
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Computation

Tom Stuart

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Computation
by Tom Stuart

Copyright © 2013 Tom Stuart. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Nathan Jepson
Production Editor: Christopher Hearse
Copyeditor: Rachel Leach
Proofreader: Linley Dolby

Indexer: Lucie Haskins
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

May 2013: First Edition.

Revision History for the First Edition:
2013-05-10 First release
2013-05-31 Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781449329273 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Understanding Computation, the image of a bear paw clam, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32927-3

[LSI]

1369775863

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449329273
http://www.it-ebooks.info/

Table of Contents

Preface . vii

1. Just Enough Ruby . 1
Interactive Ruby Shell 1
Values 2

Basic Data 2
Data Structures 3
Procs 3

Control Flow 4
Objects and Methods 5
Classes and Modules 6
Miscellaneous Features 7

Local Variables and Assignment 7
String Interpolation 8
Inspecting Objects 8
Printing Strings 8
Variadic Methods 9
Blocks 9
Enumerable 10
Struct 11
Monkey Patching 12
Defining Constants 13
Removing Constants 13

Part I. Programs and Machines

2. The Meaning of Programs . 17
The Meaning of “Meaning” 18
Syntax 19
Operational Semantics 20

Small-Step Semantics 21

iii

www.it-ebooks.info

http://www.it-ebooks.info/

Big-Step Semantics 42
Denotational Semantics 48

Expressions 49
Statements 52
Applications 54

Formal Semantics in Practice 55
Formality 55
Finding Meaning 56
Alternatives 57

Implementing Parsers 58

3. The Simplest Computers . 63
Deterministic Finite Automata 63

States, Rules, and Input 63
Output 64
Determinism 66
Simulation 66

Nondeterministic Finite Automata 69
Nondeterminism 70
Free Moves 76

Regular Expressions 79
Syntax 80
Semantics 83
Parsing 92

Equivalence 94

4. Just Add Power . 105
Deterministic Pushdown Automata 108

Storage 108
Rules 110
Determinism 111
Simulation 112

Nondeterministic Pushdown Automata 118
Simulation 122
Nonequivalence 125

Parsing with Pushdown Automata 125
Lexical Analysis 126
Syntactic Analysis 128
Practicalities 132

How Much Power? 133

5. The Ultimate Machine . 135
Deterministic Turing Machines 135

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Storage 136
Rules 138
Determinism 141
Simulation 141

Nondeterministic Turing Machines 147
Maximum Power 148

Internal Storage 148
Subroutines 151
Multiple Tapes 153
Multidimensional Tape 154

General-Purpose Machines 154
Encoding 156
Simulation 157

Part II. Computation and Computability

6. Programming with Nothing . 161
Impersonating the Lambda Calculus 162

Working with Procs 163
The Problem 164
Numbers 166
Booleans 169
Predicates 172
Pairs 173
Numeric Operations 174
Lists 180
Strings 184
The Solution 186
Advanced Programming Techniques 191

Implementing the Lambda Calculus 197
Syntax 197
Semantics 199
Parsing 204

7. Universality Is Everywhere . 207
Lambda Calculus 207
Partial Recursive Functions 210
SKI Combinator Calculus 215
Iota 224
Tag Systems 227
Cyclic Tag Systems 235
Conway’s Game of Life 245

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

Rule 110 247
Wolfram’s 2,3 Turing Machine 251

8. Impossible Programs . 253
The Facts of Life 254

Universal Systems Can Perform Algorithms 254
Programs Can Stand In for Turing Machines 257
Code Is Data 258
Universal Systems Can Loop Forever 259
Programs Can Refer to Themselves 264

Decidability 269
The Halting Problem 271

Building a Halting Checker 271
It’ll Never Work 274

Other Undecidable Problems 277
Depressing Implications 280
Why Does This Happen? 282
Coping with Uncomputability 283

9. Programming in Toyland . 285
Abstract Interpretation 286

Route Planning 286
Abstraction: Multiplying Signs 287
Safety and Approximation: Adding Signs 290

Static Semantics 295
Implementation 296
Benefits and Limitations 303

Applications 305

Afterword . 307

Index . 309

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Who Should Read This Book?
This book is for programmers who are curious about programming languages and the
theory of computation, especially those who don’t have a formal background in math-
ematics or computer science.

If you’re interested in the mind-expanding parts of computer science that deal with
programs, languages, and machines, but are discouraged by the mathematical language
that’s often used to explain them, this book is for you. Instead of complex notation
we’ll use working code to illustrate theoretical ideas and turn them into interactive
experiments that you can explore at your own pace.

This book assumes that you know at least one modern programming language like
Ruby, Python, JavaScript, Java, or C#. All of the code examples are in Ruby, but if you
know another language you should still be able to follow along. However, this book
isn’t a guide to best practices in Ruby or object-oriented design. The code is intended
to be clear and concise, but not necessarily to be easy to maintain; the goal is always
to use Ruby to illustrate the computer science, not vice versa. It’s also not a textbook
or an encyclopedia, so instead of presenting formal arguments or watertight proofs,
this book tries to break the ice on some interesting ideas and inspire you to learn about
them in more depth.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

vii

www.it-ebooks.info

http://www.it-ebooks.info/

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require per-
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Understanding Computation by Tom Stuart
(O’Reilly). Copyright 2013 Tom Stuart, 978-1-4493-2927-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

viii | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.it-ebooks.info/

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/understanding-computation.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I’m grateful for the hospitality of Go Free Range, who provided me with office space,
friendly conversation, and tea throughout the writing of this book. Without their gen-
erous support, I’d definitely have gone a bit Jack Torrance.

Thank you to James Adam, Paul Battley, James Coglan, Peter Fletcher, Chris Lowis,
and Murray Steele for their feedback on early drafts, and to Gabriel Kerneis and Alex
Stangl for their technical reviews. This book has been immeasurably improved by their
thoughtful contributions. I’d also like to thank Alan Mycroft from the University of
Cambridge for all the knowledge and encouragement he supplied.

Preface | ix

www.it-ebooks.info

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/understanding-computation
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://gofreerange.com/
http://www.it-ebooks.info/

Many people from O’Reilly helped shepherd this project to completion, but I’m espe-
cially grateful to Mike Loukides and Simon St.Laurent for their early enthusiasm and
faith in the idea, to Nathan Jepson for his advice on how to turn the idea into an actual
book, and to Sanders Kleinfeld for humoring my relentless quest for perfect syntax
highlighting.

Thank you to my parents for giving an annoying child the means, motive, and oppor-
tunity to spend all his time mucking about with computers; and to Leila, for patiently
reminding me, every time I forgot how the job should be done, to keep putting one
damn word after another. I got there in the end.

x | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Just Enough Ruby

The code in this book is written in Ruby, a programming language that was designed
to be simple, friendly, and fun. I’ve chosen it because of its clarity and flexibility, but
nothing in the book relies on special features of Ruby, so you should be able to translate
the code examples into whatever language you prefer—especially another dynamic
language like Python or JavaScript—if that helps to make the ideas clearer.

All of the example code is compatible with both Ruby 2.0 and Ruby 1.9. You can find
out more about Ruby, and download an official implementation, at the official Ruby
website.

Let’s take a quick tour of Ruby’s features. We’ll concentrate on the parts of the language
that are used in this book; if you want to learn more, O’Reilly’s The Ruby Programming
Language is a good place to start.

If you already know Ruby, you can safely skip to Chapter 2 without
missing anything.

Interactive Ruby Shell
One of Ruby’s friendliest features is its interactive console, IRB, which lets us enter
pieces of Ruby code and immediately see the results. In this book, we’ll use IRB ex-
tensively to interact with the code we’re writing and explore how it works.

You can run IRB on your development machine by typing irb at the command line.
IRB shows a >> prompt when it expects you to provide a Ruby expression. After you
type an expression and hit Enter, the code gets evaluated, and the result is shown at a
=> prompt:

$ irb --simple-prompt
>> 1 + 2
=> 3

1

www.it-ebooks.info

http://www.ruby-lang.org/
http://www.ruby-lang.org/
http://www.oreilly.com/catalog/9780596516178
http://www.oreilly.com/catalog/9780596516178
http://www.it-ebooks.info/

>> 'hello world'.length
=> 11

Whenever we see these >> and => prompts in the book, we’re interacting with IRB. To
make longer code listings easier to read, they’ll be shown without the prompts, but
we’ll still assume that the code in these listings has been typed or pasted into IRB. So
once the book has shown some Ruby code like this…

x = 2
y = 3
z = x + y

…then we’ll be able to play with its results in IRB:

>> x * y * z
=> 30

Values
Ruby is an expression-oriented language: every valid piece of code produces a value
when it’s executed. Here’s a quick overview of the different kinds of Ruby value.

Basic Data
As we’d expect, Ruby supports Booleans, numbers, and strings, all of which come with
the usual operations:

>> (true && false) || true
=> true
>> (3 + 3) * (14 / 2)
=> 42
>> 'hello' + ' world'
=> "hello world"
>> 'hello world'.slice(6)
=> "w"

A Ruby symbol is a lightweight, immutable value representing a name. Symbols are
widely used in Ruby as simpler and less memory-intensive alternatives to strings, most
often as keys in hashes (see “Data Structures” on page 3). Symbol literals are written
with a colon at the beginning:

>> :my_symbol
=> :my_symbol
>> :my_symbol == :my_symbol
=> true
>> :my_symbol == :another_symbol
=> false

The special value nil is used to indicate the absence of any useful value:

>> 'hello world'.slice(11)
=> nil

2 | Chapter 1: Just Enough Ruby

www.it-ebooks.info

http://www.it-ebooks.info/

Data Structures
Ruby array literals are written as a comma-separated list of values surrounded by square
brackets:

>> numbers = ['zero', 'one', 'two']
=> ["zero", "one", "two"]
>> numbers[1]
=> "one"
>> numbers.push('three', 'four')
=> ["zero", "one", "two", "three", "four"]
>> numbers
=> ["zero", "one", "two", "three", "four"]
>> numbers.drop(2)
=> ["two", "three", "four"]

A range represents a collection of values between a minimum and a maximum. Ranges
are written by putting a pair of dots between two values:

>> ages = 18..30
=> 18..30
>> ages.entries
=> [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]
>> ages.include?(25)
=> true
>> ages.include?(33)
=> false

A hash is a collection in which every value is associated with a key; some programming
languages call this data structure a “map,” “dictionary,” or “associative array.” A hash
literal is written as a comma-separated list of key => value pairs inside curly brackets:

>> fruit = { 'a' => 'apple', 'b' => 'banana', 'c' => 'coconut' }
=> {"a"=>"apple", "b"=>"banana", "c"=>"coconut"}
>> fruit['b']
=> "banana"
>> fruit['d'] = 'date'
=> "date"
>> fruit
=> {"a"=>"apple", "b"=>"banana", "c"=>"coconut", "d"=>"date"}

Hashes often have symbols as keys, so Ruby provides an alternative key: value syntax
for writing key-value pairs where the key is a symbol. This is more compact than the
key => value syntax and looks a lot like the popular JSON format for JavaScript objects:

>> dimensions = { width: 1000, height: 2250, depth: 250 }
=> {:width=>1000, :height=>2250, :depth=>250}
>> dimensions[:depth]
=> 250

Procs
A proc is an unevaluated chunk of Ruby code that can be passed around and evaluated
on demand; other languages call this an “anonymous function” or “lambda.” There

Values | 3

www.it-ebooks.info

http://www.it-ebooks.info/

are several ways of writing a proc literal, the most compact of which is the -> argu
ments { body } syntax:

>> multiply = -> x, y { x * y }
=> #<Proc (lambda)>
>> multiply.call(6, 9)
=> 54
>> multiply.call(2, 3)
=> 6

As well as the .call syntax, procs can be called by using square brackets:

>> multiply[3, 4]
=> 12

Control Flow
Ruby has if, case, and while expressions, which work in the usual way:

>> if 2 < 3
 'less'
 else
 'more'
 end
=> "less"
>> quantify =
 -> number {
 case number
 when 1
 'one'
 when 2
 'a couple'
 else
 'many'
 end
 }
=> #<Proc (lambda)>
>> quantify.call(2)
=> "a couple"
>> quantify.call(10)
=> "many"
>> x = 1
=> 1
>> while x < 1000
 x = x * 2
 end
=> nil
>> x
=> 1024

4 | Chapter 1: Just Enough Ruby

www.it-ebooks.info

http://www.it-ebooks.info/

Objects and Methods
Ruby looks like other dynamic programming languages but it’s unusual in an important
way: every value is an object, and objects communicate by sending messages to each
other.1 Each object has its own collection of methods that determine how it responds
to particular messages.

A message has a name and, optionally, some arguments. When an object receives a
message, its corresponding method is executed with the arguments from the message.
This is how all work gets done in Ruby; even 1 + 2 means “send the object 1 a message
called + with the argument 2,” and the object 1 has a #+ method for handling that
message.

We can define our own methods with the def keyword:

>> o = Object.new
=> #<Object>
>> def o.add(x, y)
 x + y
 end
=> nil
>> o.add(2, 3)
=> 5

Here we’re making a new object by sending the new message to a special built-in object
called Object; once the new object’s been created, we define an #add method on it. The
#add method adds its two arguments together and returns the result—an explicit
return isn’t necessary, because the value of the last expression to be executed in a
method is automatically returned. When we send that object the add message with 2
and 3 as arguments, its #add method is executed and we get back the answer we wanted.

We’ll usually send a message to an object by writing the receiving object and the
message name separated by a dot (e.g., o.add), but Ruby always keeps track of the
current object (called self) and will allow us to send a message to that object by writing
a message name on its own, leaving the receiver implicit. For example, inside a method
definition the current object is always the object that received the message that caused
the method to execute, so within a particular object’s method, we can send other mes-
sages to the same object without referring to it explicitly:

>> def o.add_twice(x, y)
 add(x, y) + add(x, y)
 end
=> nil
>> o.add_twice(2, 3)
=> 10

1. This style comes from the Smalltalk programming language, which had a direct influence on the design
of Ruby.

Objects and Methods | 5

www.it-ebooks.info

http://www.it-ebooks.info/

Notice that we can send the add message to o from within the #add_twice method by
writing add(x, y) instead of o.add(x, y), because o is the object that the add_twice
message was sent to.

Outside of any method definition, the current object is a special top-level object called
main, and any messages that don’t specify a receiver are sent to it; similarly, any method
definitions that don’t specify an object will be made available through main:

>> def multiply(a, b)
 a * b
 end
=> nil
>> multiply(2, 3)
=> 6

Classes and Modules
It’s convenient to be able to share method definitions between many objects. In Ruby,
we can put method definitions inside a class, then create new objects by sending the
new message to that class. The objects we get back are instances of the class and incor-
porate its methods. For example:

>> class Calculator
 def divide(x, y)
 x / y
 end
 end
=> nil
>> c = Calculator.new
=> #<Calculator>
>> c.class
=> Calculator
>> c.divide(10, 2)
=> 5

Note that defining a method inside a class definition adds the method to instances of
that class, not to main:

>> divide(10, 2)
NoMethodError: undefined method `divide' for main:Object

One class can bring in another class’s method definitions through inheritance:

>> class MultiplyingCalculator < Calculator
 def multiply(x, y)
 x * y
 end
 end
=> nil
>> mc = MultiplyingCalculator.new
=> #<MultiplyingCalculator>
>> mc.class
=> MultiplyingCalculator
>> mc.class.superclass

6 | Chapter 1: Just Enough Ruby

www.it-ebooks.info

http://www.it-ebooks.info/

=> Calculator
>> mc.multiply(10, 2)
=> 20
>> mc.divide(10, 2)
=> 5

A method in a subclass can call a superclass method of the same name by using the
super keyword:

>> class BinaryMultiplyingCalculator < MultiplyingCalculator
 def multiply(x, y)
 result = super(x, y)
 result.to_s(2)
 end
 end
=> nil
>> bmc = BinaryMultiplyingCalculator.new
=> #<BinaryMultiplyingCalculator>
>> bmc.multiply(10, 2)
=> "10100"

Another way of sharing method definitions is to declare them in a module, which can
then be included by any class:

>> module Addition
 def add(x, y)
 x + y
 end
 end
=> nil
>> class AddingCalculator
 include Addition
 end
=> AddingCalculator
>> ac = AddingCalculator.new
=> #<AddingCalculator>
>> ac.add(10, 2)
=> 12

Miscellaneous Features
Here’s a grab bag of useful Ruby features that we’ll need for the example code in this
book.

Local Variables and Assignment
As we’ve already seen, Ruby lets us declare local variables just by assigning a value to
them:

>> greeting = 'hello'
=> "hello"
>> greeting
=> "hello"

Miscellaneous Features | 7

www.it-ebooks.info

http://www.it-ebooks.info/

We can also use parallel assignment to assign values to several variables at once by
breaking apart an array:

>> width, height, depth = [1000, 2250, 250]
=> [1000, 2250, 250]
>> height
=> 2250

String Interpolation
Strings can be single- or double-quoted. Ruby automatically performs interpolation on
double-quoted strings, replacing any #{expression} with its result:

>> "hello #{'dlrow'.reverse}"
=> "hello world"

If an interpolated expression returns an object that isn’t a string, that object is auto-
matically sent a to_s message and is expected to return a string that can be used in its
place. We can use this to control how interpolated objects appear:

>> o = Object.new
=> #<Object>
>> def o.to_s
 'a new object'
 end
=> nil
>> "here is #{o}"
=> "here is a new object"

Inspecting Objects
Something similar happens whenever IRB needs to display an object: the object is sent
the inspect message and should return a string representation of itself. All objects in
Ruby have sensible default implementations of #inspect, but by providing our own
definition, we can control how an object appears on the console:

>> o = Object.new
=> #<Object>
>> def o.inspect
 '[my object]'
 end
=> nil
>> o
=> [my object]

Printing Strings
The #puts method is available to every Ruby object (including main), and can be used
to print strings to standard output:

>> x = 128
=> 128

8 | Chapter 1: Just Enough Ruby

www.it-ebooks.info

http://www.it-ebooks.info/

>> while x < 1000
 puts "x is #{x}"
 x = x * 2
 end
x is 128
x is 256
x is 512
=> nil

Variadic Methods
Method definitions can use the * operator to support a variable number of arguments:

>> def join_with_commas(*words)
 words.join(', ')
 end
=> nil
>> join_with_commas('one', 'two', 'three')
=> "one, two, three"

A method definition can’t have more than one variable-length parameter, but normal
parameters may appear on either side of it:

>> def join_with_commas(before, *words, after)
 before + words.join(', ') + after
 end
=> nil
>> join_with_commas('Testing: ', 'one', 'two', 'three', '.')
=> "Testing: one, two, three."

The * operator can also be used to treat each element of an array as a separate argument
when sending a message:

>> arguments = ['Testing: ', 'one', 'two', 'three', '.']
=> ["Testing: ", "one", "two", "three", "."]
>> join_with_commas(*arguments)
=> "Testing: one, two, three."

And finally, * works in parallel assignment too:

>> before, *words, after = ['Testing: ', 'one', 'two', 'three', '.']
=> ["Testing: ", "one", "two", "three", "."]
>> before
=> "Testing: "
>> words
=> ["one", "two", "three"]
>> after
=> "."

Blocks
A block is a piece of Ruby code surrounded by do/end or curly brackets. Methods can
take an implicit block argument and call the code in that block with the yield keyword:

Miscellaneous Features | 9

www.it-ebooks.info

http://www.it-ebooks.info/

>> def do_three_times
 yield
 yield
 yield
 end
=> nil
>> do_three_times { puts 'hello' }
hello
hello
hello
=> nil

Blocks can take arguments:

>> def do_three_times
 yield('first')
 yield('second')
 yield('third')
 end
=> nil
>> do_three_times { |n| puts "#{n}: hello" }
first: hello
second: hello
third: hello
=> nil

yield returns the result of executing the block:

>> def number_names
 [yield('one'), yield('two'), yield('three')].join(', ')
 end
=> nil
>> number_names { |name| name.upcase.reverse }
=> "ENO, OWT, EERHT"

Enumerable
Ruby has a built-in module called Enumerable that’s included by Array, Hash, Range, and
other classes that represent collections of values. Enumerable provides helpful methods
for traversing, searching, and sorting collections, many of which expect to be called
with a block. Usually the code in the block will be run against some or all values in the
collection as part of whatever job the method does. For example:

>> (1..10).count { |number| number.even? }
=> 5
>> (1..10).select { |number| number.even? }
=> [2, 4, 6, 8, 10]
>> (1..10).any? { |number| number < 8 }
=> true
>> (1..10).all? { |number| number < 8 }
=> false
>> (1..5).each do |number|
 if number.even?
 puts "#{number} is even"
 else

10 | Chapter 1: Just Enough Ruby

www.it-ebooks.info

http://www.it-ebooks.info/

 puts "#{number} is odd"
 end
 end
1 is odd
2 is even
3 is odd
4 is even
5 is odd
=> 1..5
>> (1..10).map { |number| number * 3 }
=> [3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

It’s common for the block to take one argument and send it one message with no
arguments, so Ruby provides a &:message shorthand as a more concise way of writing
the block { |object| object.message }:

>> (1..10).select(&:even?)
=> [2, 4, 6, 8, 10]
>> ['one', 'two', 'three'].map(&:upcase)
=> ["ONE", "TWO", "THREE"]

One of Enumerable’s methods, #flat_map, can be used to evaluate an array-producing
block for every value in a collection and concatenate the results:

>> ['one', 'two', 'three'].map(&:chars)
=> [["o", "n", "e"], ["t", "w", "o"], ["t", "h", "r", "e", "e"]]
>> ['one', 'two', 'three'].flat_map(&:chars)
=> ["o", "n", "e", "t", "w", "o", "t", "h", "r", "e", "e"]

Another useful method is #inject, which evaluates a block for every value in a collection
and accumulates a final result:

>> (1..10).inject(0) { |result, number| result + number }
=> 55
>> (1..10).inject(1) { |result, number| result * number }
=> 3628800
>> ['one', 'two', 'three'].inject('Words:') { |result, word| "#{result} #{word}" }
=> "Words: one two three"

Struct
Struct is a special Ruby class whose job is to generate other classes. A class generated
by Struct contains getter and setter methods for each of the attribute names passed
into Struct.new. The conventional way to use a Struct-generated class is to subclass it;
the subclass can be given a name, and it provides a convenient place to define any
additional methods. For example, to make a class called Point with attributes called
x and y, we can write:

class Point < Struct.new(:x, :y)
 def +(other_point)
 Point.new(x + other_point.x, y + other_point.y)
 end

 def inspect

Miscellaneous Features | 11

www.it-ebooks.info

http://www.it-ebooks.info/

 "#<Point (#{x}, #{y})>"
 end
end

Now we can create instances of Point, inspect them in IRB, and send them messages:

>> a = Point.new(2, 3)
=> #<Point (2, 3)>
>> b = Point.new(10, 20)
=> #<Point (10, 20)>
>> a + b
=> #<Point (12, 23)>

As well as whatever methods we define, a Point instance responds to the messages x
and x= to get and set the value of its x attribute, and similarly for y and y=:

>> a.x
=> 2
>> a.x = 35
=> 35
>> a + b
=> #<Point (45, 23)>

Classes generated by Struct.new have other useful functionality, like an implementa-
tion of the equality method #==, which compares the attributes of two Structs to see if
they’re equal:

>> Point.new(4, 5) == Point.new(4, 5)
=> true
>> Point.new(4, 5) == Point.new(6, 7)
=> false

Monkey Patching
New methods can be added to an existing class or module at any time. This is a powerful
feature, usually called monkey patching, which lets us extend the behavior of existing
classes:

>> class Point
 def -(other_point)
 Point.new(x - other_point.x, y - other_point.y)
 end
 end
=> nil
>> Point.new(10, 15) - Point.new(1, 1)
=> #<Point (9, 14)>

We can even monkey patch Ruby’s built-in classes:

>> class String
 def shout
 upcase + '!!!'
 end
 end
=> nil

12 | Chapter 1: Just Enough Ruby

www.it-ebooks.info

http://www.it-ebooks.info/

>> 'hello world'.shout
=> "HELLO WORLD!!!"

Defining Constants
Ruby supports a special kind of variable, called a constant, which should not be reas-
signed once it’s been created. (Ruby won’t prevent a constant from being reassigned,
but it will generate a warning so we know we’re doing something bad.) Any variable
whose name begins with a capital letter is a constant. New constants can be defined at
the top level or within a class or module:

>> NUMBERS = [4, 8, 15, 16, 23, 42]
=> [4, 8, 15, 16, 23, 42]
>> class Greetings
 ENGLISH = 'hello'
 FRENCH = 'bonjour'
 GERMAN = 'guten Tag'
 end
=> "guten Tag"
>> NUMBERS.last
=> 42
>> Greetings::FRENCH
=> "bonjour"

Class and module names always begin with a capital letter, so class and module names
are constants too.

Removing Constants
When we’re exploring an idea with IRB it can be useful to ask Ruby to forget about a
constant altogether, especially if that constant is the name of a class or module that we
want to redefine from scratch instead of monkey patching its existing definition. A top-
level constant can be removed by sending the remove_const message to Object, passing
the constant’s name as a symbol:

>> NUMBERS.last
=> 42
>> Object.send(:remove_const, :NUMBERS)
=> [4, 8, 15, 16, 23, 42]
>> NUMBERS.last
NameError: uninitialized constant NUMBERS
>> Greetings::GERMAN
=> "guten Tag"
>> Object.send(:remove_const, :Greetings)
=> Greetings
>> Greetings::GERMAN
NameError: uninitialized constant Greetings

Miscellaneous Features | 13

www.it-ebooks.info

http://www.it-ebooks.info/

We have to use Object.send(:remove_const, :NAME) instead of just Object.remove_
const(:NAME), because remove_const is a private method that ordinarily can only be
called by sending a message from inside the Object class itself; using Object.send allows
us to bypass this restriction temporarily.

