But assuming you’re already using an
appropriate algorithm, then it’s down to code bumming--locally optimizing the
code so it does absolutely no more work than necessary.

The main tools for code bumming in Common Lisp are its optional declarations.
The basic idea behind declarations in Common Lisp is that they’re used to give
the compiler information it can use in a variety of ways to generate better code.

For a simple example, consider this Common Lisp function:

(defun add (x y) (+ x y))

I mentioned in Chapter 10 that if you compare the performance of this function
Lisp to the seemingly equivalent C function:

int add (int x, int y) { return x + y; }

you’ll likely find the Common Lisp version to be quite a bit slower, even if your
Common Lisp implementation features a high-quality native compiler.

That’s because the Common Lisp version is doing a lot more--the Common Lisp
compiler doesn’t even know that the values of a and b are numbers and so has
to generate code to check at runtime. And once it determines they are numbers,
it has to determine what types of numbers--integers, rationals, floating point, or
complex--and dispatch to the appropriate addition routine for the actual types.
And even if a and b are integers--the case you care about--then the addition
routine has to account for the possibility that the result may be too large to
represent as a fixnum, a number that can be represented in a single machine
word, and thus it may have to allocate a bignum object.

In C, on the other hand, because the type of all variables are declared, the
compiler knows exactly what kind of values a and b will hold. And because
C’s arithmetic simply overflows when the result of an addition is too large to
represent in whatever type is being returned, there’s no checking for overflow and
no allocation of a bignum object to represent the result when the mathematical
sum is too large to fit in a machine word.

Thus, while the behavior of the Common Lisp code is much more likely to be
mathematically correct, the C version can probably be compiled down to one
or two machine instructions. But if you’re willing to give the Common Lisp
compiler the same information the C compiler has about the types of arguments
and return values and to accept certain C-like compromises in terms of generality
and error checking, the Common Lisp function can also be compiled down to an
instruction or two.

That’s what declarations are for. The main use of declarations is to tell the
compiler about the types of variables and other expressions. For instance, you
could tell the compiler that the arguments to add are both fixnums by writing
the function like this:

467

(defun add (x y)
(declare (fixnum x y))
(+ x y))

The DECLARE expression isn’t a Lisp form; rather, it’s part of the syntax of
the DEFUN and must appear before any other code in the function body.7 This
declaration declares that the arguments passed for the parameters x and y will
always be fixnums. In other words, it’s a promise to the compiler, and the
compiler is allowed to generate code on the assumption that whatever you tell it
is true.

To declare the type of the value returned, you can wrap the form (+ x y) in
the THE special operator. This operator takes a type specifier, such as FIXNUM,
and a form and tells the compiler the form will evaluate to the given type. Thus,
to give the Common Lisp compiler all the information about add that the C
compiler gets, you can write it like this:

(defun add (x y)
(declare (fixnum x y))
(the fixnum (+ x y)))

However, even this version needs one more declaration to give the Common
Lisp compiler the same license as the C compiler to generate fast but dangerous
code. The OPTIMIZE declaration is used to tell the compiler how to balance five
qualities: the speed of the code generated; the amount of runtime error checking;
the memory usage of the code, both in terms of code size and runtime memory
usage; the amount of debugging information kept with the code; and the speed
of the compilation process. An OPTIMIZE declaration consists of one or more
lists, each containing one of the symbols SPEED, SAFETY, SPACE, DEBUG, and
COMPILATION-SPEED, and a number from zero to three, inclusive. The number
specifies the relative weighting the compiler should give to the corresponding
quality, with 3 being the most important and 0 meaning not important at all.
Thus, to make Common Lisp compile add more or less like a C compiler would,
you can write it like this:

(defun add (x y)
(declare (optimize (speed 3) (safety 0)))
(declare (fixnum x y))
(the fixnum (+ x y)))