14 | Chapter 1: Just Enough Ruby

www.it-ebooks.info

http://www.it-ebooks.info/

PART I

Programs and Machines

What is computation? The word itself means different things to different people, but
everyone can agree that when a computer reads a program, runs that program, reads
some input, and eventually produces some output, then some kind of computation has
definitely happened. That gives us a decent starting point: computation is a name for
what a computer does.

To create an environment where this familiar sort of computation can occur, we need
three basic ingredients:

• A machine capable of performing the computation

• A language for writing instructions that the machine can understand

• A program written in that language, describing the exact computation that the
machine should perform

So this part of the book is about machines, languages, and programs—what they are,
how they behave, how we can model and study them, and how we can exploit them to
get useful work done. By investigating these three ingredients, we can develop a better
intuition for what computation is and how it happens.

In Chapter 2, we’ll design and implement a toy programming language by exploring
several different ways to specify its meaning. Understanding the meaning of a language
is what allows us to take a lifeless piece of source code and animate it as a dynamic,
executing process; each specification technique gives us a particular strategy for run-
ning a program, and we’ll end up with several different ways of implementing the same
language.

We’ll see that programming is the art of assembling a precisely defined structure that
can be dismantled, analyzed, and ultimately interpreted by a machine to create a com-
putation. And more important, we’ll discover that implementing programming lan-
guages is easy and fun: although parsing, interpretation, and compilation can seem
intimidating, they’re actually quite simple and enjoyable to play around with.

www.it-ebooks.info

http://www.it-ebooks.info/

Programs aren’t much use without machines to run them on, so in Chapter 3, we’ll
design very simple machines capable of performing basic, hardcoded tasks. From that
humble foundation, we’ll work our way up to more sophisticated machines in Chap-
ter 4, and in Chapter 5, we’ll see how to design a general-purpose computing device
that can be controlled with software.

By the time we reach Part II, we’ll have seen the full spectrum of computational power:
some machines with very limited capabilities, others that are more useful but still frus-
tratingly constrained, and finally, the most powerful machines that we know how to
build.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

The Meaning of Programs

Don’t think, feel! It is like a finger pointing away to the
moon. Don’t concentrate on the finger or you will miss

all that heavenly glory.

—Bruce Lee

Programming languages, and the programs we write in them, are fundamental to our
work as software engineers. We use them to clarify complex ideas to ourselves, com-
municate those ideas to each other, and, most important, implement those ideas inside
our computers. Just as human society couldn’t operate without natural languages, so
the global community of programmers relies on programming languages to transmit
and implement our ideas, with each successful program forming part of a foundation
upon which the next layer of ideas can be built.

Programmers tend to be practical, pragmatic creatures. We often learn a new pro-
gramming language by reading documentation, following tutorials, studying existing
programs, and tinkering with simple programs of our own, without giving much
thought to what those programs mean. Sometimes the learning process feels a lot like
trial and error: we try to understand a piece of a language by looking at examples and
documentation, then we try to write something in it, then everything blows up and we
have to go back and try again until we manage to assemble something that mostly
works. As computers and the systems they support become increasingly complex, it’s
tempting to think of programs as opaque incantations that represent only themselves
and work only by chance.

But computer programming isn’t really about programs, it’s about ideas. A program is
a frozen representation of an idea, a snapshot of a structure that once existed in a
programmer’s imagination. Programs are only worth writing because they have mean-
ing. So what connects code to its meaning, and how can we be more concrete about
the meaning of a program than saying “it just does whatever it does”? In this chapter,
we’re going to look at a few techniques for nailing down the meanings of computer
programs and see how to bring those dead snapshots to life.

17

www.it-ebooks.info

http://www.it-ebooks.info/

The Meaning of “Meaning”
In linguistics, semantics is the study of the connection between words and their mean-
ings: the word “dog” is an arrangement of shapes on a page, or a sequence of vibrations
in the air caused by someone’s vocal cords, which are very different things from an
actual dog or the idea of dogs in general. Semantics is concerned with how these con-
crete signifiers relate to their abstract meanings, as well as the fundamental nature of
the abstract meanings themselves.

In computer science, the field of formal semantics is concerned with finding ways of
nailing down the elusive meanings of programs and using them to discover or prove
interesting things about programming languages. Formal semantics has a wide spec-
trum of uses, from concrete applications like specifying new languages and devising
compiler optimizations, to more abstract ones like constructing mathematical proofs
of the correctness of programs.

To completely specify a programming language, we need to provide two things: a
syntax, which describes what programs look like, and a semantics,1 which describes
what programs mean.

Plenty of languages don’t have an official written specification, just a working inter-
preter or compiler. Ruby itself falls into this “specification by implementation” cate-
gory: although there are plenty of books and tutorials about how Ruby is supposed to
work, the ultimate source of all this information is Matz’s Ruby Interpreter (MRI), the
language’s reference implementation. If any piece of Ruby documentation disagrees
with the actual behavior of MRI, it’s the documentation that’s wrong; third-party Ruby
implementations like JRuby, Rubinius, and MacRuby have to work hard to imitate the
exact behavior of MRI so that they can usefully claim to be compatible with the Ruby
language. Other languages like PHP and Perl 5 share this implementation-led approach
to language definition.

Another way of describing a programming language is to write an official prose speci-
fication, usually in English. C++, Java, and ECMAScript (the standardized version of
JavaScript) are examples of this approach: the languages are standardized in imple-
mentation-agnostic documents written by expert committees, and many compatible
implementations of those standards exist. Specifying a language with an official docu-
ment is more rigorous than relying on a reference implementation—design decisions
are more likely to be the result of deliberate, rational choices, rather than accidental
consequences of a particular implementation—but the specifications are often quite
difficult to read, and it can be very hard to tell whether they contain any contradictions,
omissions, or ambiguities. In particular there’s no formal way to reason about an
English-language specification; we just have to read it thoroughly, think about it a lot,
and hope we’ve understood all the consequences.

1. In the context of programming language theory, the word semantics is usually treated as singular: we
describe the meaning of a language by giving it a semantics.

18 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

A prose specification of Ruby 1.8.7 does exist, and has even been ac-
cepted as an ISO standard (ISO/IEC 30170).2 MRI is still regarded as
the canonical specification-by-implementation of the Ruby language,
although the mruby project is an attempt to build a lightweight, em-
beddable Ruby implementation that explicitly aims for compliance with
the ISO standard rather than MRI compatibility.

A third alternative is to use the mathematical techniques of formal semantics to pre-
cisely describe the meaning of a programming language. The goal here is to be com-
pletely unambiguous, as well as to write the specification in a form that’s suited to
methodical analysis, or even automated analysis, so that it can be comprehensively
checked for consistency, contradiction, or oversight. We’ll look at these formal ap-
proaches to semantic specification after we’ve seen how syntax is handled.

Syntax
A conventional computer program is a long string of characters. Every programming
language comes with a collection of rules that describe what kind of character strings
may be considered valid programs in that language; these rules specify the language’s
syntax.

A language’s syntax rules allow us to distinguish potentially valid programs like y = x
+ 1 from nonsensical ones like >/;x:1@4. They also provide useful information about
how to read ambiguous programs: rules about operator precedence, for example, can
automatically determine that 1 + 2 * 3 should be treated as though it had been written
as 1 + (2 * 3), not as (1 + 2) * 3.

The intended use of a computer program is, of course, to be read by a computer, and
reading programs requires a parser: a program that can read a character string repre-
senting a program, check it against the syntax rules to make sure it’s valid, and turn it
into a structured representation of that program suitable for further processing.

There are a variety of tools that can automatically turn a language’s syntax rules into a
parser. The details of how these rules are specified, and the techniques for turning them
into usable parsers, are not the focus of this chapter—see “Implementing Pars-
ers” on page 58 for a quick overview—but overall, a parser should read a string like
y = x + 1 and turn it into an abstract syntax tree (AST), a representation of the source
code that discards incidental detail like whitespace and focuses on the hierarchical
structure of the program.

2. Although access to ISO/IEC 30170 costs money, an earlier draft of the same specification
can be downloaded for free from http://www.ipa.go.jp/osc/english/ruby/.

Syntax | 19

www.it-ebooks.info

https://github.com/mruby/mruby
http://www.ipa.go.jp/osc/english/ruby/
http://www.it-ebooks.info/

In the end, syntax is only concerned with the surface appearance of programs, not with
their meanings. It’s possible for a program to be syntactically valid but not mean any-
thing useful; for example, it might be that the program y = x + 1 doesn‘t make sense
on its own because it doesn’t say what x is beforehand, and the program z = true +
1 might turn out to be broken when we run it because it’s trying to add a number to a
Boolean value. (This depends, of course, on other properties of whichever program-
ming language we’re talking about.)

As we might expect, there is no “one true way” of explaining how the syntax of a
programming language corresponds to an underlying meaning. In fact there are several
different ways of talking concretely about what programs mean, all with different trade-
offs between formality, abstraction, expressiveness, and practical efficiency. In the next
few sections, we’ll look at the main formal approaches and see how they relate to each
other.

Operational Semantics
The most practical way to think about the meaning of a program is what it does—when
we run the program, what do we expect to happen? How do different constructs in the
programming language behave at run time, and what effect do they have when they’re
plugged together to make larger programs?

This is the basis of operational semantics, a way of capturing the meaning of a pro-
gramming language by defining rules for how its programs execute on some kind of
device. This device is often an abstract machine: an imaginary, idealized computer that
is designed for the specific purpose of explaining how the language’s programs will
execute. Different kinds of programming language will usually require different designs
of abstract machine in order to neatly capture their runtime behavior.

By giving an operational semantics, we can be quite rigorous and precise about the
purpose of particular constructs in the language. Unlike a language specification writ-
ten in English, which might contain hidden ambiguities and leave important edge cases
uncovered, a formal operational specification will need to be explicit and unambiguous
in order to convincingly communicate the language’s behavior.

20 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

Small-Step Semantics
So, how can we design an abstract machine and use it to specify the operational se-
mantics of a programming language? One way is to imagine a machine that evaluates
a program by operating on its syntax directly, repeatedly reducing it in small steps, with
each step bringing the program closer to its final result, whatever that turns out to mean.

These small-step reductions are similar to the way we are taught in school to evaluate
algebraic expressions. For example, to evaluate (1 × 2) + (3 × 4), we know we should:

1. Perform the left-hand multiplication (1 × 2 becomes 2) and reduce the expression
to 2 + (3 × 4)

2. Perform the right-hand multiplication (3 × 4 becomes 12) and reduce the expres-
sion to 2 + 12

3. Perform the addition (2 + 12 becomes 14) and end up with 14

We can think of 14 as the result because it can’t be reduced any further by this process
—we recognize 14 as a special kind of algebraic expression, a value, which has its own
meaning and doesn’t require any more work on our part.

This informal process can be turned into an operational semantics by writing down
formal rules about how to proceed with each small reduction step. These rules them-
selves need to be written in some language (the metalanguage), which is usually math-
ematical notation.

In this chapter, we’re going to explore the semantics of a toy programming language
—let’s call it SIMPLE.3

3. This can be an abbreviation for simple imperative language if you want it to be.

Operational Semantics | 21

www.it-ebooks.info

http://www.it-ebooks.info/

The mathematical description of SIMPLE’s small-step semantics looks like this:

Mathematically speaking, this is a set of inference rules that defines a reduction rela-
tion on SIMPLE’s abstract syntax trees. Practically speaking, it’s a bunch of weird symbols
that don’t say anything intelligible about the meaning of computer programs.

Instead of trying to understand this formal notation directly, we’re going to investigate
how to write the same inference rules in Ruby. Using Ruby as the metalanguage is easier
for a programmer to understand, and it gives us the added advantage of being able to
execute the rules to see how they work.

22 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

We are not trying to describe the semantics of SIMPLE by giving a “spec-
ification by implementation.” Our main reason for describing the small-
step semantics in Ruby instead of mathematical notation is to make the
description easier for a human reader to digest. Ending up with an ex-
ecutable implementation of the language is just a nice bonus.

The big disadvantage of using Ruby is that it explains a simple language
by using a more complicated one, which perhaps defeats the philo-
sophical purpose. We should remember that the mathematical rules are
the authoritative description of the semantics, and that we’re just using
Ruby to develop an understanding of what those rules mean.

Expressions

We’ll start by looking at the semantics of SIMPLE expressions. The rules will operate on
the abstract syntax of these expressions, so we need to be able to represent SIMPLE

expressions as Ruby objects. One way of doing this is to define a Ruby class for each
distinct kind of element from SIMPLE’s syntax—numbers, addition, multiplication, and
so on—and then represent each expression as a tree of instances of these classes.

For example, here are the definitions of Number, Add, and Multiply classes:

class Number < Struct.new(:value)
end

class Add < Struct.new(:left, :right)
end

class Multiply < Struct.new(:left, :right)
end

We can instantiate these classes to build abstract syntax trees by hand:

>> Add.new(
 Multiply.new(Number.new(1), Number.new(2)),
 Multiply.new(Number.new(3), Number.new(4))
)
=> #<struct Add
 left=#<struct Multiply
 left=#<struct Number value=1>,
 right=#<struct Number value=2>
 >,
 right=#<struct Multiply
 left=#<struct Number value=3>,
 right=#<struct Number value=4>
 >
 >

Eventually, of course, we want these trees to be built automatically by
a parser. We’ll see how to do that in “Implementing Pars-
ers” on page 58.

Operational Semantics | 23

www.it-ebooks.info

http://www.it-ebooks.info/

The Number, Add, and Multiply classes inherit Struct’s generic definition of #inspect, so
the string representations of their instances in the IRB console contain a lot of unim-
portant detail. To make the content of an abstract syntax tree easier to see in IRB, we’ll
override #inspect on each class4 so that it returns a custom string representation:

class Number
 def to_s
 value.to_s
 end

 def inspect
 "«#{self}»"
 end
end

class Add
 def to_s
 "#{left} + #{right}"
 end

 def inspect
 "«#{self}»"
 end
end

class Multiply
 def to_s
 "#{left} * #{right}"
 end

 def inspect
 "«#{self}»"
 end
end

Now each abstract syntax tree will be shown in IRB as a short string of SIMPLE source
code, surrounded by «guillemets» to distinguish it from a normal Ruby value:

>> Add.new(
 Multiply.new(Number.new(1), Number.new(2)),
 Multiply.new(Number.new(3), Number.new(4))
)
=> «1 * 2 + 3 * 4»
>> Number.new(5)
=> «5»

4. For the sake of simplicity, we’ll resist the urge to extract common code into superclasses or modules.

24 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

Our rudimentary #to_s implementations don’t take operator prece-
dence into account, so sometimes their output is incorrect with respect
to conventional precedence rules (e.g., * usually binds more tightly than
+). Take this abstract syntax tree, for example:

>> Multiply.new(
 Number.new(1),
 Multiply.new(
 Add.new(Number.new(2), Number.new(3)),
 Number.new(4)
)
)
=> «1 * 2 + 3 * 4»

This tree represents «1 * (2 + 3) * 4», which is a different expression
(with a different meaning) than «1 * 2 + 3 * 4», but its string repre-
sentation doesn’t reflect that.

This problem is serious but tangential to our discussion of semantics.
To keep things simple, we’ll temporarily ignore it and just avoid creating
expressions that have an incorrect string representation. We’ll imple-
ment a proper solution for another language in “Syntax” on page 80.

Now we can begin to implement a small-step operational semantics by defining meth-
ods that perform reductions on our abstract syntax trees—that is, code that can take
an abstract syntax tree as input and produce a slightly reduced tree as output.

Before we can implement reduction itself, we need to be able to distinguish expressions
that can be reduced from those that can’t. Add and Multiply expressions are always
reducible—each of them represents an operation, and can be turned into a result by
performing the calculation corresponding to that operation—but a Number expression
always represents a value, which can’t be reduced to anything else.

In principle, we could tell these two kinds of expression apart with a single #reduci
ble? predicate that returns true or false depending on the class of its argument:

def reducible?(expression)
 case expression
 when Number
 false
 when Add, Multiply
 true
 end
end

In Ruby case statements, the control expression is matched against the
cases by calling each case value’s #=== method with the control expres-
sion’s value as an argument. The implementation of #=== for class ob-
jects checks to see whether its argument is an instance of that class or
one of its subclasses, so we can use the case object when classname
syntax to match an object against a class.

Operational Semantics | 25

www.it-ebooks.info

http://www.it-ebooks.info/

However, it’s generally considered bad form to write code like this in an object-oriented
language;5 when the behavior of some operation depends upon the class of its argu-
ment, the typical approach is to implement each per-class behavior as an instance
method for that class, and let the language implicitly handle the job of deciding which
of those methods to call instead of using an explicit case statement.

So instead, let’s implement separate #reducible? methods for Number, Add, and Multiply:

class Number
 def reducible?
 false
 end
end

class Add
 def reducible?
 true
 end
end

class Multiply
 def reducible?
 true
 end
end

This gives us the behavior we want:

>> Number.new(1).reducible?
=> false
>> Add.new(Number.new(1), Number.new(2)).reducible?
=> true

We can now implement reduction for these expressions; as above, we’ll do this by
defining a #reduce method for Add and Multiply. There’s no need to define Num
ber#reduce, since numbers can’t be reduced, so we’ll just need to be careful not to call
#reduce on an expression unless we know it’s reducible.

So what are the rules for reducing an addition expression? If the left and right arguments
are already numbers, then we can just add them together, but what if one or both of
the arguments needs reducing? Since we’re thinking about small steps, we need to
decide which argument gets reduced first if they are both eligible for reduction.6 A
common strategy is to reduce the arguments in left-to-right order, in which case the
rules will be:

• If the addition’s left argument can be reduced, reduce the left argument.

5. Although this is pretty much exactly how we’d write #reducible? in a functional language like Haskell or
ML.

6. At the moment, it doesn’t make any difference which order we choose, but we can’t avoid making the
decision.

26 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

• If the addition’s left argument can’t be reduced but its right argument can, reduce
the right argument.

• If neither argument can be reduced, they should both be numbers, so add them
together.

The structure of these rules is characteristic of small-step operational semantics. Each
rule provides a pattern for the kind of expression to which it applies—an addition with
a reducible left argument, with a reducible right argument, and with two irreducible
arguments respectively—and a description of how to build a new, reduced expression
when that pattern matches. By choosing these particular rules, we’re specifying that a
SIMPLE addition expression uses left-to-right evaluation to reduce its arguments, as well
as deciding how those arguments should be combined once they’ve been individually
reduced.

We can translate these rules directly into an implementation of Add#reduce, and almost
the same code will work for Multiply#reduce (remembering to multiply the arguments
instead of adding them):

class Add
 def reduce
 if left.reducible?
 Add.new(left.reduce, right)
 elsif right.reducible?
 Add.new(left, right.reduce)
 else
 Number.new(left.value + right.value)
 end
 end
end

class Multiply
 def reduce
 if left.reducible?
 Multiply.new(left.reduce, right)
 elsif right.reducible?
 Multiply.new(left, right.reduce)
 else
 Number.new(left.value * right.value)
 end
 end
end

#reduce always builds a new expression rather than modifying an exist-
ing one.

Having implemented #reduce for these kinds of expressions, we can call it repeatedly
to fully evaluate an expression via a series of small steps:

Operational Semantics | 27

www.it-ebooks.info

http://www.it-ebooks.info/

>> expression =
 Add.new(
 Multiply.new(Number.new(1), Number.new(2)),
 Multiply.new(Number.new(3), Number.new(4))
)
=> «1 * 2 + 3 * 4»
>> expression.reducible?
=> true
>> expression = expression.reduce
=> «2 + 3 * 4»
>> expression.reducible?
=> true
>> expression = expression.reduce
=> «2 + 12»
>> expression.reducible?
=> true
>> expression = expression.reduce
=> «14»
>> expression.reducible?
=> false

Notice that #reduce always turns one expression into another expres-
sion, which is exactly how the rules of small-step operational semantics
should work. In particular, Add.new(Number.new(2), Num
ber.new(12)).reduce returns Number.new(14), which represents a SIM-

PLE expression, rather than just 14, which is a Ruby number.

This separation between the SIMPLE language, whose semantics we are
specifying, and the Ruby metalanguage, in which we are writing the
specification, is easier to maintain when the two languages are obviously
different—as is the case when the metalanguage is mathematical nota-
tion rather than a programming language—but here we need to be more
careful because the two languages look very similar.

By maintaining a piece of state—the current expression—and repeatedly calling
#reducible? and #reduce on it until we end up with a value, we’re manually simulating
the operation of an abstract machine for evaluating expressions. To save ourselves some
effort, and to make the idea of the abstract machine more concrete, we can easily write
some Ruby code that does the work for us. Let’s wrap up that code and state together
in a class and call it a virtual machine:

class Machine < Struct.new(:expression)
 def step
 self.expression = expression.reduce
 end

 def run
 while expression.reducible?
 puts expression
 step
 end

28 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

 puts expression
 end
end

This allows us to instantiate a virtual machine with an expression, tell it to #run, and
watch the steps of reduction unfold:

>> Machine.new(
 Add.new(
 Multiply.new(Number.new(1), Number.new(2)),
 Multiply.new(Number.new(3), Number.new(4))
)
).run
1 * 2 + 3 * 4
2 + 3 * 4
2 + 12
14
=> nil

It isn’t difficult to extend this implementation to support other simple values and op-
erations: subtraction and division; Boolean true and false; Boolean and, or, and not;
comparison operations for numbers that return Booleans; and so on. For example, here
are implementations of Booleans and the less-than operator:

class Boolean < Struct.new(:value)
 def to_s
 value.to_s
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 false
 end
end

class LessThan < Struct.new(:left, :right)
 def to_s
 "#{left} < #{right}"
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 true
 end

 def reduce
 if left.reducible?
 LessThan.new(left.reduce, right)
 elsif right.reducible?

Operational Semantics | 29

www.it-ebooks.info

http://www.it-ebooks.info/

 LessThan.new(left, right.reduce)
 else
 Boolean.new(left.value < right.value)
 end
 end
end

Again, this allows us to reduce a boolean expression in small steps:

>> Machine.new(
 LessThan.new(Number.new(5), Add.new(Number.new(2), Number.new(2)))
).run
5 < 2 + 2
5 < 4
false
=> nil

So far, so straightforward: we have begun to specify the operational semantics of a
language by implementing a virtual machine that can evaluate it. At the moment the
state of this virtual machine is just the current expression, and the behavior of the
machine is described by a collection of rules that govern how that state changes when
the machine runs. We’ve implemented the machine as a program that keeps track of
the current expression and keeps reducing it, updating the expression as it goes, until
no more reductions can be performed.

But this language of simple algebraic expressions isn’t very interesting, and doesn’t have
many of the features that we expect from even the simplest programming language, so
let’s build it out to be more sophisticated and look more like a language in which we
could write useful programs.

First off, there’s something obviously missing from SIMPLE: variables. In any useful lan-
guage, we’d expect to be able to talk about values using meaningful names rather than
the literal values themselves. These names provide a layer of indirection so that the
same code can be used to process many different values, including values that come
from outside the program and therefore aren’t even known when the code is written.

We can introduce a new class of expression, Variable, to represent variables in SIMPLE:

class Variable < Struct.new(:name)
 def to_s
 name.to_s
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 true
 end
end

30 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

To be able to reduce a variable, we need the abstract machine to store a mapping from
variable names onto their values, an environment, as well as the current expression. In
Ruby, we can implement this mapping as a hash, using symbols as keys and expression
objects as values; for example, the hash { x: Number.new(2), y:
Boolean.new(false) } is an environment that associates the variables x and y with a
SIMPLE number and Boolean, respectively.

For this language, the intention is for the environment to only map vari-
able names onto irreducible values like Number.new(2), not onto reduci-
ble expressions like Add.new(Number.new(1), Number.new(2)). We’ll take
care to respect this constraint later when we write rules that change the
contents of the environment.

Given an environment, we can easily implement Variable#reduce: it just looks up the
variable’s name in the environment and returns its value.

class Variable
 def reduce(environment)
 environment[name]
 end
end

Notice that we’re now passing an environment argument into #reduce, so we’ll need to
revise the other expression classes’ implementations of #reduce to both accept and
provide this argument:

class Add
 def reduce(environment)
 if left.reducible?
 Add.new(left.reduce(environment), right)
 elsif right.reducible?
 Add.new(left, right.reduce(environment))
 else
 Number.new(left.value + right.value)
 end
 end
end

class Multiply
 def reduce(environment)
 if left.reducible?
 Multiply.new(left.reduce(environment), right)
 elsif right.reducible?
 Multiply.new(left, right.reduce(environment))
 else
 Number.new(left.value * right.value)
 end
 end
end

class LessThan

Operational Semantics | 31

www.it-ebooks.info

http://www.it-ebooks.info/

 def reduce(environment)
 if left.reducible?
 LessThan.new(left.reduce(environment), right)
 elsif right.reducible?
 LessThan.new(left, right.reduce(environment))
 else
 Boolean.new(left.value < right.value)
 end
 end
end

Once all the implementations of #reduce have been updated to support environments,
we also need to redefine our virtual machine to maintain an environment and provide
it to #reduce:

Object.send(:remove_const, :Machine) # forget about the old Machine class

class Machine < Struct.new(:expression, :environment)
 def step
 self.expression = expression.reduce(environment)
 end

 def run
 while expression.reducible?
 puts expression
 step
 end

 puts expression
 end
end

The machine’s definition of #run remains unchanged, but it has a new environment
attribute that is used by its new implementation of #step.

We can now perform reductions on expressions that contain variables, as long as we
also supply an environment that contains the variables’ values:

>> Machine.new(
 Add.new(Variable.new(:x), Variable.new(:y)),
 { x: Number.new(3), y: Number.new(4) }
).run
x + y
3 + y
3 + 4
7
=> nil

The introduction of an environment completes our operational semantics of expres-
sions. We’ve designed an abstract machine that begins with an initial expression and
environment, and then uses the current expression and environment to produce a new
expression in each small reduction step, leaving the environment unchanged.

32 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

Statements

We can now look at implementing a different kind of program construct: statements.
The purpose of an expression is to be evaluated to produce another expression; a state-
ment, on the other hand, is evaluated to make some change to the state of the abstract
machine. Our machine’s only piece of state (aside from the current program) is the
environment, so we’ll allow SIMPLE statements to produce a new environment that can
replace the current one.

The simplest possible statement is one that does nothing: it can’t be reduced, so it can’t
have any effect on the environment. That’s easy to implement:

class DoNothing
 def to_s
 'do-nothing'
 end

 def inspect
 "«#{self}»"
 end

 def ==(other_statement)
 other_statement.instance_of?(DoNothing)
 end

 def reducible?
 false
 end
end

All of our other syntax classes inherit from a Struct class, but DoNothing doesn’t
inherit from anything. This is because DoNothing doesn’t have any attributes, and
unfortunately, Struct.new doesn’t let us pass an empty list of attribute names.

We want to be able to compare any two statements to see if they’re equal. The other
syntax classes inherit an implementation of #== from Struct, but DoNothing has to
define its own.

A statement that does nothing might seem pointless, but it’s convenient to have a spe-
cial statement that represents a program whose execution has completed successfully.
We’ll arrange for other statements to eventually reduce to «do-nothing» once they’ve
finished doing their work.

The simplest example of a statement that actually does something useful is an assign-
ment like «x = x + 1», but before we can implement assignment, we need to decide
what its reduction rules should be.

An assignment statement consists of a variable name (x), an equals symbol, and an
expression («x + 1»). If the expression within the assignment is reducible, we can just
reduce it according to the expression reduction rules and end up with a new assignment
statement containing the reduced expression. For example, reducing «x = x + 1» in an

Operational Semantics | 33

www.it-ebooks.info

http://www.it-ebooks.info/

environment where the variable x has the value «2» should leave us with the statement
«x = 2 + 1», and reducing it again should produce «x = 3».

But then what? If the expression is already a value like «3», then we should just perform
the assignment, which means updating the environment to associate that value with
the appropriate variable name. So reducing a statement needs to produce not just a
new, reduced statement but also a new environment, which will sometimes be different
from the environment in which the reduction was performed.

Our implementation will update the environment by using Hash#merge
to create a new hash without modifying the old one:

>> old_environment = { y: Number.new(5) }
=> {:y=>«5»}
>> new_environment = old_environment.merge({ x: Number.new(3) })
=> {:y=>«5», :x=>«3»}
>> old_environment
=> {:y=>«5»}

We could choose to destructively modify the current environment in-
stead of making a new one, but avoiding destructive updates forces us
to make the consequences of #reduce completely explicit. If #reduce
wants to change the current environment, it has to communicate that
by returning an updated environment to its caller; conversely, if it
doesn’t return an environment, we can be sure it hasn’t made any
changes.

This constraint helps to highlight the difference between expressions
and statements. For expressions, we pass an environment into #reduce
and get a reduced expression back; no new environment is returned, so
reducing an expression obviously doesn’t change the environment. For
statements, we’ll call #reduce with the current environment and get a
new environment back, which tells us that reducing a statement can
have an effect on the environment. (In other words, the structure of
SIMPLE’s small-step semantics shows that its expressions are pure and its
statements are impure.)

So reducing «x = 3» in an empty environment should produce the new environment
{ x: Number.new(3) }, but we also expect the statement to be reduced somehow;
otherwise, our abstract machine will keep assigning «3» to x forever. That’s what «do-
nothing» is for: a completed assignment reduces to «do-nothing», indicating that re-
duction of the statement has finished and that whatever’s in the new environment may
be considered its result.

To summarize, the reduction rules for assignment are:

• If the assignment’s expression can be reduced, then reduce it, resulting in a reduced
assignment statement and an unchanged environment.

34 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

• If the assignment’s expression can’t be reduced, then update the environment to
associate that expression with the assignment’s variable, resulting in a «do-noth
ing» statement and a new environment.

This gives us enough information to implement an Assign class. The only difficulty is
that Assign#reduce needs to return both a statement and an environment—Ruby
methods can only return a single object—but we can pretend to return two objects by
putting them into a two-element array and returning that.

class Assign < Struct.new(:name, :expression)
 def to_s
 "#{name} = #{expression}"
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 true
 end

 def reduce(environment)
 if expression.reducible?
 [Assign.new(name, expression.reduce(environment)), environment]
 else
 [DoNothing.new, environment.merge({ name => expression })]
 end
 end
end

As promised, the reduction rules for Assign ensure that an expression
only gets added to the environment if it’s irreducible (i.e., a value).

As with expressions, we can manually evaluate an assignment statement by repeatedly
reducing it until it can’t be reduced any more:

>> statement = Assign.new(:x, Add.new(Variable.new(:x), Number.new(1)))
=> «x = x + 1»
>> environment = { x: Number.new(2) }
=> {:x=>«2»}
>> statement.reducible?
=> true
>> statement, environment = statement.reduce(environment)
=> [«x = 2 + 1», {:x=>«2»}]
>> statement, environment = statement.reduce(environment)
=> [«x = 3», {:x=>«2»}]
>> statement, environment = statement.reduce(environment)
=> [«do-nothing», {:x=>«3»}]
>> statement.reducible?
=> false

Operational Semantics | 35

www.it-ebooks.info

http://www.it-ebooks.info/

This process is even more laborious than manually reducing expressions, so let’s re-
implement our virtual machine to handle statements, showing the current statement
and environment at each reduction step:

Object.send(:remove_const, :Machine)

class Machine < Struct.new(:statement, :environment)
 def step
 self.statement, self.environment = statement.reduce(environment)
 end

 def run
 while statement.reducible?
 puts "#{statement}, #{environment}"
 step
 end

 puts "#{statement}, #{environment}"
 end
end

Now the machine can do the work for us again:

>> Machine.new(
 Assign.new(:x, Add.new(Variable.new(:x), Number.new(1))),
 { x: Number.new(2) }
).run
x = x + 1, {:x=>«2»}
x = 2 + 1, {:x=>«2»}
x = 3, {:x=>«2»}
do-nothing, {:x=>«3»}
=> nil

We can see that the machine is still performing expression reduction steps («x + 1» to
«2 + 1» to «3»), but they now happen inside a statement instead of at the top level of
the syntax tree.

Now that we know how statement reduction works, we can extend it to support other
kinds of statements. Let’s begin with conditional statements like «if (x) { y = 1 }
else { y = 2 }», which contain an expression called the condition («x»), and two
statements that we’ll call the consequence («y = 1») and the alternative («y = 2»).7 The
reduction rules for conditionals are straightforward:

• If the condition can be reduced, then reduce it, resulting in a reduced conditional
statement and an unchanged environment.

• If the condition is the expression «true», reduce to the consequence statement and
an unchanged environment.

7. This conditional is not the same as Ruby’s if. In Ruby, if is an expression that returns a value, but in
SIMPLE, it’s a statement for choosing which of two other statements to evaluate, and its only result is the
effect it has on the current environment.

36 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

• If the condition is the expression «false», reduce to the alternative statement and
an unchanged environment.

In this case, none of the rules changes the environment—the reduction of the condition
expression in the first rule will only produce a new expression, not a new environment.

Here are the rules translated into an If class:

class If < Struct.new(:condition, :consequence, :alternative)
 def to_s
 "if (#{condition}) { #{consequence} } else { #{alternative} }"
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 true
 end

 def reduce(environment)
 if condition.reducible?
 [If.new(condition.reduce(environment), consequence, alternative), environment]
 else
 case condition
 when Boolean.new(true)
 [consequence, environment]
 when Boolean.new(false)
 [alternative, environment]
 end
 end
 end
end

And here’s how the reduction steps look:

>> Machine.new(
 If.new(
 Variable.new(:x),
 Assign.new(:y, Number.new(1)),
 Assign.new(:y, Number.new(2))
),
 { x: Boolean.new(true) }
).run
if (x) { y = 1 } else { y = 2 }, {:x=>«true»}
if (true) { y = 1 } else { y = 2 }, {:x=>«true»}
y = 1, {:x=>«true»}
do-nothing, {:x=>«true», :y=>«1»}
=> nil

That all works as expected, but it would be nice if we could support conditional state-
ments with no «else» clause, like «if (x) { y = 1 }». Fortunately, we can already do
that by writing statements like «if (x) { y = 1 } else { do-nothing }», which behave
as though the «else» clause wasn’t there:

Operational Semantics | 37

www.it-ebooks.info

http://www.it-ebooks.info/

>> Machine.new(
 If.new(Variable.new(:x), Assign.new(:y, Number.new(1)), DoNothing.new),
 { x: Boolean.new(false) }
).run
if (x) { y = 1 } else { do-nothing }, {:x=>«false»}
if (false) { y = 1 } else { do-nothing }, {:x=>«false»}
do-nothing, {:x=>«false»}
=> nil

Now that we’ve implemented assignment and conditional statements as well as ex-
pressions, we have the building blocks for programs that can do real work by perform-
ing calculations and making decisions. The main restriction is that we can’t yet connect
these blocks together: we have no way to assign values to more than one variable, or
to perform more than one conditional operation, which drastically limits the usefulness
of our language.

We can fix this by defining another kind of statement, the sequence, which connects
two statements like «x = 1 + 1» and «y = x + 3» to make one larger statement like «x
= 1 + 1; y = x + 3». Once we have sequence statements, we can use them repeatedly
to build even larger statements; for example, the sequence «x = 1 + 1; y = x + 3» and
the assignment «z = y + 5» can be combined to make the sequence «x = 1 + 1; y =
x + 3; z = y + 5».8

The reduction rules for sequences are slightly subtle:

• If the first statement is a «do-nothing» statement, reduce to the second statement
and the original environment.

• If the first statement is not «do-nothing», then reduce it, resulting in a new sequence
(the reduced first statement followed by the second statement) and a reduced en-
vironment.

Seeing the code may make these rules clearer:

class Sequence < Struct.new(:first, :second)
 def to_s
 "#{first}; #{second}"
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 true
 end

 def reduce(environment)
 case first

8. For our purposes, it doesn’t matter whether this statement has been constructed as «(x = 1 + 1; y = x
+ 3); z = y + 5» or «x = 1 + 1; (y = x + 3; z = y + 5)». This choice would affect the exact order of
the reduction steps when we ran it, but the final result would be the same either way.

38 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

 when DoNothing.new
 [second, environment]
 else
 reduced_first, reduced_environment = first.reduce(environment)
 [Sequence.new(reduced_first, second), reduced_environment]
 end
 end
end

The overall effect of these rules is that, when we repeatedly reduce a sequence, it keeps
reducing its first statement until it turns into «do-nothing», then reduces to its second
statement. We can see this happening when we run a sequence in the virtual machine:

>> Machine.new(
 Sequence.new(
 Assign.new(:x, Add.new(Number.new(1), Number.new(1))),
 Assign.new(:y, Add.new(Variable.new(:x), Number.new(3)))
),
 {}
).run
x = 1 + 1; y = x + 3, {}
x = 2; y = x + 3, {}
do-nothing; y = x + 3, {:x=>«2»}
y = x + 3, {:x=>«2»}
y = 2 + 3, {:x=>«2»}
y = 5, {:x=>«2»}
do-nothing, {:x=>«2», :y=>«5»}
=> nil

The only really major thing still missing from SIMPLE is some kind of unrestricted looping
construct, so to finish off, let’s introduce a «while» statement so that programs can
perform repeated calculations an arbitrary number of times.9 A statement like «while
(x < 5) { x = x * 3 }» contains an expression called the condition («x < 5») and a
statement called the body («x = x * 3»).

Writing the correct reduction rules for a «while» statement is slightly tricky. We could
try treating it like an «if» statement: reduce the condition if possible; otherwise, reduce
to either the body or «do-nothing», depending on whether the condition is «true» or
«false», respectively. But once the abstract machine has completely reduced the body,
what next? The condition has been reduced to a value and thrown away, and the body
has been reduced to «do-nothing», so how do we perform another iteration of the loop?
Each reduction step can only communicate with future steps by producing a new state-
ment and environment, and this approach doesn’t give us anywhere to “remember”
the original condition and body for use on the next iteration.

The small-step solution10 is to use the sequence statement to unroll one level of the
«while», reducing it to an «if» that performs a single iteration of the loop and then
repeats the original «while». This means we only need one reduction rule:

9. We can already hardcode a fixed number of repetitions by using sequence statements, but that doesn’t
allow us to control the repetition behavior at runtime.

Operational Semantics | 39

www.it-ebooks.info

http://www.it-ebooks.info/

• Reduce «while (condition) { body }» to «if (condition) { body; while (condi
tion) { body } } else { do-nothing }» and an unchanged environment.

And this rule is easy to implement in Ruby:

class While < Struct.new(:condition, :body)
 def to_s
 "while (#{condition}) { #{body} }"
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 true
 end

 def reduce(environment)
 [If.new(condition, Sequence.new(body, self), DoNothing.new), environment]
 end
end

This gives the virtual machine the opportunity to evaluate the condition and body as
many times as necessary:

>> Machine.new(
 While.new(
 LessThan.new(Variable.new(:x), Number.new(5)),
 Assign.new(:x, Multiply.new(Variable.new(:x), Number.new(3)))
),
 { x: Number.new(1) }
).run
while (x < 5) { x = x * 3 }, {:x=>«1»}
if (x < 5) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«1»}
if (1 < 5) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«1»}
if (true) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«1»}
x = x * 3; while (x < 5) { x = x * 3 }, {:x=>«1»}
x = 1 * 3; while (x < 5) { x = x * 3 }, {:x=>«1»}
x = 3; while (x < 5) { x = x * 3 }, {:x=>«1»}
do-nothing; while (x < 5) { x = x * 3 }, {:x=>«3»}
while (x < 5) { x = x * 3 }, {:x=>«3»}
if (x < 5) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«3»}
if (3 < 5) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«3»}
if (true) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«3»}
x = x * 3; while (x < 5) { x = x * 3 }, {:x=>«3»}
x = 3 * 3; while (x < 5) { x = x * 3 }, {:x=>«3»}
x = 9; while (x < 5) { x = x * 3 }, {:x=>«3»}
do-nothing; while (x < 5) { x = x * 3 }, {:x=>«9»}
while (x < 5) { x = x * 3 }, {:x=>«9»}
if (x < 5) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«9»}

10. There’s a temptation to build the iterative behavior of «while» directly into its reduction rule instead of
finding a way to get the abstract machine to handle it, but that’s not how small-step semantics works.
See “Big-Step Semantics” on page 42 for a style of semantics that lets the rules do the work.

40 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

if (9 < 5) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«9»}
if (false) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«9»}
do-nothing, {:x=>«9»}
=> nil

Perhaps this reduction rule seems like a bit of a dodge—it’s almost as though we’re
perpetually postponing reduction of the «while» until later, without ever actually get-
ting there—but on the other hand, it does a good job of explaining what we really mean
by a «while» statement: check the condition, evaluate the body, then start again. It’s
curious that reducing «while» turns it into a syntactically larger program involving
conditional and sequence statements instead of directly reducing its condition or body,
and one reason why it’s useful to have a technical framework for specifying the formal
semantics of a language is to help us see how different parts of the language relate to
each other like this.

Correctness

We’ve completely ignored what will happen when a syntactically valid but otherwise
incorrect program is executed according to the semantics we’ve given. The statement
«x = true; x = x + 1» is a valid piece of SIMPLE syntax—we can certainly construct an
abstract syntax tree to represent it—but it’ll blow up when we try to repeatedly reduce
it, because the abstract machine will end up trying to add «1» to «true»:

>> Machine.new(
 Sequence.new(
 Assign.new(:x, Boolean.new(true)),
 Assign.new(:x, Add.new(Variable.new(:x), Number.new(1)))
),
 {}
).run
x = true; x = x + 1, {}
do-nothing; x = x + 1, {:x=>«true»}
x = x + 1, {:x=>«true»}
x = true + 1, {:x=>«true»}
NoMethodError: undefined method `+' for true:TrueClass

One way to handle this is to be more restrictive about when expressions can be reduced,
which introduces the possibility that evaluation will get stuck rather than always trying
to reduce to a value (and potentially blowing up in the process). We could have im-
plemented Add#reducible? to only return true when both arguments to «+» are either
reducible or an instance of Number, in which case the expression «true + 1» would get
stuck and never turn into a value.

Ultimately, we need a more powerful tool than syntax, something that can “see the
future” and prevent us from trying to execute any program that has the potential to
blow up or get stuck. This chapter is about dynamic semantics—what a program does
when it’s executed—but that’s not the only kind of meaning that a program can have;
in Chapter 9, we’ll investigate static semantics to see how we can decide whether a

Operational Semantics | 41

www.it-ebooks.info

http://www.it-ebooks.info/

syntactically valid program has a useful meaning according to the language’s dynamic
semantics.

Applications

The programming language we’ve specified is very basic, but in writing down all the
reduction rules, we’ve still had to make some design decisions and express them un-
ambiguously. For example, unlike Ruby, SIMPLE is a language that makes a distinction
between expressions, which return a value, and statements, which don’t; like Ruby,
SIMPLE evaluates expressions in a left-to-right order; and like Ruby, SIMPLE’s environ-
ments associate variables only with fully reduced values, not with larger expressions
that still have some unfinished computation to perform.11 We could change any of
these decisions by giving a different small-step semantics which would describe a new
language with the same syntax but different runtime behavior. If we added more elab-
orate features to the language—data structures, procedure calls, exceptions, an object
system—we’d need to make many more design decisions and express them unambig-
uously in the semantic definition.

The detailed, execution-oriented style of small-step semantics lends itself well to the
task of unambiguously specifying real-world programming languages. For example,
the latest R6RS standard for the Scheme programming language uses small-step se-
mantics to describe its execution, and provides a reference implementation of those
semantics written in PLT Redex, “a domain-specific language designed for specifying
and debugging operational semantics.” The OCaml programming language, which is
built as a series of layers on top of a simpler language called Core ML, also has a small-
step semantic definition of the base language’s runtime behavior.

See “Semantics” on page 199 for another example of using small-step operational se-
mantics to specify the meaning of expressions in an even simpler programming lan-
guage called the lambda calculus.

Big-Step Semantics
We’ve now seen what small-step operational semantics looks like: we design an abstract
machine that maintains some execution state, then define reduction rules that specify
how each kind of program construct can make incremental progress toward being fully
evaluated. In particular, small-step semantics has a mostly iterative flavor, requiring
the abstract machine to repeatedly perform reduction steps (the Ruby while loop in
Machine#run) that are themselves constructed to produce as output the same kind of
information that they require as input, making them suitable for this kind of repeated
application.12

11. Ruby’s procs permit complex expressions to be assigned to variables in some sense, but a proc is still a
value: it can’t perform any more evaluation by itself, but can be reduced as part of a larger expression
involving other values.

42 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-15.html
http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-15.html
http://www.r6rs.org/refimpl/
http://www.r6rs.org/refimpl/
http://redex.racket-lang.org/
http://caml.inria.fr/pub/docs/u3-ocaml/ocaml-ml.html#htoc5
http://caml.inria.fr/pub/docs/u3-ocaml/ocaml-ml.html#htoc5
http://www.it-ebooks.info/

The small-step approach has the advantage of slicing up the complex business of exe-
cuting an entire program into smaller pieces that are easier to explain and analyze, but
it does feel a bit indirect: instead of explaining how a whole program construct works,
we just show how it can be reduced slightly. Why can’t we explain a statement more
directly, by telling a complete story about how its execution works? Well, we can, and
that’s the basis of big-step semantics.

The idea of big-step semantics is to specify how to get from an expression or statement
straight to its result. This necessarily involves thinking about program execution as a
recursive rather than an iterative process: big-step semantics says that, to evaluate a
large expression, we evaluate all of its smaller subexpressions and then combine their
results to get our final answer.

In many ways, this feels more natural than the small-step approach, but it does lack
some of its fine-grained attention to detail. For example, our small-step semantics is
explicit about the order in which operations are supposed to happen, because at every
point, it identifies what the next step of reduction should be, but big-step semantics is
often written in a looser style that just says which subcomputations to perform without
necessarily specifying what order to perform them in.13 Small-step semantics also gives
us an easy way to observe the intermediate stages of a computation, whereas big-step
semantics just returns a result and doesn’t produce any direct evidence of how it was
computed.

To understand this trade-off, let’s revisit some common language constructs and see
how to implement their big-step semantics in Ruby. Our small-step semantics required
a Machine class to keep track of state and perform repeated reductions, but we won’t
need that here; big-step rules describe how to compute the result of an entire program
by walking over its abstract syntax tree in a single attempt, so there’s no state or repe-
tition to deal with. We’ll just define an #evaluate method on our expression and state-
ment classes and call it directly.

Expressions

With small-step semantics we had to distinguish reducible expressions like «1 + 2»
from irreducible expressions like «3» so that the reduction rules could tell when a sub-
expression was ready to be used as part of some larger computation, but in big-step
semantics every expression can be evaluated. The only distinction, if we wanted to
make one, is that some expressions immediately evaluate to themselves, while others
perform some computation and evaluate to a different expression.

12. Reducing an expression and an environment gives us a new expression, and we may reuse the old
environment next time; reducing a statement and an environment gives us a new statement and a new
environment.

13. Our Ruby implementation of big-step semantics won’t be ambiguous in this way, because Ruby itself
already makes these ordering decisions, but when a big-step semantics is specified mathematically, it can
avoid spelling out the exact evaluation strategy.

Operational Semantics | 43

www.it-ebooks.info

http://www.it-ebooks.info/

The goal of big-step semantics is to model the same runtime behavior as the small-step
semantics, which means we expect the big-step rules for each kind of program construct
to agree with what repeated application of the small-step rules would eventually pro-
duce. (This is exactly the sort of thing that can be formally proved when an operational
semantics is written mathematically.) The small-step rules for values like Number and
Boolean say that we can’t reduce them at all, so their big-step rules are very simple:
values immediately evaluate to themselves.

class Number
 def evaluate(environment)
 self
 end
end

class Boolean
 def evaluate(environment)
 self
 end
end

Variable expressions are unique in that their small-step semantics allow them to be
reduced exactly once before they turn into a value, so their big-step rule is the same as
their small-step one: look up the variable name in the environment and return its value.

class Variable
 def evaluate(environment)
 environment[name]
 end
end

The binary expressions Add, Multiply, and LessThan are slightly more interesting, re-
quiring recursive evaluation of their left and right subexpressions before combining
both values with the appropriate Ruby operator:

class Add
 def evaluate(environment)
 Number.new(left.evaluate(environment).value + right.evaluate(environment).value)
 end
end

class Multiply
 def evaluate(environment)
 Number.new(left.evaluate(environment).value * right.evaluate(environment).value)
 end
end

class LessThan
 def evaluate(environment)
 Boolean.new(left.evaluate(environment).value < right.evaluate(environment).value)
 end
end

To check that these big-step expression semantics are correct, here they are in action
on the Ruby console:

44 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

>> Number.new(23).evaluate({})
=> «23»
>> Variable.new(:x).evaluate({ x: Number.new(23) })
=> «23»
>> LessThan.new(
 Add.new(Variable.new(:x), Number.new(2)),
 Variable.new(:y)
).evaluate({ x: Number.new(2), y: Number.new(5) })
=> «true»

Statements

This style of semantics shines when we come to specify the behavior of statements.
Expressions reduce to other expressions under small-step semantics, but statements
reduce to «do-nothing» and leave a modified environment behind. We can think of big-
step statement evaluation as a process that always turns a statement and an initial
environment into a final environment, avoiding the small-step complication of also
having to deal with the intermediate statement generated by #reduce. Big-step evalua-
tion of an assignment statement, for example, should fully evaluate its expression and
return an updated environment containing the resulting value:

class Assign
 def evaluate(environment)
 environment.merge({ name => expression.evaluate(environment) })
 end
end

Similarly, DoNothing#evaluate will clearly return the unmodified environment, and
If#evaluate has a pretty straightforward job on its hands: evaluate the condition, then
return the environment that results from evaluating either the consequence or the al-
ternative.

class DoNothing
 def evaluate(environment)
 environment
 end
end

class If
 def evaluate(environment)
 case condition.evaluate(environment)
 when Boolean.new(true)
 consequence.evaluate(environment)
 when Boolean.new(false)
 alternative.evaluate(environment)
 end
 end
end

The two interesting cases are sequence statements and «while» loops. For sequences,
we just need to evaluate both statements, but the initial environment needs to be
“threaded through” these two evaluations, so that the result of evaluating the first
statement becomes the environment in which the second statement is evaluated. This

Operational Semantics | 45

www.it-ebooks.info

http://www.it-ebooks.info/

can be written in Ruby by using the first evaluation’s result as the argument to the
second:

class Sequence
 def evaluate(environment)
 second.evaluate(first.evaluate(environment))
 end
end

This threading of the environment is vital to allow earlier statements to prepare vari-
ables for later ones:

>> statement =
 Sequence.new(
 Assign.new(:x, Add.new(Number.new(1), Number.new(1))),
 Assign.new(:y, Add.new(Variable.new(:x), Number.new(3)))
)
=> «x = 1 + 1; y = x + 3»
>> statement.evaluate({})
=> {:x=>«2», :y=>«5»}

For «while» statements, we need to think through the stages of completely evaluating
a loop:

• Evaluate the condition to get either «true» or «false».