Of course, now the Lisp version suffers from many of the same liabilities as the
C version--if the arguments passed aren’t fixnums or if the addition overflows,
the result will be mathematically incorrect or worse. Also, if someone calls add
with a wrong number of arguments, it may not be pretty. Thus, you should use
these kinds of declarations only after your program is working correctly. And
you should add them only where profiling shows they’ll make a difference. If
you’re getting reasonable performance without them, leave them out. But when
profiling shows you a real hot spot in your code and you need to tune it up,
go ahead. Because you can use declarations this way, it’s rarely necessary to

468

rewrite code in C just for performance reasons; FFIs are used to access existing
C code, but declarations are used when C-like performance is needed. Of course,
how close you can get the performance of a given piece of Common Lisp code to
C and C++ depends mostly on how much like C you’re willing to make it.

Another code-tuning tool built into Lisp is the function DISASSEMBLE. The exact
behavior of this function is implementation dependent because it depends on
how the implementation compiles code--whether to machine code, bytecodes, or
some other form. But the basic idea is that it shows you the code generated by
the compiler when it compiled a specific function.

Thus, you can use DISASSEMBLE to see whether your declarations are having any
effect on the code generated. And if your Lisp implementation uses a native
compiler and you know your platform’s assembly language, you can get a pretty
good sense of what’s actually going on when you call one of your functions. For
instance, you could use DISASSEMBLE to get a sense of the difference between
the first version of add, with no declarations, and the final version. First, define
and compile the original version.

(defun add (x y) (+ x y))

Then, at the REPL, call DISASSEMBLE with the name of the function. In Allegro,
it shows the following assembly-language-like dump of the code generated by
the compiler:

CL-USER> (disassemble ’add)
;; disassembly of #<Function ADD>
;; formals: X Y

;; code start: #x737496f4:
0: 55 pushl ebp
1: 8b ec movl ebp,esp
3: 56 pushl esi
4: 83 ec 24 subl esp,$36
7: 83 f9 02 cmpl ecx,$2
10: 74 02 jz 14
12: cd 61 int $97 ; SYS::TRAP-ARGERR
14: 80 7f cb 00 cmpb [edi-53],$0 ; SYS::C_INTERRUPT-PENDING
18: 74 02 jz 22
20: cd 64 int $100 ; SYS::TRAP-SIGNAL-HIT
22: 8b d8 movl ebx,eax
24: 0b da orl ebx,edx
26: f6 c3 03 testb bl,$3
29: 75 0e jnz 45
31: 8b d8 movl ebx,eax
33: 03 da addl ebx,edx
35: 70 08 jo 45
37: 8b c3 movl eax,ebx

469

39: f8 clc
40: c9 leave
41: 8b 75 fc movl esi,[ebp-4]
44: c3 ret
45: 8b 5f 8f movl ebx,[edi-113] ; EXCL::+_2OP
48: ff 57 27 call *[edi+39] ; SYS::TRAMP-TWO
51: eb f3 jmp 40
53: 90 nop

; No value

Clearly, there’s a bunch of stuff going on here. If you’re familiar with x86
assembly language, you can probably tell what. Now compile this version of add
with all the declarations.

(defun add (x y)
(declare (optimize (speed 3) (safety 0)))
(declare (fixnum x y))
(the fixnum (+ x y)))

Now disassemble add again, and see if the declarations had any effect.

CL-USER> (disassemble ’add)
;; disassembly of #<Function ADD>
;; formals: X Y

;; code start: #x7374dc34:
0: 03 c2 addl eax,edx
2: f8 clc
3: 8b 75 fc movl esi,[ebp-4]
6: c3 ret
7: 90 nop

; No value

Looks like they did.

Delivering Applications
Another topic of practical importance, which I didn’t talk about elsewhere in the
book, is how to deliver software written in Lisp. The main reason I neglected
this topic is because there are many different ways to do it, and which one is
best for you depends on what kind of software you need to deliver to what kind
of user with what Common Lisp implementation. In this section I’ll give an
overview of some of the different options.