• If the condition evaluates to «true», evaluate the body to get a new environment,
then repeat the loop within that new environment (i.e., evaluate the whole
«while» statement again) and return the resulting environment.

• If the condition evaluates to «false», return the environment unchanged.

This is a recursive explanation of how a «while» statement should behave. As with
sequence statements, it’s important that the updated environment generated by the
loop body is used for the next iteration; otherwise, the condition will never stop being
«true», and the loop will never get a chance to terminate.14

Once we know how big-step «while» semantics should behave, we can implement
While#evaluate:

class While
 def evaluate(environment)
 case condition.evaluate(environment)
 when Boolean.new(true)
 evaluate(body.evaluate(environment))
 when Boolean.new(false)
 environment
 end
 end
end

14. Of course, there’s nothing to prevent SIMPLE programmers from writing a «while» statement whose
condition never becomes «false» anyway, but if that’s what they ask for then that’s what they’re going
to get.

46 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

This is where the looping happens: body.evaluate(environment) evaluates the loop
body to get a new environment, then we pass that environment back into the current
method to kick off the next iteration. This means we might stack up many nested
invocations of While#evaluate until the condition eventually becomes «false» and
the final environment is returned.

As with any recursive code, there’s a risk that the Ruby call stack will
overflow if the nested invocations become too deep. Some Ruby imple-
mentations have experimental support for tail call optimization, a tech-
nique that reduces the risk of overflow by reusing the same stack frame
when possible. In the official Ruby implementation (MRI) we can enable
tail call optimization with:

RubyVM::InstructionSequence.compile_option = {
 tailcall_optimization: true,
 trace_instruction: false
}

To confirm that this works properly, we can try evaluating the same «while» statement
we used to check the small-step semantics:

>> statement =
 While.new(
 LessThan.new(Variable.new(:x), Number.new(5)),
 Assign.new(:x, Multiply.new(Variable.new(:x), Number.new(3)))
)
=> «while (x < 5) { x = x * 3 }»
>> statement.evaluate({ x: Number.new(1) })
=> {:x=>«9»}

This is the same result that the small-step semantics gave, so it looks like While#evalu
ate does the right thing.

Applications

Our earlier implementation of small-step semantics makes only moderate use of the
Ruby call stack: when we call #reduce on a large program, that might cause a handful
of nested #reduce calls as the message travels down the abstract syntax tree until it
reaches the piece of code that is ready to reduce.15 But the virtual machine does the
work of tracking the overall progress of the computation by maintaining the current
program and environment as it repeatedly performs small reductions; in particular, the
depth of the call stack is limited by the depth of the program’s syntax tree, since the

15. There is an alternative style of operational semantics, called reduction semantics, which explicitly separates
these “what do we reduce next?” and “how do we reduce it?” phases by introducing so-called reduction
contexts. These contexts are just patterns that concisely describe the places in a program where reduction
can happen, meaning we only need to write reduction rules that perform real computation, thereby
eliminating some of the boilerplate from the semantic definitions of larger languages.

Operational Semantics | 47

www.it-ebooks.info

http://www.it-ebooks.info/

nested calls are only being used to traverse the tree looking for what to reduce next,
not to perform the reduction itself.

By contrast, this big-step implementation makes much greater use of the stack, relying
entirely on it to remember where we are in the overall computation, to perform smaller
computations as part of performing larger ones, and to keep track of how much eval-
uation is left to do. What looks like a single call to #evaluate actually turns into a series
of recursive calls, each one evaluating a subprogram deeper within the syntax tree.

This difference highlights the purpose of each approach. Small-step semantics assumes
a simple abstract machine that can perform small operations, and therefore includes
explicit detail about how to produce useful intermediate results; big-step semantics
places the burden of assembling the whole computation on the machine or person
executing it, requiring her to keep track of many intermediate subgoals as she turns the
entire program into a final result in a single operation. Depending on what we wish to
do with a language’s operational semantics—perhaps build an efficient implementa-
tion, prove some properties of programs, or devise some optimizing transformations
—one approach or the other might be more appropriate.

The most influential use of big-step semantics for specifying real programming lan-
guages is Chapter 6 of the original definition of the Standard ML programming lan-
guage, which explains all of the runtime behavior of ML in big-step style. Following
this example, OCaml’s core language has a big-step semantics to complement its more
detailed small-step definition.

Big-step operational semantics is also used by the W3C: the XQuery 1.0 and XPath 2.0
specification uses mathematical inference rules to describe how its languages should
be evaluated, and the XQuery and XPath Full Text 3.0 spec includes a big-step seman-
tics written in XQuery.

It probably hasn’t escaped your attention that, by writing down SIMPLE’s small- and big-
step semantics in Ruby instead of mathematics, we have implemented two different
Ruby interpreters for it. And this is what operational semantics really is: explaining the
meaning of a language by describing an interpreter. Normally, that description would
be written in simple mathematical notation, which makes everything very clear and
unambiguous as long as we can understand it, but comes at the price of being quite
abstract and distanced from the reality of computers. Using Ruby has the disadvantage
of introducing the extra complexity of a real-world programming language (classes,
objects, method calls…) into what’s supposed to be a simplifying explanation, but if
we already understand Ruby, then it’s probably easier to see what’s going on, and being
able to execute the description as an interpreter is a nice bonus.

Denotational Semantics
So far, we’ve looked at the meaning of programming languages from an operational
perspective, explaining what a program means by showing what will happen when it’s

48 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.lfcs.inf.ed.ac.uk/reports/87/ECS-LFCS-87-36/
http://www.lfcs.inf.ed.ac.uk/reports/87/ECS-LFCS-87-36/
http://caml.inria.fr/pub/docs/u3-ocaml/ocaml-ml.html#htoc7
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xpath-full-text-30/
http://www.it-ebooks.info/

executed. Another approach, denotational semantics, is concerned instead with trans-
lating programs from their native language into some other representation.

This style of semantics doesn’t directly address the question of executing a program at
all. Instead, it concerns itself with leveraging the established meaning of another lan-
guage—one that is lower-level, more formal, or at least better understood than the
language being described—in order to explain a new one.

Denotational semantics is necessarily a more abstract approach than operational, be-
cause it just replaces one language with another instead of turning a language into real
behavior. For example, if we needed to explain the meaning of the English verb “walk”
to a person with whom we had no spoken language in common, we could communicate
it operationally by actually walking back and forth. On the other hand, if we needed
to explain “walk” to a French speaker, we could do so denotationally just by telling
them the French verb “marcher”—an undeniably higher level form of communication,
no messy exercise required.

Unsurprisingly, denotational semantics is conventionally used to turn programs into
mathematical objects so they can be studied and manipulated with mathematical tools,
but we can get some of the flavor of this approach by looking at how to denote
SIMPLE programs in some other way.

Let’s try giving a denotational semantics for SIMPLE by translating it into Ruby.16 In
practice, this means turning an abstract syntax tree into a string of Ruby code that
somehow captures the intended meaning of that syntax.

But what is the “intended meaning”? What should Ruby denotations of our expressions
and statements look like? We’ve already seen operationally that an expression takes an
environment and turns it into a value; one way to express this in Ruby is with a proc
that takes some argument representing an environment argument and returns some
Ruby object representing a value. For simple constant expressions like «5» and
«false», we won’t be using the environment at all, so we only need to worry about how
their eventual result can be represented as a Ruby object. Fortunately, Ruby already
has objects specifically designed to represent these values: we can use the Ruby value
5 as the result of the SIMPLE expression «5», and likewise, the Ruby value false as the
result of «false».

Expressions
We can use this idea to write implementations of a #to_ruby method for the Number and
Boolean classes:

class Number
 def to_ruby

16. This means we’ll be writing Ruby code that generates Ruby code, but the choice of the same language as
both the denotation language and the implementation metalanguage is only to keep things simple. We
could just as easily write Ruby that generates strings containing JavaScript, for example.

Denotational Semantics | 49

www.it-ebooks.info

http://www.it-ebooks.info/

 "-> e { #{value.inspect} }"
 end
end

class Boolean
 def to_ruby
 "-> e { #{value.inspect} }"
 end
end

Here is how they behave on the console:

>> Number.new(5).to_ruby
=> "-> e { 5 }"
>> Boolean.new(false).to_ruby
=> "-> e { false }"

Each of these methods produces a string that happens to contain Ruby code, and be-
cause Ruby is a language whose meaning we already understand, we can see that both
of these strings are programs that build procs. Each proc takes an environment argu-
ment called e, completely ignores it, and returns a Ruby value.

Because these denotations are strings of Ruby source code, we can check their behavior
in IRB by using Kernel#eval to turn them into real, callable Proc objects:17

>> proc = eval(Number.new(5).to_ruby)
=> #<Proc (lambda)>
>> proc.call({})
=> 5
>> proc = eval(Boolean.new(false).to_ruby)
=> #<Proc (lambda)>
>> proc.call({})
=> false

At this stage, it’s tempting to avoid procs entirely and use simpler im-
plementations of #to_ruby that just turn Number.new(5) into the string
'5' instead of '-> e { 5 }' and so on, but part of the point of building
a denotational semantics is to capture the essence of constructs from
the source language, and in this case, we’re capturing the idea that ex-
pressions in general require an environment, even though these specific
expressions don’t make use of it.

To denote expressions that do use the environment, we need to decide how environ-
ments are going to be represented in Ruby. We’ve already seen environments in our
operational semantics, and since they were implemented in Ruby, we can just reuse
our earlier idea of representing an environment as a hash. The details will need to
change, though, so beware the subtle difference: in our operational semantics, the en-

17. We can only do this because Ruby is doing double duty as both the implementation and denotation
languages. If our denotations were JavaScript source code, we’d have to try them out in a JavaScript
console.

50 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

vironment lived inside the virtual machine and associated variable names with SIMPLE

abstract syntax trees like Number.new(5), but in our denotational semantics, the envi-
ronment exists in the language we’re translating our programs into, so it needs to make
sense in that world instead of the “outside world” of a virtual machine.

In particular, this means that our denotational environments should associate variable
names with native Ruby values like 5 rather than with objects representing SIMPLE syn-
tax. We can think of an operational environment like { x: Number.new(5) } as having
a denotation of '{ x: 5 }' in the language we’re translating into, and we just need to
keep our heads straight because both the implementation metalanguage and the de-
notation language happen to be Ruby.

Now we know that the environment will be a hash, we can implement Vari
able#to_ruby:

class Variable
 def to_ruby
 "-> e { e[#{name.inspect}] }"
 end
end

This translates a variable expression into the source code of a Ruby proc that looks up
the appropriate value in the environment hash:

>> expression = Variable.new(:x)
=> «x»
>> expression.to_ruby
=> "-> e { e[:x] }"
>> proc = eval(expression.to_ruby)
=> #<Proc (lambda)>
>> proc.call({ x: 7 })
=> 7

An important aspect of denotational semantics is that it’s compositional: the denotation
of a program is constructed from the denotations of its parts. We can see this compo-
sitionality in practice when we move onto denoting larger expressions like Add, Multi
ply, and LessThan:

class Add
 def to_ruby
 "-> e { (#{left.to_ruby}).call(e) + (#{right.to_ruby}).call(e) }"
 end
end

class Multiply
 def to_ruby
 "-> e { (#{left.to_ruby}).call(e) * (#{right.to_ruby}).call(e) }"
 end
end

class LessThan
 def to_ruby
 "-> e { (#{left.to_ruby}).call(e) < (#{right.to_ruby}).call(e) }"

Denotational Semantics | 51

www.it-ebooks.info

http://www.it-ebooks.info/

 end
end

Here we’re using string concatenation to compose the denotation of an expression out
of the denotations of its subexpressions. We know that each subexpression will be
denoted by a proc’s Ruby source, so we can use them as part of a larger piece of Ruby
source that calls those procs with the supplied environment and does some computa-
tion with their return values. Here’s what the resulting denotations look like:

>> Add.new(Variable.new(:x), Number.new(1)).to_ruby
=> "-> e { (-> e { e[:x] }).call(e) + (-> e { 1 }).call(e) }"
>> LessThan.new(Add.new(Variable.new(:x), Number.new(1)), Number.new(3)).to_ruby
=> "-> e { (-> e { (-> e { e[:x] }).call(e) + (-> e { 1 }).call(e) }).call(e) < ↵
(-> e { 3 }).call(e) }"

These denotations are now complicated enough that it’s difficult to see whether they
do the right thing. Let’s try them out to make sure:

>> environment = { x: 3 }
=> {:x=>3}
>> proc = eval(Add.new(Variable.new(:x), Number.new(1)).to_ruby)
=> #<Proc (lambda)>
>> proc.call(environment)
=> 4
>> proc = eval(
 LessThan.new(Add.new(Variable.new(:x), Number.new(1)), Number.new(3)).to_ruby
)
=> #<Proc (lambda)>
>> proc.call(environment)
=> false

Statements
We can specify the denotational semantics of statements in a similar way, although
remember from the operational semantics that evaluating a statement produces a new
environment rather than a value. This means that Assign#to_ruby needs to produce
code for a proc whose result is an updated environment hash:

class Assign
 def to_ruby
 "-> e { e.merge({ #{name.inspect} => (#{expression.to_ruby}).call(e) }) }"
 end
end

Again, we can check this on the console:

>> statement = Assign.new(:y, Add.new(Variable.new(:x), Number.new(1)))
=> «y = x + 1»
>> statement.to_ruby
=> "-> e { e.merge({ :y => (-> e { (-> e { e[:x] }).call(e) + (-> e { 1 }).call(e) })↵
.call(e) }) }"
>> proc = eval(statement.to_ruby)
=> #<Proc (lambda)>

52 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

>> proc.call({ x: 3 })
=> {:x=>3, :y=>4}

As always, the semantics of DoNothing is very simple:

class DoNothing
 def to_ruby
 '-> e { e }'
 end
end

For conditional statements, we can translate SIMPLE’s «if (…) { … } else { … }» into
a Ruby if … then … else … end, making sure that the environment gets to all the places
where it’s needed:

class If
 def to_ruby
 "-> e { if (#{condition.to_ruby}).call(e)" +
 " then (#{consequence.to_ruby}).call(e)" +
 " else (#{alternative.to_ruby}).call(e)" +
 " end }"
 end
end

As in big-step operational semantics, we need to be careful about specifying the se-
quence statement: the result of evaluating the first statement is used as the environment
for evaluating the second.

class Sequence
 def to_ruby
 "-> e { (#{second.to_ruby}).call((#{first.to_ruby}).call(e)) }"
 end
end

And lastly, as with conditionals, we can translate «while» statements into procs that
use Ruby while to repeatedly execute the body before returning the final environment:

class While
 def to_ruby
 "-> e {" +
 " while (#{condition.to_ruby}).call(e); e = (#{body.to_ruby}).call(e); end;" +
 " e" +
 " }"
 end
end

Even a simple «while» can have quite a verbose denotation, so it’s worth getting the
Ruby interpreter to check that its meaning is correct:

>> statement =
 While.new(
 LessThan.new(Variable.new(:x), Number.new(5)),
 Assign.new(:x, Multiply.new(Variable.new(:x), Number.new(3)))
)
=> «while (x < 5) { x = x * 3 }»
>> statement.to_ruby
=> "-> e { while (-> e { (-> e { e[:x] }).call(e) < (-> e { 5 }).call(e) }).call(e); ↵

Denotational Semantics | 53

www.it-ebooks.info

http://www.it-ebooks.info/

e = (-> e { e.merge({ :x => (-> e { (-> e { e[:x] }).call(e) * (-> e { 3 }).call(e) ↵
}).call(e) }) }).call(e); end; e }"
>> proc = eval(statement.to_ruby)
=> #<Proc (lambda)>
>> proc.call({ x: 1 })
=> {:x=>9}

Comparing Semantic Styles
«while» is a good example of the difference between small-step, big-step, and denota-
tional semantics.

The small-step operational semantics of «while» is written as a reduction rule for an
abstract machine. The overall looping behavior isn’t part of the rule’s action—reduc-
tion just turns a «while» statement into an «if» statement—but it emerges as a conse-
quence of the future reductions performed by the machine. To understand what
«while» does, we need to look at all of the small-step rules and work out how they
interact over the course of a SIMPLE program’s execution.

«while»’s big-step operational semantics is written as an evaluation rule that shows
how to compute the final environment directly. The rule contains a recursive call to
itself, so there’s an explicit indication that «while» will cause a loop during evaluation,
but it’s not quite the kind of loop that a SIMPLE programmer would recognize. Big-step
rules are written in a recursive style, describing the complete evaluation of an expression
or statement in terms of the evaluation of other pieces of syntax, so this rule tells us
that the result of evaluating a «while» statement may depend upon the result of evalu-
ating the same statement in a different environment, but it requires a leap of intuition
to connect this idea with the iterative behavior that «while» is supposed to exhibit.
Fortunately the leap isn’t too large: a bit of mathematical reasoning can show that the
two kinds of loop are equivalent in principle, and when the metalanguage supports tail
call optimization, they’re also equivalent in practice.

The denotational semantics of «while» shows how to rewrite it in Ruby, namely by
using Ruby’s while keyword. This is a much more direct translation: Ruby has native
support for iterative loops, and the denotation rule shows that «while» can be imple-
mented with that feature. There’s no leap required to understand how the two kinds
of loop relate to each other, so if we understand how Ruby while loops work, we un-
derstand SIMPLE «while» loops too. Of course, this means we’ve just converted the
problem of understanding SIMPLE into the problem of understanding the denotation
language, which is a serious disadvantage when that language is as large and ill-specified
as Ruby, but it becomes an advantage when we have a small mathematical language
for writing denotations.

Applications
Having done all this work, what does this denotational semantics achieve? Its main
purpose is to show how to translate SIMPLE into Ruby, using the latter as a tool to explain
what various language constructs mean. This happens to give us a way to execute

54 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

SIMPLE programs—because we’ve written the rules of the denotational semantics in
executable Ruby, and because the rules’ output is itself executable Ruby—but that’s
incidental, since we could have given the rules in plain English and used some mathe-
matical language for the denotations. The important part is that we’ve taken an arbi-
trary language of our own devising and converted it into a language that someone or
something else can understand.

To give this translation some explanatory power, it’s helpful to bring parts of the lan-
guage’s meaning to the surface instead of allowing them to remain implicit. For exam-
ple, this semantics makes the environment explicit by representing it as a tangible Ruby
object—a hash that’s passed in and out of procs—instead of denoting variables as real
Ruby variables and relying on Ruby’s own subtle scoping rules to specify how variable
access works. In this respect the semantics is doing more than just offloading all the
explanatory effort onto Ruby; it uses Ruby as a simple foundation, but does some extra
work on top to show exactly how environments are used and changed by different
program constructs.

We saw earlier that operational semantics is about explaining a language’s meaning by
designing an interpreter for it. By contrast, the language-to-language translation of de-
notational semantics is like a compiler: in this case, our implementations of #to_ruby
effectively compile SIMPLE into Ruby. None of these styles of semantics necessarily says
anything about how to efficiently implement an interpreter or compiler for a language,
but they do provide an official baseline against which the correctness of any efficient
implementation can be judged.

These denotational definitions also show up in the wild. Older versions of the Scheme
standard use denotational semantics to specify the core language, unlike the current
standard’s small-step operational semantics, and the development of the XSLT docu-
ment-transformation language was guided by Philip Wadler’s denotational definitions
of XSLT patterns and XPath expressions.

See “Semantics” on page 83 for a practical example of using denotational semantics
to specify the meaning of regular expressions.

Formal Semantics in Practice
This chapter has shown several different ways of approaching the problem of giving
computer programs a meaning. In each case, we’ve avoided the mathematical details
and tried to get a flavor of their intent by using Ruby, but formal semantics is usually
done with mathematical tools.

Formality
Our tour of formal semantics hasn’t been especially formal. We haven’t paid any serious
attention to mathematical notation, and using Ruby as a metalanguage has meant we’ve

Formal Semantics in Practice | 55

www.it-ebooks.info

http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-10.html#%25_sec_7.2
http://homepages.inf.ed.ac.uk/wadler/topics/xml.html#xsl-semantics
http://homepages.inf.ed.ac.uk/wadler/topics/xml.html#xpath-semantics
http://www.it-ebooks.info/

focused more on different ways of executing programs than on ways of understanding
them. Proper denotational semantics is concerned with getting to the heart of programs’
meanings by turning them into well-defined mathematical objects, with none of the
evasiveness of representing a SIMPLE «while» loop with a Ruby while loop.

The branch of mathematics called domain theory was developed specif-
ically to provide definitions and objects that are useful for denotational
semantics, allowing a model of computation based on fixed points of
monotonic functions on partially ordered sets. Programs can be under-
stood by “compiling” them into mathematical functions, and the tech-
niques of domain theory can be used to prove interesting properties of
these functions.

On the other hand, while we only vaguely sketched denotational semantics in Ruby,
our approach to operational semantics is closer in spirit to its formal presentation: our
definitions of #reduce and #evaluate methods are really just Ruby translations of math-
ematical inference rules.

Finding Meaning
An important application of formal semantics is to give an unambiguous specification
of the meaning of a programming language, rather than relying on more informal ap-
proaches like natural-language specification documents and “specification by imple-
mentation.” A formal specification has other uses too, such as proving properties of
the language in general and of specific programs in particular, proving equivalences
between programs in the language, and investigating ways of safely transforming pro-
grams to make them more efficient without changing their behavior.

For example, since an operational semantics corresponds quite closely to the imple-
mentation of an interpreter, computer scientists can treat a suitable interpreter as an
operational semantics for a language, and then prove its correctness with respect to a
denotational semantics for that language—this means proving that there is a sensible
connection between the meanings given by the interpreter and those given by the de-
notational semantics.

Denotational semantics has the advantage of being more abstract than operational se-
mantics, by ignoring the detail of how a program executes and concentrating instead
on how to convert it into a different representation. For example, this makes it possible
to compare two programs written in different languages, if a denotational semantics
exists to translate both languages into some shared representation.

This degree of abstraction can make denotational semantics seem circuitous. If the
problem is how to explain the meaning of a programming language, how does trans-
lating one language into another get us any closer to a solution? A denotation is only
as good as its meaning; in particular, a denotational semantics only gets us closer to

56 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://en.wikipedia.org/wiki/Fixed_point_(mathematics)
http://en.wikipedia.org/wiki/Monotonic_function
http://en.wikipedia.org/wiki/Partially_ordered_set
http://www.it-ebooks.info/

being able to actually execute a program if the denotation language has some opera-
tional meaning, a semantics of its own that shows how it may be executed instead of
how to translate it into yet another language.

Formal denotational semantics uses abstract mathematical objects, usually functions,
to denote programming language constructs like expressions and statements, and be-
cause mathematical convention dictates how to do things like evaluate functions, this
gives a direct way of thinking about the denotation in an operational sense. We’ve taken
the less formal approach of thinking of a denotational semantics as a compiler from
one language into another, and in reality, this is how most programming languages
ultimately get executed: a Java program will get compiled into bytecode by javac, the
bytecode will get just-in-time compiled into x86 instructions by the Java virtual ma-
chine, then a CPU will decode each x86 instruction into RISC-like microinstructions
for execution on a core…where does it end? Is it compilers, or virtual machines, all the
way down?

Of course programs do eventually execute, because the tower of semantics finally bot-
toms out at an actual machine: electrons in semiconductors, obeying the laws of phys-
ics.18 A computer is a device for maintaining this precarious structure, many complex
layers of interpretation balanced on top of one another, allowing human-scale ideas
like multitouch gestures and while loops to be gradually translated down into the
physical universe of silicon and electricity.

Alternatives
The semantic styles seen in this chapter go by many different names. Small-step se-
mantics is also known as structural operational semantics and transition semantics; big-
step semantics is more often called natural semantics or relational semantics; and de-
notational semantics is also called fixed-point semantics or mathematical semantics.

Other styles of formal semantics are available. One alternative is axiomatic semantics,
which describes the meaning of a statement by making assertions about the state of the
abstract machine before and after that statement executes: if one assertion (the pre-
condition) is initially true before the statement is executed, then the other assertion (the
postcondition) will be true afterward. Axiomatic semantics is useful for verifying the
correctness of programs: as statements are plugged together to make larger programs,
their corresponding assertions can be plugged together to make larger assertions, with
the goal of showing that an overall assertion about a program matches up with its
intended specification.

Although the details are different, axiomatic semantics is the style that best character-
izes the RubySpec project, an “executable specification for the Ruby programming
language” that uses RSpec-style assertions to describe the behavior of Ruby’s built-in

18. Or, in the case of a mechanical computer like the Analytical Engine designed by Charles Babbage in 1837,
cogs and paper obeying the laws of physics.

Formal Semantics in Practice | 57

www.it-ebooks.info

http://www.rubyspec.org/
http://www.it-ebooks.info/

language constructs, as well as its core and standard libraries. For example, here’s a
fragment of RubySpec’s description of the Array#<< method:

describe "Array#<<" do
 it "correctly resizes the Array" do
 a = []
 a.size.should == 0
 a << :foo
 a.size.should == 1
 a << :bar << :baz
 a.size.should == 3

 a = [1, 2, 3]
 a.shift
 a.shift
 a.shift
 a << :foo
 a.should == [:foo]
 end
end

Implementing Parsers
In this chapter, we’ve been building the abstract syntax trees of SIMPLE programs man-
ually—writing longhand Ruby expressions like Assign.new(:x, Add.new(Vari
able.new(:x), Number.new(1)))—rather than beginning with raw SIMPLE source code
like 'x = x + 1' and using a parser to automatically turn it into a syntax tree.

Implementing a SIMPLE parser entirely from scratch would involve a lot of detail and
take us on a long diversion from our discussion of formal semantics. Hacking on toy
programming languages is fun, though, and thanks to the existence of parsing tools
and libraries it’s not especially difficult to construct a parser by relying on other people’s
work, so here’s a brief outline of how to do it.

One of the best parsing tools available for Ruby is Treetop, a domain-specific language
for describing syntax in a way that allows a parser to be automatically generated. A
Treetop description of a language’s syntax is written as a parsing expression grammar
(PEG), a collection of simple, regular-expression-like rules that are easy to write and to
understand. Best of all, these rules can be annotated with method definitions so that
the Ruby objects generated by the parsing process can be given their own behavior.
This ability to define both a syntactic structure and a collection of Ruby code that
operates on that structure makes Treetop ideal for sketching out the syntax of a lan-
guage and giving it an executable semantics.

To give us a taste of how this works, here’s a cut-down version of the Treetop grammar
for SIMPLE, containing only the rules needed to parse the string 'while (x < 5) { x =
x * 3 }':

grammar Simple
 rule statement

58 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://treetop.rubyforge.org/
http://www.it-ebooks.info/

 while / assign
 end

 rule while
 'while (' condition:expression ') { ' body:statement ' }' {
 def to_ast
 While.new(condition.to_ast, body.to_ast)
 end
 }
 end

 rule assign
 name:[a-z]+ ' = ' expression {
 def to_ast
 Assign.new(name.text_value.to_sym, expression.to_ast)
 end
 }
 end

 rule expression
 less_than
 end

 rule less_than
 left:multiply ' < ' right:less_than {
 def to_ast
 LessThan.new(left.to_ast, right.to_ast)
 end
 }
 /
 multiply
 end

 rule multiply
 left:term ' * ' right:multiply {
 def to_ast
 Multiply.new(left.to_ast, right.to_ast)
 end
 }
 /
 term
 end

 rule term
 number / variable
 end

 rule number
 [0-9]+ {
 def to_ast
 Number.new(text_value.to_i)
 end
 }
 end

Implementing Parsers | 59

www.it-ebooks.info

http://www.it-ebooks.info/

 rule variable
 [a-z]+ {
 def to_ast
 Variable.new(text_value.to_sym)
 end
 }
 end
end

This language looks a little like Ruby, but the similarity is only superficial; grammars
are written in the special Treetop language. The rule keyword introduces a new rule
for parsing a particular kind of syntax, and the expressions inside each rule describe
the structure of the strings it will recognize. Rules can recursively call other rules—the
while rule calls the expression and statement rules, for instance—and parsing begins
at the first rule, which is statement in this grammar.

The order in which the expression-syntax rules call each other reflects the precedence
of SIMPLE’s operators. The expression rule calls less_than, which then immediately calls
multiply to give it a chance to match the * operator somewhere in the string before
less_than gets a chance to match the lower-precedence < operator. This makes sure
that '1 * 2 < 3' is parsed as «(1 * 2) < 3» and not «1 * (2 < 3)».

To keep things simple, this grammar makes no attempt to constrain
what kinds of expression can appear inside other expressions, which
means the parser will accept some programs that are obviously wrong.

For example, we have two rules for binary expressions—less_than and
multiply—but the only reason for having separate rules is to enforce
operator precedence, so each rule only requires that a higher precedence
rule matches its left operand and a same-or-higher-precedence one
matches its right. This creates the situation where a string like '1 < 2 <
3' will be parsed successfully, even though the semantics of SIMPLE won’t
be able to give the resulting expression a meaning.

Some of these problems can be resolved by tweaking the grammar, but
there will always be other incorrect cases that the parser can’t spot. We’ll
separate the two concerns by keeping the parser as liberal as possible
and using a different technique to detect invalid programs in Chapter 9.

Most of the rules in the grammar are annotated with Ruby code inside curly brackets.
In each case, this code defines a method called #to_ast, which will be available on the
corresponding syntax objects built by Treetop when it parses a SIMPLE program.

If we save this grammar into a file called simple.treetop, we can load it with Treetop to
generate a SimpleParser class. This parser allows us to turn a string of SIMPLE source
code into a representation built out of Treetop’s SyntaxNode objects:

>> require 'treetop'
=> true
>> Treetop.load('simple')
=> SimpleParser

60 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

>> parse_tree = SimpleParser.new.parse('while (x < 5) { x = x * 3 }')
=> SyntaxNode+While1+While0 offset=0, "…5) { x = x * 3 }" (to_ast,condition,body):
 SyntaxNode offset=0, "while ("
 SyntaxNode+LessThan1+LessThan0 offset=7, "x < 5" (to_ast,left,right):
 SyntaxNode+Variable0 offset=7, "x" (to_ast):
 SyntaxNode offset=7, "x"
 SyntaxNode offset=8, " < "
 SyntaxNode+Number0 offset=11, "5" (to_ast):
 SyntaxNode offset=11, "5"
 SyntaxNode offset=12, ") { "
 SyntaxNode+Assign1+Assign0 offset=16, "x = x * 3" (to_ast,name,expression):
 SyntaxNode offset=16, "x":
 SyntaxNode offset=16, "x"
 SyntaxNode offset=17, " = "
 SyntaxNode+Multiply1+Multiply0 offset=20, "x * 3" (to_ast,left,right):
 SyntaxNode+Variable0 offset=20, "x" (to_ast):
 SyntaxNode offset=20, "x"
 SyntaxNode offset=21, " * "
 SyntaxNode+Number0 offset=24, "3" (to_ast):
 SyntaxNode offset=24, "3"
 SyntaxNode offset=25, " }"

This SyntaxNode structure is a concrete syntax tree: it’s designed specifically for manip-
ulation by the Treetop parser and contains a lot of extraneous information about how
its nodes are related to the raw source code that produced them. Here’s what the
Treetop documentation has to say about it:

Please don’t try to walk down the syntax tree yourself, and please don’t use the tree as
your own convenient data structure. It contains many more nodes than your application
needs, often even more than one for every character of input.

Instead, add methods to the root rule that return the information you require in a sensible
form. Each rule can call its sub-rules, and this method of walking the syntax tree is much
preferable to attempting to walk it from the outside.

And that’s what we’ve done. Rather than manipulate this messy tree directly, we’ve
used annotations in the grammar to define a #to_ast method on each of its nodes. If
we call that method on the root node, it’ll build an abstract syntax tree made from
SIMPLE syntax objects:

>> statement = parse_tree.to_ast
=> «while (x < 5) { x = x * 3 }»

So we’ve automatically converted source code to an abstract syntax tree, and now we
can use that tree to explore the meaning of the program in the usual ways:

>> statement.evaluate({ x: Number.new(1) })
=> {:x=>«9»}
>> statement.to_ruby
=> "-> e { while (-> e { (-> e { e[:x] }).call(e) < (-> e { 5 }).call(e) }).call(e); ↵
e = (-> e { e.merge({ :x => (-> e { (-> e { e[:x] }).call(e) * (-> e { 3 }).call(e) ↵
}).call(e) }) }).call(e); end; e }"

Implementing Parsers | 61

www.it-ebooks.info

http://treetop.rubyforge.org/using_in_ruby.html
http://www.it-ebooks.info/

Another drawback of this parser, and of Treetop in general, is that it
generates a right-associative concrete syntax tree. This means that the
string '1 * 2 * 3 * 4' is parsed as if it had been written '1 * (2 * (3
* 4))':

>> expression = SimpleParser.new.parse('1 * 2 * 3 * 4', root: :expression).to_ast
=> «1 * 2 * 3 * 4»
>> expression.left
=> «1»
>> expression.right
=> «2 * 3 * 4»

But multiplication is conventionally left-associative: when we write '1
* 2 * 3 * 4' we actually mean '((1 * 2) * 3) * 4', with the numbers
grouped together starting at the lefthand end of the expression, not the
right. That doesn’t matter much for multiplication—both ways produce
the same result when evaluated—but for operations like subtraction and
division, it creates a problem, because «((1 - 2) - 3) - 4» does not
evaluate to the same value as «1 - (2 - (3 - 4))».

To fix this, we’d have to make the rules and #to_ast implementations
more complicated. See “Parsing” on page 204 for a Treetop grammar
that builds a left-associative AST.

It’s convenient to be able to parse SIMPLE programs like this, but Treetop is doing all
the hard work for us, so we haven’t learned much about how a parser actually works.
In “Parsing with Pushdown Automata” on page 125, we’ll see how to implement a
parser directly.

62 | Chapter 2: The Meaning of Programs

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

The Simplest Computers

In the space of a few short years, we’ve become surrounded by computers. They used
to be safely hidden away in military research centers and university laboratories, but
now they’re everywhere: on our desks, in our pockets, under the hoods of our cars,
implanted inside our bodies. As programmers, we work with sophisticated computing
devices every day, but how well do we understand the way they work?

The power of modern computers comes with a lot of complexity. It’s difficult to un-
derstand every detail of a computer’s many subsystems, and more difficult still to un-
derstand how those subsystems interact to create the system as a whole. This com-
plexity makes it impractical to reason directly about the capabilities and behavior of
real computers, so it’s useful to have simplified models of computers that share inter-
esting features with real machines but that can still be understood in their entirety.

In this chapter, we’ll strip back the idea of a computing machine to its barest essentials,
see what it can be used for, and explore the limits of what such a simple computer can
do.

Deterministic Finite Automata
Real computers typically have large amounts of volatile memory (RAM) and nonvolatile
storage (hard drive or SSD), many input/output devices, and several processor cores
capable of executing multiple instructions simultaneously. A finite state machine, also
known as a finite automaton, is a drastically simplified model of a computer that throws
out all of these features in exchange for being easy to understand, easy to reason about,
and easy to implement in hardware or software.

States, Rules, and Input
A finite automaton has no permanent storage and virtually no RAM. It’s a little machine
with a handful of possible states and the ability to keep track of which one of those
states it’s currently in—think of it as a computer with enough RAM to store a single

63

www.it-ebooks.info

http://www.it-ebooks.info/

value. Similarly, finite automata don’t have a keyboard, mouse, or network interface
for receiving input, just a single external stream of input characters that they can read
one at a time.

Instead of a general-purpose CPU for executing arbitrary programs, each finite autom-
aton has a hardcoded collection of rules that determine how it should move from one
state to another in response to input. The automaton starts in one particular state and
reads individual characters from its input stream, following a rule each time it reads a
character.

Here’s a way of visualizing the structure of one particular finite automaton:

The two circles represent the automaton’s two states, 1 and 2, and the arrow coming
from nowhere shows that the automaton always starts in state 1, its start state. The
arrows between states represent the rules of the machine, which are:

• When in state 1 and the character a is read, move into state 2.

• When in state 2 and the character a is read, move into state 1.

This is enough information for us to investigate how the machine processes a stream
of inputs:

• The machine starts in state 1.

• The machine only has rules for reading the character a from its input stream, so
that’s the only thing that can happen. When it reads an a, it moves from state 1
into state 2.

• When the machine reads another a, it moves back into state 1.

Once it gets back to state 1, it’ll start repeating itself, so that’s the extent of this par-
ticular machine’s behavior. Information about the current state is assumed to be in-
ternal to the automaton—it operates as a “black box” that doesn’t reveal its inner
workings—so the boringness of this behavior is compounded by the uselessness of it
not causing any kind of observable output. Nobody in the outside world can see that
anything is happening while the machine is bouncing between states 1 and 2, so in this
case, we might as well have a single state and not bother with any internal structure at
all.

Output
To address this problem, finite automata also have a rudimentary way of producing
output. This is nothing as sophisticated as the output capabilities of real computers;
we just mark some of the states as being special, and say that the machine’s single-bit

64 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

output is the information about whether it’s currently in a special state or not. For this
machine, let’s make state 2 a special state and show it on the diagram with a double
circle:

These special states are usually called accept states, which suggests the idea of a machine
accepting or rejecting certain sequences of inputs. If this automaton starts in state 1 and
reads a single a, it will be left in state 2, which is an accept state, so we can say that the
machine accepts the string 'a'. On the other hand, if it first reads an a and then another
a, it’ll end up back in state 1, which isn’t an accept state, so the machine rejects the
string 'aa'. In fact, it’s easy to see that this machine accepts any string of as whose
length is an odd number: 'a', 'aaa', 'aaaaa' are all accepted, while 'aa', 'aaaa', and
'' (the empty string) are rejected.

Now we have something slightly more useful: a machine that can read a sequence of
characters and provide a yes/no output to indicate whether that sequence has been
accepted. It’s reasonable to say that this DFA is performing a computation, because we
can ask it a question—“is the length of this string an odd number?”—and get a mean-
ingful reply back. This is arguably enough to call it a simple computer, and we can see
how its features stack up against a real computer:

 Real computer Finite automaton

Permanent storage Hard drive or SSD None

Temporary storage RAM Current state

Input Keyboard, mouse, network, etc. Character stream

Output Display device, speakers, network, etc. Whether current state is an accept state (yes/no)

Processor CPU core(s) that can execute any program Hardcoded rules for changing state in response to input

Of course, this specific automaton doesn’t do anything sophisticated or useful, but we
can build more complex automata that have more states and can read more than one
character. Here’s one with three states and the ability to read the inputs a and b:

Deterministic Finite Automata | 65

www.it-ebooks.info

http://www.it-ebooks.info/

This machine accepts strings like 'ab', 'baba', and 'aaaab', and rejects strings like 'a',
'baa', and 'bbbba'. A bit of experimentation shows that it will only accept strings that
contain the sequence 'ab', which still isn’t hugely useful but at least demonstrates a
degree of subtlety. We’ll see more practical applications later in the chapter.

Determinism
Significantly, this kind of automaton is deterministic: whatever state it’s currently in,
and whichever character it reads, it’s always absolutely certain which state it will end
up in. This certainty is guaranteed as long as we respect two constraints:

• No contradictions: there are no states where the machine’s next move is ambiguous
because of conflicting rules. (This implies that no state may have more than one
rule for the same input character.)

• No omissions: there are no states where the machine’s next move is unknown
because of a missing rule. (This implies that every state must have at least one rule
for each possible input character.)

Taken together, these constraints mean that the machine must have exactly one rule
for each combination of state and input. The technical name for a machine that obeys
the determinism constraints is a deterministic finite automaton (DFA).

Simulation
Deterministic finite automata are intended as abstract models of computation. We’ve
drawn diagrams of a couple of example machines and thought about their behavior,
but these machines don’t physically exist, so we can’t literally feed them input and see
how they behave. Fortunately DFAs are so simple that we can easily build a simula-
tion of one in Ruby and interact with it directly.

Let’s begin building that simulation by implementing a collection of rules, which we’ll
call a rulebook:

class FARule < Struct.new(:state, :character, :next_state)
 def applies_to?(state, character)
 self.state == state && self.character == character
 end

 def follow
 next_state
 end

 def inspect
 "#<FARule #{state.inspect} --#{character}--> #{next_state.inspect}>"
 end
end

class DFARulebook < Struct.new(:rules)
 def next_state(state, character)

66 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

 rule_for(state, character).follow
 end

 def rule_for(state, character)
 rules.detect { |rule| rule.applies_to?(state, character) }
 end
end

This code establishes a simple API for rules: each rule has an #applies_to? method,
which returns true or false to indicate whether that rule applies in a particular situa-
tion, and a #follow method that returns information about how the machine should
change when a rule is followed.1 DFARulebook#next_state uses these methods to locate
the correct rule and discover what the next state of the DFA should be.

By using Enumerable#detect, the implementation of DFARule
book#next_state assumes that there will always be exactly one rule that
applies to the given state and character. If there’s more than one appli-
cable rule, only the first will have any effect and the others will be ig-
nored; if there are none, the #detect call will return nil and the simu-
lation will crash when it tries to call nil.follow.

This is why the class is called DFARulebook rather than just FARulebook:
it only works properly if the determinism constraints are respected.

A rulebook lets us wrap up many rules into a single object and ask it questions about
which state comes next:

>> rulebook = DFARulebook.new([
 FARule.new(1, 'a', 2), FARule.new(1, 'b', 1),
 FARule.new(2, 'a', 2), FARule.new(2, 'b', 3),
 FARule.new(3, 'a', 3), FARule.new(3, 'b', 3)
])
=> #<struct DFARulebook …>
>> rulebook.next_state(1, 'a')
=> 2
>> rulebook.next_state(1, 'b')
=> 1
>> rulebook.next_state(2, 'b')
=> 3

1. This design is general enough to accommodate different kinds of machines and rules, so we’ll be able to
reuse it later in the book when things get more complicated.

Deterministic Finite Automata | 67

www.it-ebooks.info

http://www.it-ebooks.info/

We had a choice here about how to represent the states of our autom-
aton as Ruby values. All that matters is the ability to tell the states apart:
our implementation of DFARulebook#next_state needs to be able to com-
pare two states to decide whether they’re the same, but otherwise, it
doesn’t care whether those objects are numbers, symbols, strings,
hashes, or faceless instances of the Object class.

In this case, it’s clearest to use plain old Ruby numbers—they match up
nicely with the numbered states on the diagrams—so we’ll do that for
now.

Once we have a rulebook, we can use it to build a DFA object that keeps track of its
current state and can report whether it’s currently in an accept state or not:

class DFA < Struct.new(:current_state, :accept_states, :rulebook)
 def accepting?
 accept_states.include?(current_state)
 end
end

>> DFA.new(1, [1, 3], rulebook).accepting?
=> true
>> DFA.new(1, [3], rulebook).accepting?
=> false

We can now write a method to read a character of input, consult the rulebook, and
change state accordingly:

class DFA
 def read_character(character)
 self.current_state = rulebook.next_state(current_state, character)
 end
end

This lets us feed characters to the DFA and watch its output change:

>> dfa = DFA.new(1, [3], rulebook); dfa.accepting?
=> false
>> dfa.read_character('b'); dfa.accepting?
=> false
>> 3.times do dfa.read_character('a') end; dfa.accepting?
=> false
>> dfa.read_character('b'); dfa.accepting?
=> true

Feeding the DFA one character at a time is a little unwieldy, so let’s add a convenience
method for reading an entire string of input:

class DFA
 def read_string(string)
 string.chars.each do |character|
 read_character(character)
 end
 end
end

68 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

Now we can provide the DFA a whole string of input instead of having to pass its
characters individually:

>> dfa = DFA.new(1, [3], rulebook); dfa.accepting?
=> false
>> dfa.read_string('baaab'); dfa.accepting?
=> true

Once a DFA object has been fed some input, it’s probably not in its start state anymore,
so we can’t reliably reuse it to check a completely new sequence of inputs. That means
we have to recreate it from scratch—using the same start state, accept states, and rule-
book as before—every time we want to see whether it will accept a new string. We can
avoid doing this manually by wrapping up its constructor’s arguments in an object that
represents the design of a particular DFA and relying on that object to automatically
build one-off instances of that DFA whenever we want to check for acceptance of a
string:

class DFADesign < Struct.new(:start_state, :accept_states, :rulebook)
 def to_dfa
 DFA.new(start_state, accept_states, rulebook)
 end

 def accepts?(string)
 to_dfa.tap { |dfa| dfa.read_string(string) }.accepting?
 end
end

The #tap method evaluates a block and then returns the object it was
called on.

DFADesign#accepts? uses the DFADesign#to_dfa method to create a new instance of
DFA and then calls #read_string? to put it into an accepting or rejecting state:

>> dfa_design = DFADesign.new(1, [3], rulebook)
=> #<struct DFADesign …>
>> dfa_design.accepts?('a')
=> false
>> dfa_design.accepts?('baa')
=> false
>> dfa_design.accepts?('baba')
=> true

Nondeterministic Finite Automata
DFAs are simple to understand and to implement, but that’s because they’re very sim-
ilar to machines we’re already familiar with. Having stripped away all the complexity
of a real computer, we now have the opportunity to experiment with less conventional

Nondeterministic Finite Automata | 69

www.it-ebooks.info

http://www.it-ebooks.info/

ideas that take us further away from the machines we’re used to, without having to deal
with the incidental difficulties of making those ideas work in a real system.

One way to explore is by chipping away at our existing assumptions and constraints.
For one thing, the determinism constraints seem restrictive: maybe we don’t care about
every possible input character at every state, so why can’t we just leave out rules for
characters we don’t care about and assume that the machine can go into a generic failure
state when something unexpected happens? More exotically, what would it mean to
allow the machine to have contradictory rules, so that more than one execution path
is possible? Our setup also assumes that each state change must happen in response to
a character being read from the input stream, but what would happen if the machine
could change state without having to read anything?

In this section, we’ll investigate these ideas and see what new possibilities are opened
up by tweaking a finite automaton’s capabilities.

Nondeterminism
Suppose we wanted a finite automaton that would accept any string of as and bs as long
as the third character was b. It’s easy enough to come up with a suitable DFA design:

What if we wanted a machine that would accept strings where the third-from-last char-
acter is b? How would that work? It seems more difficult: the DFA above is guaranteed
to be in state 3 when it reads the third character, but a machine can’t know in advance
when it’s reading the third-from-last character, because it doesn’t know how long the
string is until it’s finished reading it. It might not be immediately clear whether such a
DFA is even possible.

However, if we relax the determinism constraints and allow the rulebook to contain
multiple rules (or no rules at all) for a given state and input, we can design a machine
that does the job:

70 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

This state machine, a nondeterministic finite automaton (NFA), no longer has exactly
one execution path for each sequence of inputs. When it’s in state 1 and reads b as
input, it’s possible for it to follow a rule that keeps it in state 1, but it’s also possible
for it to follow a different rule that takes it into state 2 instead. Conversely, once it gets
into state 4, it has no rules to follow and therefore no way to read any more input. A
DFA’s next state is always completely determined by its current state and its input, but
an NFA sometimes has more than one possibility for which state to move into next,
and sometimes none at all.

A DFA accepts a string if reading the characters and blindly following the rules causes
the machine to end up in an accept state, so what does it mean for an NFA to accept
or reject a string? The natural answer is that a string is accepted if there’s some way for
the NFA to end up in an accept state by following some of its rules—that is, if finishing
in an accept state is possible, even if it’s not inevitable.

For example, this NFA accepts the string 'baa', because, starting at state 1, the rules
say there is a way for the machine to read a b and move into state 2, then read an a and
move into state 3, and finally read another a and finish in state 4, which is an accept
state. It also accepts the string 'bbbbb', because it’s possible for the NFA to initially
follow a different rule and stay in state 1 while reading the first two bs, and only use
the rule for moving into state 2 when reading the third b, which then lets it read the
rest of the string and finish in state 4 as before.

On the other hand, there’s no way for it to read 'abb' and end up in state 4—depending
on which rules it follows, it can only end up in state 1, 2, or 3—so 'abb' is not accepted
by this NFA. Neither is 'bbabb', which can only ever get as far as state 3; if it goes
straight into state 2 when reading the first b, it will end up in state 4 too early, with two
characters still left to read but no more rules to follow.

The collection of strings that are accepted by a particular machine is
called a language: we say that the machine recognizes that language. Not
all possible languages have a DFA or NFA that can recognize them (see
Chapter 4 for more information), but those languages that can be rec-
ognized by finite automata are called regular languages.

Relaxing the determinism constraints has produced an imaginary machine that is very
different from the real, deterministic computers we’re familiar with. An NFA deals in
possibilities rather than certainties; we talk about its behavior in terms of what can
happen rather than what will happen. This seems powerful, but how can such a ma-

Nondeterministic Finite Automata | 71

www.it-ebooks.info

http://www.it-ebooks.info/

chine work in the real world? At first glance it looks like a real implementation of an
NFA would need some kind of foresight in order to know which of several possibilities
to choose while it reads input: to stand a chance of accepting a string, our example
NFA must stay in state 1 until it reads the third-from-last character, but it has no way
of knowing how many more characters it will receive. How can we simulate an exciting
machine like this in boring, deterministic Ruby?

The key to simulating an NFA on a deterministic computer is to find a way to explore
all possible executions of the machine. This brute-force approach eliminates the spooky
foresight that would be required to simulate only one possible execution by somehow
making all the right decisions along the way. When an NFA reads a character, there
are only ever a finite number of possibilities for what it can do next, so we can simulate
the nondeterminism by somehow trying all of them and seeing whether any of them
ultimately allows it to reach an accept state.

We could do this by recursively trying all possibilities: each time the simulated NFA
reads a character and there’s more than one applicable rule, follow one of those rules
and try reading the rest of the input; if that doesn’t leave the machine in an accept state,
then go back into the earlier state, rewind the input to its earlier position, and try again
by following a different rule; repeat until some choice of rules leads to an accept state,
or until all possible choices have been tried without success.