If you’ve written code you want to share with fellow Lisp programmers, the
most straightforward way to distribute it is as source code.8 You can distribute
a simple library as a single source file, which programmers can LOAD into their
Lisp image, possibly after compiling it with COMPILE-FILE.

470

More complex libraries or applications, broken up across multiple source files,
pose an additional challenge--in order to load and compile the code, the files need
to be loaded and compiled in the correct order. For instance, a file containing
macro definitions must be loaded before you can compile files that use those
macros. And a file containing DEFPACKAGE forms must be loaded before any files
that use those packages can even be READ. Lispers call this the system definition
problem and typically handle it with tools called system definition facilities or
system definition utilities, which are somewhat analogous to build tools such
as make or ant. As with make and ant, system definition tools allow you to
specify the dependencies between different files and then take care of loading
and compiling the files in the correct order while trying to do only work that’s
necessary--recompiling only files that have changed, for example.

These days the most widely used system definition tool is ASDF, which stands
for Another System Definition Facility.9 The basic idea behind ASDF is that
you define systems in ASD files, and ASDF provides a number of operations on
systems such as loading them or compiling them. A system can also be defined
to depend on other systems, which will be loaded as necessary. For instance,
the following shows the contents of html.asd, the ASD file for the FOO library
from Chapters 31 and 32:

(defpackage :com.gigamonkeys.html-system (:use :asdf :cl))
(in-package :com.gigamonkeys.html-system)

(defsystem html
:name "html"
:author "Peter Seibel <peter@gigamonkeys.com>"
:version "0.1"
:maintainer "Peter Seibel <peter@gigamonkeys.com>"
:license "BSD"
:description "HTML and CSS generation from sexps."
:long-description ""
:components
((:file "packages")
(:file "html" :depends-on ("packages"))
(:file "css" :depends-on ("packages" "html")))
:depends-on (:macro-utilities))

If you add a symbolic link to this file from a directory listed in
asdf:*central-registry*,10 then you can type this:

(asdf:operate ’asdf:load-op :html)

to compile and load the files packages.lisp, html.lisp, and html-macros.lisp
in the correct order after first making sure the :macro-utilities system has
been compiled and loaded. For other examples of ASD files, you can look at this
book’s source code--the code from each practical chapter is defined as a system
with appropriate intersystem dependencies expressed in the ASD files.

471

Most free and open-source Common Lisp libraries you’ll find will come with an
ASD file. Some will use other system definition tools such as the slightly older
MK:DEFSYSTEM or even utilities devised by the library’s author, but the tide
seems to be turning in the direction of ASDF.11

Of course, while ASDF makes it easy for Lispers to install Lisp libraries, it’s
not much help if you want to package an application for an end user who
doesn’t know or care about Lisp. If you’re delivering a pure end-user application,
presumably you want to provide something the user can download, install, and
run without having to know anything about Lisp. You can’t expect them to
separately download and install a Lisp implementation. And you want them to
be able to run your application just like any other application--by double-clicking
an icon on Windows or OS X or by typing the name of the program at the
command line on Unix.

However, unlike C programs, which can typically rely on certain shared libraries
(DLLs on Windows) that make up the C "runtime" being present as part of the
operating system, Lisp programs must include a Lisp runtime, that is, the same
program you run when you start Lisp though perhaps with certain functionality
not needed to run the application excised.

To further complicate matters, program isn’t really well defined in Lisp. As
you’ve seen throughout this book, the process of developing software in Lisp is
an incremental process that involves making changes to the set of definitions
and data living in your Lisp image. The "program" is just a particular state
of the image arrived at by loading the .lisp or .fasl files that contain code
that creates the appropriate definitions and data. You could, then, distribute a
Lisp application as a Lisp runtime plus a bunch of FASL files and an executable
that starts the runtime, loads the FASLs, and somehow invokes the appropriate
starting function. However, since actually loading the FASLs can take some
time, especially if they have to do any computation to set up the state of the
world, most Common Lisp implementations provide a way to dump an image--to
save the state of a running Lisp to a file called an image file or sometimes a core.
When a Lisp runtime starts, the first thing it does is load an image file, which it
can do in much less time than it’d take to re-create the state by loading FASL
files.