Another strategy is to simulate all possibilities in parallel by spawning new threads
every time the machine has more than one rule it can follow next, effectively copying
the simulated NFA so that each copy can try a different rule to see how it pans out. All
those threads can be run at once, each reading from its own copy of the input string,
and if any thread ends up with a machine that’s read every character and stopped in an
accept state, then we can say the string has been accepted.

Both of these implementations are feasible, but they’re a bit complicated and inefficient.
Our DFA simulation was simple and could read individual characters while constantly
reporting back on whether the machine is in an accept state, so it would be nice to
simulate an NFA in a way that gives us the same simplicity and transparency.

Fortunately, there’s an easy way to simulate an NFA without needing to rewind our
progress, spawn threads, or know all the input characters in advance. In fact, just as
we simulated a single DFA by keeping track of its current state, we can simulate a single
NFA by keeping track of all its possible current states. This is simpler and more efficient
than simulating multiple NFAs that go off in different directions, and it turns out to
achieve the same thing in the end. If we did simulate many separate machines, then all
we’d care about is what state each of them was in, but any machines in the same state
are completely indistinguishable,2 so we don’t lose anything by collapsing all those

2. A finite automaton has no record of its own history and no storage aside from its current state, so two
identical machines in the same state are interchangeable for any purpose.

72 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

possibilities down into a single machine and asking “which states could it be in by now?”
instead.

For example, let’s walk through what happens to our example NFA as it reads the string
'bab':

• Before the NFA has read any input, it’s definitely in state 1, its start state.

• It reads the first character, b. From state 1, there’s one b rule that lets the NFA stay
in state 1 and another b rule that takes it to state 2, so we know it can be in either
state 1 or 2 afterward. Neither of those is an accept state, which tells us there’s no
possible way for the NFA to reach an accept state by reading the string 'b'.

• It reads the second character, a. If it’s in state 1 then there’s only one a rule it can
follow, which will keep it in state 1; if it’s in state 2, it’ll have to follow the a rule
that leads to state 3. It must end up in state 1 or 3, and again, these aren’t accept
states, so there’s no way the string 'ba' can be accepted by this machine.

• It reads the third character, b. If it’s in state 1 then, as before it can stay in state 1
or go to state 2; if it’s in state 3, then it must go to state 4.

• Now we know that it’s possible for the NFA to be in state 1, state 2, or state 4 after
reading the whole input string. State 4 is an accept state, and our simulation shows
that there must be some way for the machine to reach state 4 by reading that string,
so the NFA does accept 'bab'.

This simulation strategy is easy to turn into code. First we need a rulebook suitable for
storing an NFA’s rules. A DFA rulebook always returns a single state when we ask it
where the DFA should go next after reading a particular character while in a specific
state, but an NFA rulebook needs to answer a different question: when an NFA is
possibly in one of several states, and it reads a particular character, what states can it
possibly be in next? The implementation looks like this:

require 'set'

class NFARulebook < Struct.new(:rules)
 def next_states(states, character)
 states.flat_map { |state| follow_rules_for(state, character) }.to_set
 end

 def follow_rules_for(state, character)
 rules_for(state, character).map(&:follow)
 end

 def rules_for(state, character)
 rules.select { |rule| rule.applies_to?(state, character) }
 end
end

Nondeterministic Finite Automata | 73

www.it-ebooks.info

http://www.it-ebooks.info/

We’re using the Set class, from Ruby’s standard library, to store the
collection of possible states returned by #next_states. We could have
used an Array, but Set has three useful features:

1. It automatically eliminates duplicate elements. Set[1, 2, 2, 3, 3,
3] is equal to Set[1, 2, 3].

2. It ignores the order of elements. Set[3, 2, 1] is equal to Set[1, 2,
3].

3. It provides standard set operations like intersection (#&), union (#
+), and subset testing (#subset?).

The first feature is useful because it doesn’t make sense to say “the NFA
is in state 3 or state 3,” and returning a Set makes sure we never include
any duplicates. The other two features will be useful later.

We can create a nondeterministic rulebook and ask it questions:

>> rulebook = NFARulebook.new([
 FARule.new(1, 'a', 1), FARule.new(1, 'b', 1), FARule.new(1, 'b', 2),
 FARule.new(2, 'a', 3), FARule.new(2, 'b', 3),
 FARule.new(3, 'a', 4), FARule.new(3, 'b', 4)
])
=> #<struct NFARulebook rules=[…]>
>> rulebook.next_states(Set[1], 'b')
=> #<Set: {1, 2}>
>> rulebook.next_states(Set[1, 2], 'a')
=> #<Set: {1, 3}>
>> rulebook.next_states(Set[1, 3], 'b')
=> #<Set: {1, 2, 4}>

The next step is to implement an NFA class to represent the simulated machine:

class NFA < Struct.new(:current_states, :accept_states, :rulebook)
 def accepting?
 (current_states & accept_states).any?
 end
end

NFA#accepting? works by checking whether there are any states in the
intersection between current_states and accept_states—that is,
whether any of the possible current states is also one of the accept states.

This NFA class is very similar to our DFA class from earlier. The difference is that it has
a set of possible current_states instead of a single definite current_state, so it’ll say
it’s in an accept state if any of its current_states is an accept state:

>> NFA.new(Set[1], [4], rulebook).accepting?
=> false
>> NFA.new(Set[1, 2, 4], [4], rulebook).accepting?
=> true

74 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

As with the DFA class, we can implement a #read_character method for reading a single
character of input, and a #read_string method for reading several in sequence:

class NFA
 def read_character(character)
 self.current_states = rulebook.next_states(current_states, character)
 end

 def read_string(string)
 string.chars.each do |character|
 read_character(character)
 end
 end
end

These methods really are almost identical to their DFA counterparts; we’re just saying
current_states and next_states in #read_character instead of current_state and
next_state.

That’s the hard work over with. Now we’re able to start a simulated NFA, pass char-
acters in, and ask whether the input so far has been accepted:

>> nfa = NFA.new(Set[1], [4], rulebook); nfa.accepting?
=> false
>> nfa.read_character('b'); nfa.accepting?
=> false
>> nfa.read_character('a'); nfa.accepting?
=> false
>> nfa.read_character('b'); nfa.accepting?
=> true
>> nfa = NFA.new(Set[1], [4], rulebook)
=> #<struct NFA current_states=#<Set: {1}>, accept_states=[4], rulebook=…>
>> nfa.accepting?
=> false
>> nfa.read_string('bbbbb'); nfa.accepting?
=> true

As we saw with the DFA class, it’s convenient to use an NFADesign object to automatically
manufacture new NFA instances on demand rather than creating them manually:

class NFADesign < Struct.new(:start_state, :accept_states, :rulebook)
 def accepts?(string)
 to_nfa.tap { |nfa| nfa.read_string(string) }.accepting?
 end

 def to_nfa
 NFA.new(Set[start_state], accept_states, rulebook)
 end
end

This makes it easier to check different strings against the same NFA:

>> nfa_design = NFADesign.new(1, [4], rulebook)
=> #<struct NFADesign start_state=1, accept_states=[4], rulebook=…>
>> nfa_design.accepts?('bab')
=> true

Nondeterministic Finite Automata | 75

www.it-ebooks.info

http://www.it-ebooks.info/

>> nfa_design.accepts?('bbbbb')
=> true
>> nfa_design.accepts?('bbabb')
=> false

And that’s it: we’ve successfully built a simple implementation of an unusual nonde-
terministic machine by simulating all of its possible executions. Nondeterminism is a
convenient tool for designing more sophisticated finite automata, so it’s fortunate that
NFAs are usable in practice rather than just a theoretical curiosity.

Free Moves
We’ve seen how relaxing the determinism constraints gives us new ways of designing
machines without sacrificing our ability to implement them. What else can we safely
relax to give ourselves more design freedom?

It’s easy to design a DFA that accepts strings of as whose length is a multiple of two
('aa', 'aaaa'…):

But how can we design a machine that accepts strings whose length is a multiple of
two or three? We know that nondeterminism gives a machine more than one execution
path to follow, so perhaps we can design an NFA that has one “multiple of two” path
and one “multiple of three” path. A naïve attempt might look like this:

The idea here is for the NFA to move between states 1 and 2 to accept strings like
'aa' and 'aaaa', and between states 1, 3, and 4 to accept strings like 'aaa' and
'aaaaaaaaa'. That works fine, but the problem is that the machine also accepts the
string 'aaaaa', because it can move from state 1 to state 2 and back to 1 when reading
the first two characters, and then move through states 3, 4, and back to 1 when reading
the next three, ending up in an accept state even though the string’s length is not a
multiple of two or three.3

76 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

Again it may not be immediately obvious whether an NFA can do this job at all, but
we can address the problem by introducing another machine feature called free
moves. These are rules that the machine may spontaneously follow without reading
any input, and they help here because they give the NFA an initial choice between two
separate groups of states:

The free moves are shown by the dotted unlabeled arrows from state 1 to states 2 and
4. This machine can still accept the string 'aaaa' by spontaneously moving into state
2, and then moving between states 2 and 3 as it reads the input, and likewise for
'aaaaaaaaa' if it begins with a free move into state 4. Now, though, there is no way for
it to accept the string 'aaaaa': in any possible execution, it must begin by committing
to a free move into either state 2 or state 4, and once it’s gone one way, there’s no route
back again. Once it’s in state 2, it can only accept a string whose length is a multiple
of 2, and likewise once it’s in state 4, it can only accept a string whose length is a multiple
of 3.

How do we support free moves in our Ruby NFA simulation? Well, this new choice
between staying in state 1, spontaneously moving into state 2, or spontaneously moving
into state 4 is not really any stranger than the nondeterminism we already have, and
our implementation can handle it in a similar way. We already have the idea of a si-
mulated machine having many possible states at once, so we just need to broaden those
possible states to include any that are reachable by performing one or more free moves.
In this case, the machine starting in state 1 really means that it can be in state 1, 2, or
4 before it’s read any input.

First we need a way to represent free moves in Ruby. The easiest way is to use normal
FARule instances with a nil where a character should be. Our existing implementation

3. This NFA actually accepts any string of a characters except for the single-character string 'a'.

Nondeterministic Finite Automata | 77

www.it-ebooks.info

http://www.it-ebooks.info/

of NFARulebook will treat nil like any other character, so we can ask “from state 1, what
states can we get to by performing one free move?” (instead of “…by reading one a
character?”):

>> rulebook = NFARulebook.new([
 FARule.new(1, nil, 2), FARule.new(1, nil, 4),
 FARule.new(2, 'a', 3),
 FARule.new(3, 'a', 2),
 FARule.new(4, 'a', 5),
 FARule.new(5, 'a', 6),
 FARule.new(6, 'a', 4)
])
=> #<struct NFARulebook rules=[…]>
>> rulebook.next_states(Set[1], nil)
=> #<Set: {2, 4}>

Next we need some helper code for finding all the states that can be reached by following
free moves from a particular set of states. This code will have to follow free moves
repeatedly, because an NFA can spontaneously change states as many times as it likes
as long as there are free moves leading from its current state. A method on the NFARu
lebook class is a convenient place to put it:

class NFARulebook
 def follow_free_moves(states)
 more_states = next_states(states, nil)

 if more_states.subset?(states)
 states
 else
 follow_free_moves(states + more_states)
 end
 end
end

NFARulebook#follow_free_moves works by recursively looking for more and more states
that can be reached from a given set of states by following free moves. When it can’t
find any more—that is, when every state found by next_states(states, nil) is already
in states—it returns all the states it’s found.4

This code correctly identifies the possible states of our NFA before it’s read any input:

>> rulebook.follow_free_moves(Set[1])
=> #<Set: {1, 2, 4}>

Now we can bake this free move support into NFA by overriding the existing imple-
mentation of NFA#current_states (as provided by Struct). Our new implementation
will hook into NFARulebook#follow_free_moves and ensure that the possible current
states of the automaton always include any states that are reachable via free moves:

4. Technically speaking, this process computes a fixed point of the “add more states by following free moves”
function.

78 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

class NFA
 def current_states
 rulebook.follow_free_moves(super)
 end
end

Since all other NFA methods access the set of possible current states by calling the
#current_states method, this transparently provides support for free moves without
having to change the rest of NFA’s code.

That’s it. Now our simulation supports free moves, and we can see which strings are
accepted by our NFA:

>> nfa_design = NFADesign.new(1, [2, 4], rulebook)
=> #<struct NFADesign …>
>> nfa_design.accepts?('aa')
=> true
>> nfa_design.accepts?('aaa')
=> true
>> nfa_design.accepts?('aaaaa')
=> false
>> nfa_design.accepts?('aaaaaa')
=> true

So free moves are pretty straightforward to implement, and they give us extra design
freedom on top of what nondeterminism already provides.

Some of the terminology in this chapter is unconventional. The char-
acters read by finite automata are usually called symbols, the rules for
moving between states are called transitions, and the collection of rules
making up a machine is called a transition function (or sometimes tran-
sition relation for NFAs) rather than a rulebook. Because the mathe-
matical symbol for the empty string is the Greek letter ε (epsilon), an
NFA with free moves is known as an NFA-ε, and free moves themselves
are usually called ε-transitions.

Regular Expressions
We’ve seen that nondeterminism and free moves make finite automata more expressive
without interfering with our ability to simulate them. In this section, we’ll look at an
important practical application of these features: regular expression matching.

Regular expressions provide a language for writing textual patterns against which strings
may be matched. Some example regular expressions are:

• hello, which only matches the string 'hello'

• hello|goodbye, which matches the strings 'hello' and 'goodbye'

• (hello)*, which matches the strings 'hello', 'hellohello', 'hellohellohello',
and so on, as well as the empty string

Regular Expressions | 79

www.it-ebooks.info

http://www.it-ebooks.info/

In this chapter, we’ll always think of a regular expression as matching
an entire string. Real-world implementations of regular expressions typ-
ically use them for matching parts of strings, with extra syntax needed
if we want to specify that an entire string should be matched.

For example, our regular expression hello|goodbye would be written in
Ruby as /\A(hello|goodbye)\z/ to make sure that any match is anchored
to the beginning (\A) and end (\z) of the string.

Given a regular expression and a string, how do we write a program to decide whether
the string matches that expression? Most programming languages, Ruby included, al-
ready have regular expression support built in, but how does that support work? How
would we implement regular expressions in Ruby if the language didn’t already have
them?

It turns out that finite automata are perfectly suited to this job. As we’ll see, it’s possible
to convert any regular expression into an equivalent NFA—every string matched by
the regular expression is accepted by the NFA, and vice versa—and then match a string
by feeding it to a simulation of that NFA to see whether it gets accepted. In the language
of Chapter 2, we can think of this as providing a sort of denotational semantics for
regular expressions: we may not know how to execute a regular expression directly,
but we can show how to denote it as an NFA, and because we have an operational
semantics for NFAs (“change state by reading characters and following rules”), we can
execute the denotation to achieve the same result.

Syntax
Let’s be precise about what we mean by “regular expression.” To get us off the ground,
here are two kinds of extremely simple regular expression that are not built out of
anything simpler:

• An empty regular expression. This matches the empty string and nothing else.

• A regular expression containing a single, literal character. For example, a and b are
regular expressions that match only the strings 'a' and 'b' respectively.

Once we have these simple kinds of pattern, there are three ways we can combine them
to build more complex expressions:

• Concatenate two patterns. We can concatenate the regular expressions a and b to
get the regular expression ab, which only matches the string 'ab'.

• Choose between two patterns, written by joining them with the | operator. We
can join the regular expressions a or b to get the regular expression a|b, which
matches the strings 'a' and 'b'.

• Repeat a pattern zero or more times, written by suffixing it with the * operator.
We can suffix the regular expression a to get a*, which matches the strings 'a',
'aa', 'aaa', and so on, as well as the empty string '' (i.e., zero repetitions).

80 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

Real-world regular expression engines, like the one built into Ruby,
support more features than this. In the interests of simplicity, we won’t
try to implement these extra features, many of which are technically
redundant and only provided as a convenience.

For example, omitting the repetition operators ? and + doesn’t make an
important difference, because their effects—“repeat one or zero times”
and “repeat one or more times,” respectively—are easy enough to ach-
ieve with the features we already have: the regular expression ab? can
be rewritten as ab|a, and the pattern ab+ matches the same strings as
abb*. The same is true of other convenience features like counted repe-
tition (e.g., a{2,5}) and character classes (e.g., [abc]).

More advanced features like capture groups, backreferences and look-
ahead/lookbehind assertions are outside of the scope of this chapter.

To implement this syntax in Ruby, we can define a class for each kind of regular ex-
pression and use instances of those classes to represent the abstract syntax tree of any
regular expression, just as we did for SIMPLE expressions in Chapter 2:

module Pattern
 def bracket(outer_precedence)
 if precedence < outer_precedence
 '(' + to_s + ')'
 else
 to_s
 end
 end

 def inspect
 "/#{self}/"
 end
end

class Empty
 include Pattern

 def to_s
 ''
 end

 def precedence
 3
 end
end

class Literal < Struct.new(:character)
 include Pattern

 def to_s
 character
 end

Regular Expressions | 81

www.it-ebooks.info

http://www.it-ebooks.info/

 def precedence
 3
 end
end

class Concatenate < Struct.new(:first, :second)
 include Pattern

 def to_s
 [first, second].map { |pattern| pattern.bracket(precedence) }.join
 end

 def precedence
 1
 end
end

class Choose < Struct.new(:first, :second)
 include Pattern

 def to_s
 [first, second].map { |pattern| pattern.bracket(precedence) }.join('|')
 end

 def precedence
 0
 end
end

class Repeat < Struct.new(:pattern)
 include Pattern

 def to_s
 pattern.bracket(precedence) + '*'
 end

 def precedence
 2
 end
end

82 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

In the same way that multiplication binds its arguments more tightly
than addition in arithmetic expressions (1 + 2 × 3 equals 7, not 9), the
convention for the concrete syntax of regular expressions is for the *
operator to bind more tightly than concatenation, which in turn binds
more tightly than the | operator. For example, in the regular expression
abc* it’s understood that the * applies only to the c ('abc', 'abcc',
'abccc'…), and to make it apply to all of abc ('abc', 'abcabc'…), we’d
need to add brackets and write (abc)* instead.

The syntax classes’ implementations of #to_s, along with the Pat
tern#bracket method, deal with automatically inserting these brackets
when necessary so that we can view a simple string representation of an
abstract syntax tree without losing information about its structure.

These classes let us manually build trees to represent regular expressions:

>> pattern =
 Repeat.new(
 Choose.new(
 Concatenate.new(Literal.new('a'), Literal.new('b')),
 Literal.new('a')
)
)
=> /(ab|a)*/

Of course, in a real implementation, we’d use a parser to build these trees instead of
constructing them by hand; see “Parsing” on page 92 for instructions on how to do
this.

Semantics
Now that we have a way of representing the syntax of a regular expression as a tree of
Ruby objects, how can we convert that syntax into an NFA?

We need to decide how instances of each syntax class should be turned into NFAs. The
easiest class to convert is Empty, which we should always turn into the one-state NFA
that only accepts the empty string:

Regular Expressions | 83

www.it-ebooks.info

http://www.it-ebooks.info/

Similarly, we should turn any literal, single-character pattern into the NFA that only
accepts the single-character string containing that character. Here’s the NFA for the
pattern a:

It’s easy enough to implement #to_nfa_design methods for Empty and Literal to gen-
erate these NFAs:

class Empty
 def to_nfa_design
 start_state = Object.new
 accept_states = [start_state]
 rulebook = NFARulebook.new([])

 NFADesign.new(start_state, accept_states, rulebook)
 end
end

class Literal
 def to_nfa_design
 start_state = Object.new
 accept_state = Object.new
 rule = FARule.new(start_state, character, accept_state)
 rulebook = NFARulebook.new([rule])

 NFADesign.new(start_state, [accept_state], rulebook)
 end
end

As mentioned in “Simulation” on page 66, the states of an automaton
must be implemented as Ruby objects that can be distinguished from
each other. Here, instead of using numbers (i.e., Fixnum instances) as
states, we’re using freshly created instances of Object.

This is so that each NFA gets its own unique states, which gives us the
ability to combine small machines into larger ones without accidentally
merging any of their states. If two distinct NFAs both used the Ruby
Fixnum object 1 as a state, for example, they couldn’t be connected to-
gether while keeping those two states separate. We’ll want to be able to
do that as part of implementing more complex regular expressions.

Similarly, we won’t label states on the diagrams any more, so that we
don’t have to relabel them when we start connecting diagrams together.

We can check that the NFAs generated from Empty and Literal regular expressions
accept the strings we want them to:

84 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

>> nfa_design = Empty.new.to_nfa_design
=> #<struct NFADesign …>
>> nfa_design.accepts?('')
=> true
>> nfa_design.accepts?('a')
=> false
>> nfa_design = Literal.new('a').to_nfa_design
=> #<struct NFADesign …>
>> nfa_design.accepts?('')
=> false
>> nfa_design.accepts?('a')
=> true
>> nfa_design.accepts?('b')
=> false

There’s an opportunity here to wrap #to_nfa_design in a #matches? method to give
patterns a nicer interface:

module Pattern
 def matches?(string)
 to_nfa_design.accepts?(string)
 end
end

This lets us match patterns directly against strings:

>> Empty.new.matches?('a')
=> false
>> Literal.new('a').matches?('a')
=> true

Now that we know how to turn simple Empty and Literal regular expressions into
NFAs, we need a similar setup for Concatenate, Choose, and Repeat.

Let’s begin with Concatenate: if we have two regular expressions that we already know
how to turn into NFAs, how can we build an NFA to represent the concatenation of
those regular expressions? For example, given that we can turn the single-character
regular expressions a and b into NFAs, how do we turn ab into one?

In the ab case, we can connect the two NFAs in sequence, joining them together with
a free move, and keeping the second NFA’s accept state:

Regular Expressions | 85

www.it-ebooks.info

http://www.it-ebooks.info/

This technique works in other cases too. Any two NFAs can be concatenated by turning
every accept state from the first NFA into a nonaccept state and connecting it to the
start state of the second NFA with a free move. Once the concatenated machine has
read a sequence of inputs that would have put the first NFA into an accept state, it can
spontaneously move into a state corresponding to the start state of the second NFA,
and then reach an accept state by reading a sequence of inputs that the second NFA
would have accepted.

So, the raw ingredients for the combined machine are:

• The start state of the first NFA

• The accept states of the second NFA

• All the rules from both NFAs

• Some extra free moves to connect each of the first NFA’s old accept states to the
second NFA’s old start state

We can turn this idea into an implementation of Concatenate#to_nfa_design:

class Concatenate
 def to_nfa_design
 first_nfa_design = first.to_nfa_design
 second_nfa_design = second.to_nfa_design

 start_state = first_nfa_design.start_state
 accept_states = second_nfa_design.accept_states
 rules = first_nfa_design.rulebook.rules + second_nfa_design.rulebook.rules
 extra_rules = first_nfa_design.accept_states.map { |state|
 FARule.new(state, nil, second_nfa_design.start_state)
 }
 rulebook = NFARulebook.new(rules + extra_rules)

 NFADesign.new(start_state, accept_states, rulebook)

86 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

 end
end

This code first converts the first and second regular expressions into NFADesigns, then
combines their states and rules in the appropriate way to make a new NFADesign. It
works as expected for the simple ab case:

>> pattern = Concatenate.new(Literal.new('a'), Literal.new('b'))
=> /ab/
>> pattern.matches?('a')
=> false
>> pattern.matches?('ab')
=> true
>> pattern.matches?('abc')
=> false

This conversion process is recursive—Concatenate#to_nfa_design calls
#to_nfa_design on other objects—so it also works for more deeply nested cases like the
regular expression abc, which contains two concatenations (a concatenated with b
concatenated with c):

>> pattern =
 Concatenate.new(
 Literal.new('a'),
 Concatenate.new(Literal.new('b'), Literal.new('c'))
)
=> /abc/
>> pattern.matches?('a')
=> false
>> pattern.matches?('ab')
=> false
>> pattern.matches?('abc')
=> true

This is another example of a denotational semantics being composi-
tional: the NFA denotation of a compound regular expression is com-
posed from the denotations of its parts.

We can use a similar strategy to convert a Choose expression into an NFA. In the simplest
case, the NFAs for the regular expressions a and b can be combined to build an NFA
for the regular expression a|b by adding a new start state and using free moves to
connect it to the previous start states of the two original machines:

Regular Expressions | 87

www.it-ebooks.info

http://www.it-ebooks.info/

Before the a|b NFA has read any input, it can use a free move to go into either of the
original machines’ start states, from which point it can read either 'a' or 'b' to reach
an accept state. Again, it’s just as easy to glue together any two machines by adding a
new start state and two free moves:

In this case, the ingredients for the combined machine are:

• A new start state

• All the accept states from both NFAs

• All the rules from both NFAs

88 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

• Two extra free moves to connect the new start state to each of the NFA’s old start
states

Again, this is easy to implement as Choose#to_nfa_design:

class Choose
 def to_nfa_design
 first_nfa_design = first.to_nfa_design
 second_nfa_design = second.to_nfa_design

 start_state = Object.new
 accept_states = first_nfa_design.accept_states + second_nfa_design.accept_states
 rules = first_nfa_design.rulebook.rules + second_nfa_design.rulebook.rules
 extra_rules = [first_nfa_design, second_nfa_design].map { |nfa_design|
 FARule.new(start_state, nil, nfa_design.start_state)
 }
 rulebook = NFARulebook.new(rules + extra_rules)

 NFADesign.new(start_state, accept_states, rulebook)
 end
end

The implementation works nicely:

>> pattern = Choose.new(Literal.new('a'), Literal.new('b'))
=> /a|b/
>> pattern.matches?('a')
=> true
>> pattern.matches?('b')
=> true
>> pattern.matches?('c')
=> false

And finally, repetition: how can we turn an NFA that matches a string exactly once
into an NFA that matches the same string zero or more times? We can build an NFA
for a* by starting with the NFA for a and making two additions:

• Add a free move from its accept state to its start state, so it can match more than
one 'a'.

• Add a new accepting start state with a free move to the old start state, so it can
match the empty string.

Here’s how that looks:

Regular Expressions | 89

www.it-ebooks.info

http://www.it-ebooks.info/

The free move from the old accept state to the old start state allows the machine to
match several times instead of just once ('aa', 'aaa', etc.), and the new start state allows
it to match the empty string without affecting what other strings it can accept.5 We can
do the same for any NFA as long as we connect each old accept state to the old start
state with a free move:

This time we need:

• A new start state, which is also an accept state

• All the accept states from the old NFA

• All the rules from the old NFA

• Some extra free moves to connect each of the old NFA’s accept states to its old
start state

• Another extra free move to connect the new start state to the old start state

Let’s turn that into code:

class Repeat
 def to_nfa_design
 pattern_nfa_design = pattern.to_nfa_design

 start_state = Object.new
 accept_states = pattern_nfa_design.accept_states + [start_state]
 rules = pattern_nfa_design.rulebook.rules
 extra_rules =
 pattern_nfa_design.accept_states.map { |accept_state|

5. In this simple case, we could get away with just turning the original start state into an accept state instead
of adding a new one, but in more complex cases (e.g., (a*b)*), that technique can produce a machine
that accepts other undesirable strings in addition to the empty string.

90 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

 FARule.new(accept_state, nil, pattern_nfa_design.start_state)
 } +
 [FARule.new(start_state, nil, pattern_nfa_design.start_state)]
 rulebook = NFARulebook.new(rules + extra_rules)

 NFADesign.new(start_state, accept_states, rulebook)
 end
end

And check that it works:

>> pattern = Repeat.new(Literal.new('a'))
=> /a*/
>> pattern.matches?('')
=> true
>> pattern.matches?('a')
=> true
>> pattern.matches?('aaaa')
=> true
>> pattern.matches?('b')
=> false

Now that we have #to_nfa_design implementations for each class of regular expression
syntax, we can build up complex patterns and use them to match strings:

>> pattern =
 Repeat.new(
 Concatenate.new(
 Literal.new('a'),
 Choose.new(Empty.new, Literal.new('b'))
)
)
=> /(a(|b))*/
>> pattern.matches?('')
=> true
>> pattern.matches?('a')
=> true
>> pattern.matches?('ab')
=> true
>> pattern.matches?('aba')
=> true
>> pattern.matches?('abab')
=> true
>> pattern.matches?('abaab')
=> true
>> pattern.matches?('abba')
=> false

This is a nice result. We began with a syntax for patterns and have now given a semantics
for that syntax by showing how to convert any pattern into an NFA, a kind of abstract
machine that we already know how to execute. In conjunction with a parser, this gives
us a practical way of reading a regular expression and deciding whether it matches a
particular string. Free moves are useful for this conversion because they provide an
unobtrusive way to glue together smaller machines into larger ones without affecting
the behavior of any of the components.

Regular Expressions | 91

www.it-ebooks.info

http://www.it-ebooks.info/

The majority of real-world implementations of regular expressions, like
the Onigmo library used by Ruby, don’t work by literally compiling
patterns into finite automata and simulating their execution. Although
it’s a fast and efficient way of matching regular expressions against
strings, this approach makes it harder to support more advanced fea-
tures like capture groups and lookahead/lookbehind assertions. Con-
sequently most libraries use some kind of backtracking algorithm that
deals with regular expressions more directly instead of converting them
into finite automata.

Russ Cox’s RE2 library is a production-quality C++ regular expression
implementation that does compile patterns into automata,6 while Pat
Shaughnessy has written a detailed blog post exploring how Ruby’s
regular expression algorithm works.

Parsing
We’ve almost built a complete (albeit basic) regular expression implementation. The
only missing piece is a parser for pattern syntax: it would be much more convenient if
we could just write (a(|b))* instead of building the abstract syntax tree manually with
Repeat.new(Concatenate.new(Literal.new('a'), Choose.new(Empty.new, Literal.new
('b')))). We saw in “Implementing Parsers” on page 58 that it’s not difficult to use
Treetop to generate a parser that can automatically transform raw syntax into an AST,
so let’s do that here to finish off our implementation.

Here’s a Treetop grammar for simple regular expressions:

grammar Pattern
 rule choose
 first:concatenate_or_empty '|' rest:choose {
 def to_ast
 Choose.new(first.to_ast, rest.to_ast)
 end
 }
 /
 concatenate_or_empty
 end

 rule concatenate_or_empty
 concatenate / empty
 end

 rule concatenate
 first:repeat rest:concatenate {
 def to_ast
 Concatenate.new(first.to_ast, rest.to_ast)
 end
 }

6. RE2’s tagline is “an efficient, principled regular expression library,” which is difficult to argue
with.

92 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://code.google.com/p/re2/
http://patshaughnessy.net/2012/4/3/exploring-rubys-regular-expression-algorithm
http://www.it-ebooks.info/

 /
 repeat
 end

 rule empty
 '' {
 def to_ast
 Empty.new
 end
 }
 end

 rule repeat
 brackets '*' {
 def to_ast
 Repeat.new(brackets.to_ast)
 end
 }
 /
 brackets
 end

 rule brackets
 '(' choose ')' {
 def to_ast
 choose.to_ast
 end
 }
 /
 literal
 end

 rule literal
 [a-z] {
 def to_ast
 Literal.new(text_value)
 end
 }
 end
end

Again, the order of rules reflects the precedence of each operator: the
| operator binds loosest, so the choose rule goes first, with the higher
precedence operator rules appearing farther down the grammar.

Regular Expressions | 93

www.it-ebooks.info

http://www.it-ebooks.info/

Now we have all the pieces we need to parse a regular expression, turn it into an abstract
syntax tree, and use it to match strings:

>> require 'treetop'
=> true
>> Treetop.load('pattern')
=> PatternParser
>> parse_tree = PatternParser.new.parse('(a(|b))*')
=> SyntaxNode+Repeat1+Repeat0 offset=0, "(a(|b))*" (to_ast,brackets):
 SyntaxNode+Brackets1+Brackets0 offset=0, "(a(|b))" (to_ast,choose):
 SyntaxNode offset=0, "("
 SyntaxNode+Concatenate1+Concatenate0 offset=1, "a(|b)" (to_ast,first,rest):
 SyntaxNode+Literal0 offset=1, "a" (to_ast)
 SyntaxNode+Brackets1+Brackets0 offset=2, "(|b)" (to_ast,choose):
 SyntaxNode offset=2, "("
 SyntaxNode+Choose1+Choose0 offset=3, "|b" (to_ast,first,rest):
 SyntaxNode+Empty0 offset=3, "" (to_ast)
 SyntaxNode offset=3, "|"
 SyntaxNode+Literal0 offset=4, "b" (to_ast)
 SyntaxNode offset=5, ")"
 SyntaxNode offset=6, ")"
 SyntaxNode offset=7, "*"
>> pattern = parse_tree.to_ast
=> /(a(|b))*/
>> pattern.matches?('abaab')
=> true
>> pattern.matches?('abba')
=> false

Equivalence
This chapter has described the idea of a deterministic state machine and added more
features to it: first nondeterminism, which makes it possible to design machines that
can follow many possible execution paths instead of a single path, and then free moves,
which allow nondeterministic machines to change state without reading any input.

Nondeterminism and free moves make it easier to design finite state machines to per-
form specific jobs—we’ve already seen that they’re very useful for translating regular
expressions into state machines—but do they let us do anything that we can’t do with
a standard DFA?

Well, it turns out that it’s possible to convert any nondeterministic finite automaton
into a deterministic one that accepts exactly the same strings. This might be surprising
given the extra constraints of a DFA, but it makes sense when we think about the way
we simulated the execution of both kinds of machine.

Imagine we have a particular DFA whose behavior we want to simulate. The simulation
of this hypothetical DFA reading a particular sequence of characters might go some-
thing like this:

• Before the machine has read any input, it’s in state 1.

94 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

• The machine reads the character 'a', and now it’s in state 2.

• The machine reads the character 'b', and now it’s in state 3.

• There is no more input, and state 3 is an accept state, so the string 'ab' has been
accepted.

There is something slightly subtle going on here: the simulation, which in our case is
a Ruby program running on a real computer, is recreating the behavior of the DFA,
which is an abstract machine that can’t run at all because it doesn’t exist. Every time
the imaginary DFA changes state, so does the simulation that we are running—that’s
what makes it a simulation.

It’s hard to see this separation, because both the DFA and the simulation are deter-
ministic and their states match up exactly: when the DFA is in state 2, the simulation
is in a state that means “the DFA is in state 2.” In our Ruby simulation, this simulation
state is effectively the value of the DFA instance’s current_state attribute.

Despite the extra overhead of dealing with nondeterminism and free moves, the sim-
ulation of a hypothetical NFA reading some characters doesn’t look hugely different:

• Before the machine has read any input, it’s possible for it to be in either state 1 or
state 3.7

• The machine reads the character c, and now it’s possible for it to be in one of states
1, 3, or 4.

• The machine reads the character d, and now it’s possible for it to be in either state
2 or state 5.

• There is no more input, and state 5 is an accept state, so the string 'cd' has been
accepted.

This time it’s easier to see that the state of the simulation is not the same thing as the
state of the NFA. In fact, at every point of this simulation we are never certain which
state the NFA is in, but the simulation itself is still deterministic because it has states
that accommodate that uncertainty. When it’s possible for the NFA to be in one of
states 1, 3 or 4, we are certain that the simulation is in the single state that means “the
NFA is in state 1, 3, or 4.”

The only real difference between these two examples is that the DFA simulation moves
from one current state to another, whereas the NFA simulation moves from one current
set of possible states to another. Although an NFA’s rulebook can be nondeterministic,
the decision about which possible states follow from the current ones for a given input
is always completely deterministic.

This determinism means that we can always construct a DFA whose job is to simulate
a particular NFA. The DFA will have a state to represent each set of possible states of

7. Although an NFA only has one start state, free moves can make other states possible before any input
has been read.

Equivalence | 95

www.it-ebooks.info

http://www.it-ebooks.info/

the NFA, and the rules between these DFA states will correspond to the ways in which
a deterministic simulation of the NFA can move between its sets of possible states. The
resulting DFA will be able to completely simulate the behavior of the NFA, and as long
as we choose the right accept states for the DFA—as per our Ruby implementation,
these will be any states that correspond to the NFA possibly being in an accept state—
it’ll accept the same strings too.

Let’s try doing the conversion for a specific NFA. Take this one:

It’s possible for this NFA to be in state 1 or state 2 before it has read any input (state 1
is the start state, and state 2 is reachable via a free move), so the simulation will begin
in a state we can call “1 or 2.” From this starting point the simulation will end up in
different states depending on whether it reads a or b:

• If it reads an a, the simulation will remain in state “1 or 2”: when the NFA’s in state
1 it can read an a and either follow the rule that keeps it in state 1 or the rule that
takes it into state 2, while from state 2, it has no way of reading an a at all.

• If it reads a b, it’s possible for the NFA to end up in state 2 or state 3—from state
1, it can’t read a b, but from state 2, it can move into state 3 and potentially take a
free move back into state 2—so we’ll say the simulation moves into a state called
“2 or 3” when the input is b.

By thinking through the behavior of a simulation of the NFA, we’ve begun to construct
a state machine for that simulation:

“2 or 3” is an accept state for the simulation, because state 3 is an accept
state for the NFA.

We can continue this process of discovering new states of the simulation until there
are no more to discover, which must happen eventually because there are only a limited

96 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

number of possible combinations of the original NFA’s states.8 By repeating the dis-
covery process for our example NFA, we find that there are only four distinct combi-
nations of states that its simulation can encounter by starting at “1 or 2” and reading
sequences of as and bs:

If the NFA is in state(s)… and reads the character… it can end up in state(s)…

1 or 2 a 1 or 2

b 2 or 3

2 or 3 a none

b 1, 2, or 3

None a none

b none

1, 2, or 3 a 1 or 2

b 1, 2, or 3

This table completely describes a DFA, pictured below, that accepts the same strings
as the original NFA:

This DFA only has one more state than the NFA we started with, and
for some NFAs, this process can produce a DFA with fewer states than
the original machine. In the worst case, though, an NFA with n states
may require a DFA with 2n states, because there are a total of 2n possible
combinations of n states—think of representing each combination as a
different n-bit number, where the nth bit indicates whether state n is
included in that combination—and the simulation might need to be able
to visit all of them instead of just a few.

8. The worst-case scenario for a simulation of a three-state NFA is “1,” “2,” “3,” “1 or 2,” “1 or 3,” “2 or
3,” “1, 2, or 3” and “none.”

Equivalence | 97

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s try implementing this NFA-to-DFA conversion in Ruby. Our strategy is to intro-
duce a new class, NFASimulation, for collecting information about the simulation of an
NFA and then assembling that information into a DFA. An instance of NFASimulation
can be created for a specific NFADesign and will ultimately provide a #to_dfa_design
method for converting it to an equivalent DFADesign.

We already have an NFA class that can simulate an NFA, so NFASimulation can work by
creating and driving instances of NFA to find out how they respond to all possible inputs.
Before starting on NFASimulation, let’s go back to NFADesign and add an optional “cur-
rent states” parameter to NFADesign#to_nfa so that we can build an NFA instance with
any set of current states, not just the NFADesign’s start state:

class NFADesign
 def to_nfa(current_states = Set[start_state])
 NFA.new(current_states, accept_states, rulebook)
 end
end

Previously, the simulation of an NFA could only begin in its start state, but this new
parameter gives us a way of jumping in at any other point:

>> rulebook = NFARulebook.new([
 FARule.new(1, 'a', 1), FARule.new(1, 'a', 2), FARule.new(1, nil, 2),
 FARule.new(2, 'b', 3),
 FARule.new(3, 'b', 1), FARule.new(3, nil, 2)
])
=> #<struct NFARulebook rules=[…]>
>> nfa_design = NFADesign.new(1, [3], rulebook)
=> #<struct NFADesign start_state=1, accept_states=[3], rulebook=…>
>> nfa_design.to_nfa.current_states
=> #<Set: {1, 2}>
>> nfa_design.to_nfa(Set[2]).current_states
=> #<Set: {2}>
>> nfa_design.to_nfa(Set[3]).current_states
=> #<Set: {3, 2}>

The NFA class automatically takes account of free moves—we can see
that when our NFA is started in state 3, it’s already possible for it to be
in state 2 or 3 before it has read any input—so we won’t need to do
anything special in NFASimulation to support them.

Now we can create an NFA in any set of possible states, feed it a character, and see
what states it might end up in, which is a crucial step for converting an NFA into a
DFA. When our NFA is in state 2 or 3 and reads a b, what states can it be in afterward?

>> nfa = nfa_design.to_nfa(Set[2, 3])
=> #<struct NFA current_states=#<Set: {2, 3}>, accept_states=[3], rulebook=…>
>> nfa.read_character('b'); nfa.current_states
=> #<Set: {3, 1, 2}>

98 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

The answer: state 1, 2, or 3, as we already discovered during the manual conversion
process. (Remember that the order of elements in a Set doesn’t matter.)

Let’s use this idea by creating the NFASimulation class and giving it a method to calculate
how the state of the simulation will change in response to a particular input. We’re
thinking of the state of the simulation as being the current set of possible states for the
NFA (e.g., “1, 2, or 3”), so we can write a #next_state method that takes a simulation
state and a character, feeds that character to an NFA corresponding to that state, and
gets a new state back out by inspecting the NFA afterward:

class NFASimulation < Struct.new(:nfa_design)
 def next_state(state, character)
 nfa_design.to_nfa(state).tap { |nfa|
 nfa.read_character(character)
 }.current_states
 end
end

It’s easy to get confused between the two kinds of state we’re talking
about here. A single simulation state (the state parameter of NFASimula
tion#next_state) is a set of many NFA states, which is why we can pro-
vide it as NFADesign#to_nfa’s current_states argument.

This gives us a convenient way to explore the different states of the simulation:

>> simulation = NFASimulation.new(nfa_design)
=> #<struct NFASimulation nfa_design=…>
>> simulation.next_state(Set[1, 2], 'a')
=> #<Set: {1, 2}>
>> simulation.next_state(Set[1, 2], 'b')
=> #<Set: {3, 2}>
>> simulation.next_state(Set[3, 2], 'b')
=> #<Set: {1, 3, 2}>
>> simulation.next_state(Set[1, 3, 2], 'b')
=> #<Set: {1, 3, 2}>
>> simulation.next_state(Set[1, 3, 2], 'a')
=> #<Set: {1, 2}>

Now we need a way to systematically explore the simulation states and record our
discoveries as the states and rules of a DFA. We intend to use each simulation state
directly as a DFA state, so the first step is to implement NFASimulation#rules_for, which
builds all the rules leading from a particular simulation state by using #next_state to
discover the destination of each rule. “All the rules” means a rule for each possible input
character, so we also define an NFARulebook#alphabet helper method to tell us what
characters the original NFA can read:

class NFARulebook
 def alphabet
 rules.map(&:character).compact.uniq
 end
end

Equivalence | 99

www.it-ebooks.info

http://www.it-ebooks.info/

class NFASimulation
 def rules_for(state)
 nfa_design.rulebook.alphabet.map { |character|
 FARule.new(state, character, next_state(state, character))
 }
 end
end

As intended, this lets us see how different inputs will take the simulation between
different states:

>> rulebook.alphabet
=> ["a", "b"]
>> simulation.rules_for(Set[1, 2])
=> [
 #<FARule #<Set: {1, 2}> --a--> #<Set: {1, 2}>>,
 #<FARule #<Set: {1, 2}> --b--> #<Set: {3, 2}>>
]
>> simulation.rules_for(Set[3, 2])
=> [
 #<FARule #<Set: {3, 2}> --a--> #<Set: {}>>,
 #<FARule #<Set: {3, 2}> --b--> #<Set: {1, 3, 2}>>
]

The #rules_for method gives us a way of exploring outward from a known simulation
state and discovering new ones, and by doing this repeatedly, we can find all possible
simulation states. We can do this with an NFASimulation#discover_states_and_rules
method, which recursively finds more states in a similar way to NFARulebook#fol
low_free_moves:

class NFASimulation
 def discover_states_and_rules(states)
 rules = states.flat_map { |state| rules_for(state) }
 more_states = rules.map(&:follow).to_set

 if more_states.subset?(states)
 [states, rules]
 else
 discover_states_and_rules(states + more_states)
 end
 end
end

#discover_states_and_rules doesn’t care about the underlying struc-
ture of a simulation state, only that it can be used as an argument to
#rules_for, but as programmers, we have another opportunity for con-
fusion. The states and more_states variables are sets of simulation
states, but we know that each simulation state is itself a set of NFA states,
so states and more_states are actually sets of sets of NFA states.

Initially, we only know about a single state of the simulation: the set of possible states
of our NFA when we put it into its start state. #discover_states_and_rules explores

100 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

outward from this starting point, eventually finding all four states and eight rules of the
simulation:

>> start_state = nfa_design.to_nfa.current_states
=> #<Set: {1, 2}>
>> simulation.discover_states_and_rules(Set[start_state])
=> [
 #<Set: {
 #<Set: {1, 2}>,
 #<Set: {3, 2}>,
 #<Set: {}>,
 #<Set: {1, 3, 2}>
 }>,
 [
 #<FARule #<Set: {1, 2}> --a--> #<Set: {1, 2}>>,
 #<FARule #<Set: {1, 2}> --b--> #<Set: {3, 2}>>,
 #<FARule #<Set: {3, 2}> --a--> #<Set: {}>>,
 #<FARule #<Set: {3, 2}> --b--> #<Set: {1, 3, 2}>>,
 #<FARule #<Set: {}> --a--> #<Set: {}>>,
 #<FARule #<Set: {}> --b--> #<Set: {}>>,
 #<FARule #<Set: {1, 3, 2}> --a--> #<Set: {1, 2}>>,
 #<FARule #<Set: {1, 3, 2}> --b--> #<Set: {1, 3, 2}>>
]
]

The final thing we need to know for each simulation state is whether it should be treated
as an accept state, but that’s easy to check by asking the NFA at that point in the
simulation:

>> nfa_design.to_nfa(Set[1, 2]).accepting?
=> false
>> nfa_design.to_nfa(Set[2, 3]).accepting?
=> true

Now that we have all the pieces of the simulation DFA, we just need an NFASimula
tion#to_dfa_design method to wrap them up neatly as an instance of DFADesign:

class NFASimulation
 def to_dfa_design
 start_state = nfa_design.to_nfa.current_states
 states, rules = discover_states_and_rules(Set[start_state])
 accept_states = states.select { |state| nfa_design.to_nfa(state).accepting? }

 DFADesign.new(start_state, accept_states, DFARulebook.new(rules))
 end
end

And that’s it. We can build an NFASimulation instance with any NFA and turn it into a
DFA that accepts the same strings:

>> dfa_design = simulation.to_dfa_design
=> #<struct DFADesign …>
>> dfa_design.accepts?('aaa')
=> false
>> dfa_design.accepts?('aab')
=> true

Equivalence | 101

www.it-ebooks.info

http://www.it-ebooks.info/

>> dfa_design.accepts?('bbbabb')
=> true

Excellent!

At the beginning of this section, we asked whether the extra features of NFAs let us do
anything that we can’t do with a DFA. It’s clear now that the answer is no, because if
any NFA can be turned into a DFA that does the same job, NFAs can’t possibly have
any extra power. Nondeterminism and free moves are just a convenient repackaging
of what a DFA can already do, like syntactic sugar in a programming language, rather
than new capabilities that take us beyond what’s possible within the constraints of
determinism.

It’s theoretically interesting that adding more features to a simple machine didn’t make
it fundamentally any more capable, but it’s also useful in practice, because a DFA is
easier to simulate than an NFA: there’s only a single current state to keep track of, and
a DFA is simple enough to implement directly in hardware, or as machine code that
uses program locations as states and conditional branch instructions as rules. This
means that a regular expression implementation can convert a pattern into first an NFA
and then a DFA, resulting in a very simple machine that can be simulated quickly and
efficiently.

DFA Minimization
Some DFAs have the property of being minimal, which means there’s no way to design
a DFA with fewer states that will accept the same strings. The NFA-to-DFA conversion
process can sometimes produce nonminimal DFAs that contain redundant states, but
there’s an elegant way to eliminate this redundancy, known as Brzozowski’s algorithm:

1. Begin with your nonminimal DFA.

2. Reverse all of the rules. Visually, this means that every arrow in the machine’s
diagram stays in the same place but points backward; in code terms, every FAR
ule.new(state, character, next_state) is replaced with FARule.new(next_state,
character, state). Reversing the rules usually breaks the determinism con-
straints, so now you have an NFA.

3. Exchange the roles of start and accept states: the start state becomes an accept
state, and each of the accept states becomes a start state. (You can’t directly convert
all the accept states into start states because an NFA can only have one start state,
but you can get the same effect by creating a new start state and connecting it to
each of the old accept states with a free move.)

4. Convert this reversed NFA to a DFA in the usual way.

Surprisingly, the resulting DFA is guaranteed to be minimal and contain no redundant
states. The unhappy downside is that it will only accept reversed versions of the original
DFA’s strings: if our original DFA accepted the strings 'ab', 'aab', 'aaab', and so on,
the minimized DFA will accept strings of the form 'ba', 'baa', and 'baaa'. The trick is
to fix this by simply performing the whole procedure a second time, beginning with

102 | Chapter 3: The Simplest Computers

www.it-ebooks.info

http://www.it-ebooks.info/

the reversed DFA and ending up with a double-reversed DFA, which is again guaranteed
to be minimal but this time accepts the same strings as the machine we started with.

It’s nice to have an automatic way of eliminating redundancy in a design, but interest-
ingly, a minimized DFA is also canonical: any two DFAs that accept exactly the same
strings will minimize to the same design, so we can check whether two DFAs are equiv-
alent by minimizing them and comparing the resulting machine designs to see if they
have the same structure.9 This in turn gives us an elegant way of checking whether two
regular expressions are equivalent: if we convert two patterns that match the same
strings (e.g., ab(ab)* and a(ba)*b) into NFAs, convert those NFAs into DFAs, then
minimize both DFAs with Brzozowski’s algorithm, we’ll end up with two identical-
looking machines.

9. Solving this graph isomorphism problem requires a clever algorithm in itself, but informally, it’s easy
enough to look at two machine diagrams and decide whether they’re “the same.”

Equivalence | 103

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Just Add Power

In Chapter 3, we investigated finite automata, imaginary machines that strip away the
complexity of a real computer and reduce it to its simplest possible form. We explored
the behavior of those machines in detail and saw what they’re useful for; we also dis-
covered that, despite having an exotic method of execution, nondeterministic finite
automata have no more power than their more conventional deterministic counter-
parts.

The fact that we can’t make a finite automaton more capable by adding fancy features
like nondeterminism and free moves suggests that we’re stuck on a plateau, a level of
computational power that’s shared by all these simple machines, and that we can’t
break away from that plateau without making more drastic changes to the way the
machines work. So how much power do all these machines really have? Well, not much.
They’re limited to a very specific application—accepting or rejecting sequences of
characters—and even within that small scope, it’s still easy to come up with languages
that no machine can recognize.