Normally the image file is a default image containing only the standard packages
defined by the language and any extras provided by the implementation. But
with most implementations, you have a way to specify a different image file.
Thus, instead of packaging an app as a Lisp runtime plus a bunch of FASLs,
you can package it as a Lisp runtime plus a single image file containing all the
definitions and data that make up your application. Then all you need is a
program that launches the Lisp runtime with the appropriate image file and
invokes whatever function serves as the entry point to the application.

This is where things get implementation and operating-system dependent. Some
Common Lisp implementations, in particular the commercial ones such as Allegro

472

and LispWorks, provide tools for building such an executable. For instance,
Allegro’s Enterprise Edition provides a function excl:generate-application
that creates a directory containing the Lisp runtime as a shared library, an image
file, and an executable that starts the runtime with the given image. Similarly,
the LispWorks Professional Edition "delivery" mechanism allows you to build
single-file executables of your programs. On Unix, with the various free and
open-source implementations, you can do essentially the same thing except it’s
probably easier to use a shell script to start everything.

And on OS X things are even better--since all applications on OS X are packaged
as .app bundles, which are essentially directories with a certain structure, it’s
not all that difficult to package all the parts of a Lisp application as a double-
clickable .app bundle. Mikel Evins’s Bosco tool makes it easy to create .app
bundles for applications running on OpenMCL.

Of course, another popular way to deliver applications these days is as server-side
applications. This is a niche where Common Lisp can really excel--you can pick a
combination of operating system and Common Lisp implementation that works
well for you, and you don’t have to worry about packaging the application to
be installed by an end user. And Common Lisp’s interactive debugging and
development features make it possible to debug and upgrade a live server in
ways that either just aren’t possible in a less dynamic language or would require
you to build a lot of specific infrastructure.

Where to Go Next
So, that’s it. Welcome to the wonderful world of Lisp. The best thing you can
do now--if you haven’t already--is to start writing your own Lisp code. Pick a
project that interests you, and do it in Common Lisp. Then do another. Lather,
rinse, repeat.

However, if you need some further pointers, this section offers some places
to go. For starters, check out the Practical Common Lisp Web site at
http://www.gigamonkeys.com/book/, where you can find the source code from
the practical chapters, errata, and links to other Lisp resources on the Web.

In addition to the sites I mentioned in the "Finding Lisp Libraries" sec-
tion, you may also want explore the Common Lisp HyperSpec (a.k.a.
the HyperSpec or CLHS), an HTML version of the ANSI language stan-
dard prepared by Kent Pitman and made available by LispWorks at
http://www.lispworks.com/documentation/HyperSpec/index.html. The
HyperSpec is by no means a tutorial, but it’s as authoritative a guide to the
language as you can get without buying a printed copy of the standard from
ANSI and much more convenient for day-to-day use.12

If you want to get in touch with other Lispers, comp.lang.lisp on Usenet and the
#lisp IRC channel or the Freenode network (http://www.freenode.net) are
two of the main online hang- outs. There are also a number of Lisp-related blogs,

473

most of which are aggregated on Planet Lisp at http://planet.lisp.org/.

And keep your eyes peeled in all those forums for announcements of local Lisp
users get-togethers in your area--in the past few years, Lispnik gatherings have
popped up in cities around the world, from New York to Oakland, from Cologne
to Munich, and from Geneva to Helsinki.

If you want to stick to books, here are a few suggestions. For a nice thick
reference book to stick on your desk, grab The ANSI Common Lisp Reference
Book edited by David Margolies (Apress, 2005).13

For more on Common Lisp’s object system, you can start with Object-Oriented
Programming in Common Lisp: A Programmer’s Guide to CLOS by Sonya E.
Keene (Addison-Wesley, 1989). Then if you really want to become an object
wizard or just to stretch your mind in interesting ways, read The Art of the
Metaobject Protocol by Gregor Kiczales, Jim des Rivi

474

	1. Introduction: Why Lisp?
	Why Lisp?
	Where It Began
	Who This Book Is For

	2. Lather, Rinse, Repeat: A Tour of the REPL
	Choosing a Lisp Implementation
	Getting Up and Running with Lisp in a Box
	Free Your Mind: Interactive Programming
	Experimenting in the REPL
	"Hello, World," Lisp Style

	3. Practical: A Simple Database
	CDs and Records
	Filing CDs
	Looking at the Database Contents
	Improving the User Interaction
	Saving and Loading the Database
	Querying the Database
	Updating Existing Records--Another Use for WHERE
	Removing Duplication and Winning Big
	Wrapping Up

	4. Syntax and Semantics
	What's with All the Parentheses?
	Breaking Open the Black Box
	S-expressions
	S-expressions As Lisp Forms
	Function Calls
	Special Operators
	Macros
	Truth, Falsehood, and Equality
	Formatting Lisp Code

	5. Functions
	Defining New Functions
	Function Parameter Lists
	Optional Parameters
	Rest Parameters
	Keyword Parameters
	Mixing Different Parameter Types
	Function Return Values
	Functions As Data, a.k.a. Higher-Order Functions
	Anonymous Functions

	6. Variables
	Variable Basics
	Lexical Variables and Closures
	Dynamic, a.k.a. Special, Variables
	Constants
	Assignment
	Generalized Assignment
	Other Ways to Modify Places

	7. Macros: Standard Control Constructs
	WHEN and UNLESS
	COND
	AND, OR, and NOT
	Looping
	DOLIST and DOTIMES

	8. Macros: Defining Your Own
	The Story of Mac: A Just-So Story
	Macro Expansion Time vs. Runtime
	DEFMACRO
	A Sample Macro: do-primes
	Macro Parameters
	Generating the Expansion
	Plugging the Leaks
	Macro-Writing Macros
	Beyond Simple Macros

	9. Practical: Building a Unit Test Framework
	Two First Tries
	Refactoring
	Fixing the Return Value
	Better Result Reporting
	An Abstraction Emerges
	A Hierarchy of Tests
	Wrapping Up

	10. Numbers, Characters, and Strings
	Numbers
	Numeric Literals
	Basic Math
	Numeric Comparisons
	Higher Math
	Characters
	Character Comparisons
	Strings
	String Comparisons

	11. Collections
	Vectors
	Subtypes of Vector
	Vectors As Sequences
	Sequence Iterating Functions
	Higher-Order Function Variants
	Whole Sequence Manipulations
	Sorting and Merging
	Subsequence Manipulations
	Sequence Predicates
	Sequence Mapping Functions
	Hash Tables
	Hash Table Iteration

	12. They Called It LISP for a Reason: List Processing
	"There Is No List"
	Functional Programming and Lists
	"Destructive" Operations
	Combining Recycling with Shared Structure
	List-Manipulation Functions
	Mapping
	Other Structures

	13. Beyond Lists: Other Uses for Cons Cells
	Trees
	Sets
	Lookup Tables: Alists and Plists
	DESTRUCTURING-BIND

	14. Files and File I/O
	Reading File Data
	Reading Binary Data
	Bulk Reads
	File Output
	Closing Files
	Filenames
	How Pathnames Represent Filenames
	Constructing New Pathnames
	Two Representations of Directory Names
	Interacting with the File System
	Other Kinds of I/O

	15. Practical: A Portable Pathname Library
	The API
	FEATURES and Read-Time Conditionalization
	Listing a Directory
	Testing a File's Existence
	Walking a Directory Tree

	16. Object Reorientation: Generic Functions
	Generic Functions and Classes
	Generic Functions and Methods
	DEFGENERIC
	DEFMETHOD
	Method Combination
	The Standard Method Combination
	Other Method Combinations
	Multimethods
	To Be Continued . . .

	17. Object Reorientation: Classes
	DEFCLASS
	Slot Specifiers
	Object Initialization
	Accessor Functions
	WITH-SLOTS and WITH-ACCESSORS
	Class-Allocated Slots
	Slots and Inheritance
	Multiple Inheritance
	Good Object-Oriented Design

	18. A Few FORMAT Recipes
	19. Beyond Exception Handling: Conditions and Restarts
	The Lisp Way
	Conditions
	Condition Handlers
	Restarts
	Providing Multiple Restarts
	Other Uses for Conditions

	20. The Special Operators
	Controlling Evaluation
	Manipulating the Lexical Environment
	Local Flow of Control
	Unwinding the Stack
	Multiple Values
	EVAL-WHEN
	Other Special Operators

	21. Programming in the Large: Packages and Symbols
	How the Reader Uses Packages
	A Bit of Package and Symbol Vocabulary
	Three Standard Packages
	Defining Your Own Packages
	Packaging Reusable Libraries
	Importing Individual Names
	Packaging Mechanics
	Package Gotchas

	22. LOOP for Black Belts
	The Parts of a LOOP
	Iteration Control
	Counting Loops
	Looping Over Collections and Packages
	Equals-Then Iteration
	Local Variables
	Destructuring Variables
	Value Accumulation
	Unconditional Execution
	Conditional Execution
	Setting Up and Tearing Down
	Termination Tests
	Putting It All Together

	23. Practical: A Spam Filter
	The Heart of a Spam Filter
	Training the Filter
	Per-Word Statistics
	Combining Probabilities
	Inverse Chi Square
	Training the Filter
	Testing the Filter
	A Couple of Utility Functions
	Analyzing the Results
	What's Next

	24. Practical: Parsing Binary Files
	Binary Files
	Binary Format Basics
	Strings in Binary Files
	Composite Structures
	Designing the Macros
	Making the Dream a Reality
	Reading Binary Objects
	Writing Binary Objects
	Adding Inheritance and Tagged Structures
	Keeping Track of Inherited Slots
	Tagged Structures
	Primitive Binary Types
	The Current Object Stack

	25. Practical: An ID3 Parser
	Structure of an ID3v2 Tag
	Defining a Package
	Integer Types
	String Types
	ID3 Tag Header
	ID3 Frames
	Detecting Tag Padding
	Supporting Multiple Versions of ID3
	Versioned Frame Base Classes
	Versioned Concrete Frame Classes
	What Frames Do You Actually Need?
	Text Information Frames
	Comment Frames
	Extracting Information from an ID3 Tag

	26. Practical: Web Programming with AllegroServe
	A 30-Second Intro to Server-Side Web Programming
	AllegroServe
	Generating Dynamic Content with AllegroServe
	Generating HTML
	HTML Macros
	Query Parameters
	Cookies
	A Small Application Framework
	The Implementation

	27. Practical: An MP3 Database
	The Database
	Defining a Schema
	Inserting Values
	Querying the Database
	Matching Functions
	Getting at the Results
	Other Database Operations

	28. Practical: A Shoutcast Server
	The Shoutcast Protocol
	Song Sources
	Implementing Shoutcast

	29. Practical: An MP3 Browser
	Playlists
	Playlists As Song Sources
	Manipulating the Playlist
	Query Parameter Types
	Boilerplate HTML
	The Browse Page
	The Playlist
	Finding a Playlist
	Running the App

	30. Practical: An HTML Generation Library, the Interpreter
	Designing a Domain-Specific Language
	The FOO Language
	Character Escaping
	Indenting Printer
	HTML Processor Interface
	The Pretty Printer Backend
	The Basic Evaluation Rule
	What's Next?

	31. Practical: An HTML Generation Library, the Compiler
	The Compiler
	FOO Special Operators
	FOO Macros
	The Public API
	The End of the Line

	32. Conclusion: What's Next?
	Finding Lisp Libraries
	Interfacing with Other Languages
	Make It Work, Make It Right, Make It Fast
	Delivering Applications
	Where to Go Next