For example, think about designing a finite state machine capable of reading a string
of opening and closing brackets and accepting that string only if the brackets are bal-
anced—that is, if each closing bracket can be paired up with an opening bracket from
earlier in the string.1

The general strategy for solving this problem is to read characters one at a time while
keeping track of a number that represents the current nesting level: reading an opening
bracket increases the nesting level, and reading a closing bracket decreases it. Whenever
the nesting level is zero, we know that the brackets we’ve read so far are balanced—
because the nesting level has gone up and come down by exactly the same amount—
and if we try to decrease the nesting level below zero, then we know we’ve seen too

1. This isn’t quite the same as accepting strings that merely contain equal numbers of opening and closing
brackets. The strings '()' and ')(' each contain a single opening and closing bracket, but only '()' is
balanced.

105

www.it-ebooks.info

http://www.it-ebooks.info/

many closing brackets (e.g., '())') and that the string must be unbalanced, no matter
what its remaining characters are.

We can make a respectable start at designing an NFA for this job. Here’s one with four
states:

Each state corresponds to a particular nesting level, and reading an opening or closing
bracket moves the machine into a state for a higher or lower level respectively, with
“no nesting” being the accept state. Since we’ve already implemented everything we
need to simulate this NFA in Ruby, let’s fire it up:

>> rulebook = NFARulebook.new([
 FARule.new(0, '(', 1), FARule.new(1, ')', 0),
 FARule.new(1, '(', 2), FARule.new(2, ')', 1),
 FARule.new(2, '(', 3), FARule.new(3, ')', 2)
])
=> #<struct NFARulebook rules=[…]>
>> nfa_design = NFADesign.new(0, [0], rulebook)
=> #<struct NFADesign start_state=0, accept_states=[0], rulebook=…>

Our NFA design works fine on certain inputs. It can tell that '(()' and '())' aren’t
balanced and that '(())' is, and it even has no problem spotting more elaborate bal-
anced strings like '(()(()()))':

>> nfa_design.accepts?('(()')
=> false
>> nfa_design.accepts?('())')
=> false
>> nfa_design.accepts?('(())')
=> true
>> nfa_design.accepts?('(()(()()))')
=> true

But the design has a serious flaw: it’ll fail as soon as the brackets become nested more
than three levels deep. It doesn’t have enough states to keep track of the nesting in a
string like '(((())))', so it rejects that string even though the brackets are clearly bal-
anced:

>> nfa_design.accepts?('(((())))')
=> false

We can fix this temporarily by adding more states. An NFA with five states can recog-
nize '(((())))' and any other balanced string with fewer than five levels of nesting,
and an NFA with ten, a hundred, or a thousand states can recognize any balanced string
whose nesting level stays within that machine’s hard limit. But how can we design an
NFA that can recognize any balanced string, to an arbitrary level of nesting? It turns
out that we can’t: a finite automaton must always have a finite number of states, so for

106 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

any given machine, there’s always a finite limit to how many levels of nesting it can
support, and we can always break it by asking about a string whose brackets nest one
level deeper than it can handle.

The underlying problem is that a finite automaton has only limited storage in the form
of its fixed collection of states, which means it has no way to keep track of an arbi-
trary amount of information. In the case of the balanced brackets problem, an NFA
can easily count up to some maximum number baked into its design, but it can’t keep
counting indefinitely to accommodate inputs of any possible size.2 This doesn’t matter
for jobs that are inherently fixed in size, like matching the literal string 'abc', or ones
where there’s no need to keep track of the amount of repetition, like matching the
regular expression ab*c, but it does make finite automata unable to handle tasks where
an unpredictable amount of information needs to be stored up during the computation
and reused later.

Regular Expressions and Nested Strings
We’ve seen that finite automata are intimately related to regular expressions. “Seman-
tics” on page 83 showed how to turn any regular expression into an NFA, and in fact,
there’s another algorithm for converting any NFA back into a regular expression
again.3 This tells us that regular expressions are equivalent to NFAs and have the same
limitations, so it can’t be possible to use a regular expression to recognize balanced
strings of brackets, or any other language whose definition involves pairs of things that
nest to an arbitrary depth.

Perhaps the best-known example of this weakness is the fact that regular expressions
can’t distinguish between valid and invalid HTML. Many HTML elements require
opening and closing tags to appear in pairs, and those pairs can themselves enclose
other elements, so finite automata don’t have enough power to read a string of HTML
while keeping track of which unclosed tags have been seen and how deeply they’re
nested.

In practice, though, real-world “regular expression” libraries often go beyond what
regular expressions are technically capable of. Ruby’s Regexp objects have many features
that aren’t part of the formal definition of regular expressions, and those bonus features
provide enough extra power to allow more languages to be recognized.

One of Regexp’s enhancements is the ability to label a subexpression with the (?
<name>) syntax and then “call” that subexpression elsewhere with \g<name>. Being able
to refer to its own subexpressions allows a Regexp to call itself recursively, which makes
it possible to match nested pairs to an arbitrary depth.

2. This doesn’t mean that an input string can ever actually be infinite, just that we can make it as finitely
large as we like.

3. Briefly, this algorithm works by converting an NFA into a generalized nondeterministic finite
automaton (GNFA), a finite state machine where each rule is labeled with a regular expression instead
of a single character, and then repeatedly merging the states and rules of the GNFA until there are
only two states and one rule left. The regular expression that labels that final rule always matches the
same strings as the original NFA.

Just Add Power | 107

www.it-ebooks.info

http://stackoverflow.com/a/1732454
http://stackoverflow.com/a/1732454
http://www.it-ebooks.info/

For example, subexpression calls let us write a Regexp that actually does match balanced
strings of brackets, even though NFAs (and therefore, technically, regular expressions)
can’t do it. Here’s what that Regexp looks like:

balanced =
 /
 \A # match beginning of string
 (?<brackets> # begin subexpression called "brackets"
 \(# match a literal opening bracket
 \g<brackets>* # match "brackets" subexpression zero or more times
 \) # match a literal closing bracket
) # end subexpression
 * # repeat the whole pattern zero or more times
 \z # match end of string
 /x

The (?<brackets>…) subexpression matches a single pair of opening and closing brack-
ets, but inside that pair, it can match any number of recursive occurrences of itself, so
the whole pattern can correctly identify brackets nested to any depth:

>> ['(()', '())', '(())', '(()(()()))', '((((((((((()))))))))))'].grep(balanced)
=> ["(())", "(()(()()))", "((((((((((()))))))))))"]

This only works because Ruby’s regular expression engine uses a call stack to keep track
of the recursive invocations of (?<brackets>…), something that DFAs and NFAs can’t
do. In the next section, we’ll see how to extend finite automata to give them exactly
this sort of power.

And yes, you could use the same idea to write a Regexp that matches properly nested
HTML tags, but it’s guaranteed not to be a good use of your time.

It’s clear that there are limitations to these machines’ capabilities. If nondeterminism
isn’t enough to make a finite automaton more capable, what else can we do to give it
more power? The current problems stem from the machines’ limited storage, so let’s
add some extra storage and see what happens.

Deterministic Pushdown Automata
We can solve the storage problem by extending a finite state machine with some dedi-
cated scratch space where data can be kept during computation. This space gives the
machine a sort of external memory in addition to the limited internal memory provided
by its state—and as we’ll discover, having an external memory makes all the difference
to a machine’s computational power.

Storage
A simple way to add storage to a finite automaton is to give it access to a stack, a last-
in first-out data structure that characters can be pushed onto and then popped off again.
A stack is a simple and restrictive data structure—only the top character is accessible
at any one time, we have to discard the top character to find out what’s underneath it,

108 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

and once we’ve pushed a sequence of characters onto the stack, we can only pop them
off in reverse order—but it does neatly deal with the problem of limited storage. There’s
no built-in limit to the size of a stack, so in principle, it can grow to hold as much data
as necessary.4

A finite state machine with a built-in stack is called a pushdown automaton (PDA), and
when that machine’s rules are deterministic, we call it a deterministic pushdown au-
tomaton (DPDA). Having access to a stack opens up new possibilities; for example, it’s
easy to design a DPDA that recognizes balanced strings of brackets. Here’s how it
works:

• Give the machine two states, 1 and 2, with state 1 being the accept state.

• Start the machine in state 1 with an empty stack.

• When in state 1 and an opening bracket is read, push some character—let’s use
b for “bracket”—onto the stack and move into state 2.

• When in state 2 and an opening bracket is read, push the character b onto the stack.

• When in state 2 and a closing bracket is read, pop the character b off the stack.

• When in state 2 and the stack is empty, move back into state 1.

This DPDA uses the size of the stack to count how many unclosed opening brackets
it’s seen so far. When the stack’s empty it means that every opening bracket has been
closed, so the string must be balanced. Watch how the stack grows and shrinks as the
machine reads the string '(()(()()))':

State Accepting? Stack contents Remaining input Action

1 yes (()(()())) read (, push b, go to state 2

2 no b ()(()())) read (, push b

2 no bb)(()())) read), pop b

2 no b (()())) read (, push b

2 no bb ()())) read (, push b

2 no bbb)())) read), pop b

2 no bb ())) read (, push b

2 no bbb))) read), pop b

2 no bb)) read), pop b

2 no b) read), pop b

2 no go to state 1

1 yes —

4. Of course, any real-world implementation of a stack is always going to be limited by the size of a
computer’s RAM, or the free space on its hard drive, or the number of atoms in the universe, but for the
purposes of our thought experiment, we’ll assume that none of those constraints exist.

Deterministic Pushdown Automata | 109

www.it-ebooks.info

http://www.it-ebooks.info/

Rules
The idea behind the balanced-brackets DPDA is straightforward, but there are some
fiddly technical details to work out before we can actually build it. First of all, we have
to decide exactly how pushdown automata rules should work. There are several design
issues here:

• Does every rule have to modify the stack, or read input, or change state, or all three?

• Should there be two different kinds of rule for pushing and popping?

• Do we need a special kind of rule for changing state when the stack is empty?

• Is it okay to change state without reading from the input, like a free move in an
NFA?

• If a DPDA can change state spontaneously like that, what does “deterministic”
mean?

We can answer all of these questions by choosing a single rule style that is flexible
enough to support everything we need. We’ll break down a PDA rule into five parts:

• The current state of the machine

• The character that must be read from the input (optional)

• The next state of the machine

• The character that must be popped off the stack

• The sequence of characters to push onto the stack after the top character has been
popped off

The first three parts are familiar from DFA and NFA rules. If a rule doesn’t want the
machine to change state, it can make the next state the same as the current one; if it
doesn’t want to read any input (i.e., a free move), it can omit the input character, as
long as that doesn’t make the machine nondeterministic (see “Determin-
ism” on page 111).

The other two parts—a character to pop and a sequence of characters to push—are
specific to PDAs. The assumption is that a PDA will always pop the top character off
the stack, and then push some other characters onto the stack, every time it follows a
rule. Each rule declares which character it wants to pop, and the rule will only apply
when that character is on the top of the stack; if the rule wants that character to stay
on the stack instead of getting popped, it can include it in the sequence of characters
that get pushed back on afterward.

This five-part rule format doesn’t give us a way to write rules that apply when the stack
is empty, but we can work around that by choosing a special character to mark the
bottom of the stack—the dollar sign, $, is a popular choice—and then checking for
that character whenever we want to detect the empty stack. When using this conven-
tion, it’s important that the stack never becomes truly empty, because no rule can apply
when there’s nothing on the top of the stack. The machine should start with the special

110 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

bottom symbol already on the stack, and any rule that pops that symbol must push it
back on again afterward.

It’s easy enough to rewrite the balanced-bracket DPDA’s rules in this format:

• When in state 1 and an opening bracket is read, pop the character $, push the
characters b$, and move into state 2.

• When in state 2 and an opening bracket is read, pop the character b, push the
characters bb, and stay in state 2.

• When in state 2 and a closing bracket is read, pop the character b, push no char-
acters, and stay in state 2.

• When in state 2 (without reading any character), pop the character $, push the
character $, and move into state 1.

We can show these rules on a diagram of the machine. A DPDA diagram looks a lot
like an NFA diagram, except that each arrow needs to be labelled with the characters
that are popped and pushed by that rule as well as the character that it reads from the
input. If we use the notation a;b/cd to label a rule that reads a from the input, pops b
from the stack, and then pushes cd onto the stack, the machine looks like this:

Determinism
The next hurdle is to define exactly what it means for a PDA to be deterministic. For
DFAs, we had the “no contradictions” constraint: there should be no states where the
machine’s next move is ambiguous because of conflicting rules. The same idea applies
to DPDAs, so for example, we can only have one rule that applies when the machine’s
in state 2, the next input character is an opening bracket, and there’s a b on the top of
the stack. It’s even okay to write a free move rule that doesn’t read any input, as long
as there aren’t any other rules for the same state and top-of-stack character, because
that would create an ambiguity about whether or not a character should be read from
the input.

DFAs also have a “no omissions” constraint—there should be a rule for every possible
situation—but that idea becomes unwieldy for DPDAs because of the large number of
possible combinations of state, input character, and top-of-stack character. It’s con-
ventional to just ignore this constraint and allow DPDAs to specify only the interesting
rules that they need to get their job done, and assume that a DPDA will go into an

Deterministic Pushdown Automata | 111

www.it-ebooks.info

http://www.it-ebooks.info/

implicit stuck state if it gets into a situation where none of its rules apply. This is what
happens to our balanced-brackets DPDA when it reads a string like ')' or '())', be-
cause there’s no rule for reading a closing bracket while in state 1.

Simulation
Now that we’ve dealt with the technical details, let’s build a Ruby simulation of a
deterministic pushdown automaton so we can interact with it. We already did most of
the hard work when we simulated DFAs and NFAs, so this’ll just take a bit of fine-
tuning.

The most important thing we’re missing is a stack. Here’s one way of implementing a
Stack class:

class Stack < Struct.new(:contents)
 def push(character)
 Stack.new([character] + contents)
 end

 def pop
 Stack.new(contents.drop(1))
 end

 def top
 contents.first
 end

 def inspect
 "#<Stack (#{top})#{contents.drop(1).join}>"
 end
end

A Stack object stores its contents in an underlying array and exposes simple #push and
#pop operations to push characters onto the stack and pop them off, plus a #top oper-
ation to read the character at the top of the stack:

>> stack = Stack.new(['a', 'b', 'c', 'd', 'e'])
=> #<Stack (a)bcde>
>> stack.top
=> "a"
>> stack.pop.pop.top
=> "c"
>> stack.push('x').push('y').top
=> "y"
>> stack.push('x').push('y').pop.top
=> "x"

112 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

This is a purely functional stack. The #push and #pop methods are non-
destructive: they each return a new Stack instance rather than modifying
the existing one. Creating a new object every time makes this imple-
mentation less efficient than a conventional stack with destructive
#push and #pop operations (and we could just use Array directly if we
wanted that) but also makes it easier to work with, because we don’t
need to worry about the consequences of modifying a Stack that’s being
used in more than one place.

In Chapter 3, we saw that we can simulate a deterministic finite automaton by keeping
track of just one piece of information—the DFA’s current state—and then using the
rulebook to update that information each time a character is read from the input. But
there are two important things to know about a pushdown automaton at each step of
its computation: what its current state is, and what the current contents of its stack are.
If we use the word configuration to refer to this combination of a state and a stack, we
can talk about a pushdown automaton moving from one configuration to another as
it reads input characters, which is easier than always having to refer to the state and
stack separately. Viewed this way, a DPDA just has a current configuration, and the
rulebook tells us how to turn the current configuration into the next configuration each
time we read a character.

Here’s a PDAConfiguration class to hold the configuration of a PDA—a state and a stack
—and a PDARule class to represent one rule in a PDA’s rulebook:5

class PDAConfiguration < Struct.new(:state, :stack)
end

class PDARule < Struct.new(:state, :character, :next_state,
 :pop_character, :push_characters)
 def applies_to?(configuration, character)
 self.state == configuration.state &&
 self.pop_character == configuration.stack.top &&
 self.character == character
 end
end

A rule only applies when the machine’s state, topmost stack character, and next input
character all have the values it expects:

>> rule = PDARule.new(1, '(', 2, '$', ['b', '$'])
=> #<struct PDARule
 state=1,
 character="(",
 next_state=2,
 pop_character="$",
 push_characters=["b", "$"]
 >

5. These class names begin with PDA, rather than DPDA, because their implementations don’t make any
assumptions about determinism, so they’d work just as well for simulating a nondeterministic PDA.

Deterministic Pushdown Automata | 113

www.it-ebooks.info

http://www.it-ebooks.info/

>> configuration = PDAConfiguration.new(1, Stack.new(['$']))
=> #<struct PDAConfiguration state=1, stack=#<Stack ($)>>
>> rule.applies_to?(configuration, '(')
=> true

For a finite automaton, following a rule just means changing from one state to another,
but a PDA rule updates the stack contents as well as the state, so PDARule#follow needs
to take the machine’s current configuration as an argument and return the next one:

class PDARule
 def follow(configuration)
 PDAConfiguration.new(next_state, next_stack(configuration))
 end

 def next_stack(configuration)
 popped_stack = configuration.stack.pop

 push_characters.reverse.
 inject(popped_stack) { |stack, character| stack.push(character) }
 end
end

If we push several characters onto a stack and then pop them off, they
come out in the opposite order:

>> stack = Stack.new(['$']).push('x').push('y').push('z')
=> #<Stack (z)yx$>
>> stack.top
=> "z"
>> stack = stack.pop; stack.top
=> "y"
>> stack = stack.pop; stack.top
=> "x"

PDARule#next_stack anticipates this by reversing the push_characters
array before pushing its characters onto the stack. For example, the last
character in push_characters is the actually the first one to be pushed
onto the stack, so it’ll be the last to be popped off again. This is just a
convenience so that we can read a rule’s push_characters as the se-
quence of characters (in “popping order”) that will be on top of the stack
after the rule is applied, without having to worry about the mechanics
of how they get on there.

So, if we have a PDARule that applies to a PDAConfiguration, we can follow it to find out
what the next state and stack will be:

>> rule.follow(configuration)
=> #<struct PDAConfiguration state=2, stack=#<Stack (b)$>>

This gives us enough to implement a rulebook for DPDAs. The implementation is very
similar to the DFARulebook from “Simulation” on page 66:

class DPDARulebook < Struct.new(:rules)
 def next_configuration(configuration, character)

114 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

 rule_for(configuration, character).follow(configuration)
 end

 def rule_for(configuration, character)
 rules.detect { |rule| rule.applies_to?(configuration, character) }
 end
end

Now we can assemble the rulebook for the balanced-brackets DPDA and try stepping
through a few configurations and input characters by hand:

>> rulebook = DPDARulebook.new([
 PDARule.new(1, '(', 2, '$', ['b', '$']),
 PDARule.new(2, '(', 2, 'b', ['b', 'b']),
 PDARule.new(2, ')', 2, 'b', []),
 PDARule.new(2, nil, 1, '$', ['$'])
])
=> #<struct DPDARulebook rules=[…]>
>> configuration = rulebook.next_configuration(configuration, '(')
=> #<struct PDAConfiguration state=2, stack=#<Stack (b)$>>
>> configuration = rulebook.next_configuration(configuration, '(')
=> #<struct PDAConfiguration state=2, stack=#<Stack (b)b$>>
>> configuration = rulebook.next_configuration(configuration, ')')
=> #<struct PDAConfiguration state=2, stack=#<Stack (b)$>>

Instead of doing this job manually, let’s use the rulebook to build a DPDA object that
can keep track of the machine’s current configuration as it reads characters from the
input:

class DPDA < Struct.new(:current_configuration, :accept_states, :rulebook)
 def accepting?
 accept_states.include?(current_configuration.state)
 end

 def read_character(character)
 self.current_configuration =
 rulebook.next_configuration(current_configuration, character)
 end

 def read_string(string)
 string.chars.each do |character|
 read_character(character)
 end
 end
end

So we can create a DPDA, feed it input, and see whether it’s accepted it:

>> dpda = DPDA.new(PDAConfiguration.new(1, Stack.new(['$'])), [1], rulebook)
=> #<struct DPDA …>
>> dpda.accepting?
=> true
>> dpda.read_string('(()'); dpda.accepting?
=> false
>> dpda.current_configuration
=> #<struct PDAConfiguration state=2, stack=#<Stack (b)$>>

Deterministic Pushdown Automata | 115

www.it-ebooks.info

http://www.it-ebooks.info/

Fine so far, but the rulebook we’re using contains a free move, so the simulation needs
to support free moves before it’ll work properly. Let’s add a DPDARulebook helper
method for dealing with free moves, similar to the one in NFARulebook (see “Free
Moves” on page 76):

class DPDARulebook
 def applies_to?(configuration, character)
 !rule_for(configuration, character).nil?
 end

 def follow_free_moves(configuration)
 if applies_to?(configuration, nil)
 follow_free_moves(next_configuration(configuration, nil))
 else
 configuration
 end
 end
end

DPDARulebook#follow_free_moves will repeatedly follow any free moves that apply to
the current configuration, stopping when there are none:

>> configuration = PDAConfiguration.new(2, Stack.new(['$']))
=> #<struct PDAConfiguration state=2, stack=#<Stack ($)>>
>> rulebook.follow_free_moves(configuration)
=> #<struct PDAConfiguration state=1, stack=#<Stack ($)>>

For the first time in our experiments with state machines, this introduces
the possibility of an infinite loop in the simulation. A loop can happen
whenever there’s a chain of free moves that begins and ends at the same
state; the simplest example is when there’s one free move that doesn’t
change the configuration at all:

>> DPDARulebook.new([PDARule.new(1, nil, 1, '$', ['$'])]).
 follow_free_moves(PDAConfiguration.new(1, Stack.new(['$'])))
SystemStackError: stack level too deep

These infinite loops aren’t useful, so we’ll just take care to avoid them
in any pushdown automata we design.

We also need to wrap the default implementation of DPDA#current_configuration to
take advantage of the rulebook’s free move support:

class DPDA
 def current_configuration
 rulebook.follow_free_moves(super)
 end
end

Now we have a simulation of a DPDA that we can start up, feed characters to, and
check for acceptance:

>> dpda = DPDA.new(PDAConfiguration.new(1, Stack.new(['$'])), [1], rulebook)
=> #<struct DPDA …>
>> dpda.read_string('(()('); dpda.accepting?

116 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

=> false
>> dpda.current_configuration
=> #<struct PDAConfiguration state=2, stack=#<Stack (b)b$>>
>> dpda.read_string('))()'); dpda.accepting?
=> true
>> dpda.current_configuration
=> #<struct PDAConfiguration state=1, stack=#<Stack ($)>>

If we wrap this simulation up in a DPDADesign as usual, we can easily check as many
strings as we like:

class DPDADesign < Struct.new(:start_state, :bottom_character,
 :accept_states, :rulebook)
 def accepts?(string)
 to_dpda.tap { |dpda| dpda.read_string(string) }.accepting?
 end

 def to_dpda
 start_stack = Stack.new([bottom_character])
 start_configuration = PDAConfiguration.new(start_state, start_stack)
 DPDA.new(start_configuration, accept_states, rulebook)
 end
end

As expected, our DPDA design can recognize complex strings of balanced brackets
nested to arbitrary depth:

>> dpda_design = DPDADesign.new(1, '$', [1], rulebook)
=> #<struct DPDADesign …>
>> dpda_design.accepts?('(((((((((())))))))))')
=> true
>> dpda_design.accepts?('()(())((()))(()(()))')
=> true
>> dpda_design.accepts?('(()(()(()()(()()))()')
=> false

There’s one final detail to take care of. Our simulation works perfectly on inputs that
leave the DPDA in a valid state, but it blows up when the machine gets stuck:

>> dpda_design.accepts?('())')
NoMethodError: undefined method `follow' for nil:NilClass

This happens because DPDARulebook#next_configuration assumes it will be able to find
an applicable rule, so we shouldn’t call it when none of the rules apply. We’ll fix the
problem by modifying DPDA#read_character to check for a usable rule and, if there isn’t
one, put the DPDA into a special stuck state that it can never move out of:

class PDAConfiguration
 STUCK_STATE = Object.new

 def stuck
 PDAConfiguration.new(STUCK_STATE, stack)
 end

 def stuck?
 state == STUCK_STATE

Deterministic Pushdown Automata | 117

www.it-ebooks.info

http://www.it-ebooks.info/

 end
end

class DPDA
 def next_configuration(character)
 if rulebook.applies_to?(current_configuration, character)
 rulebook.next_configuration(current_configuration, character)
 else
 current_configuration.stuck
 end
 end

 def stuck?
 current_configuration.stuck?
 end

 def read_character(character)
 self.current_configuration = next_configuration(character)
 end

 def read_string(string)
 string.chars.each do |character|
 read_character(character) unless stuck?
 end
 end
end

Now the DPDA will gracefully become stuck instead of blowing up:

>> dpda = DPDA.new(PDAConfiguration.new(1, Stack.new(['$'])), [1], rulebook)
=> #<struct DPDA …>
>> dpda.read_string('())'); dpda.current_configuration
=> #<struct PDAConfiguration state=#<Object>, stack=#<Stack ($)>>
>> dpda.accepting?
=> false
>> dpda.stuck?
=> true
>> dpda_design.accepts?('())')
=> false

Nondeterministic Pushdown Automata
While the balanced-brackets machine does need the stack to do its job, it’s really only
using the stack as a counter, and its rules are only interested in the distinction between
“the stack is empty” and “the stack isn’t empty.” More sophisticated DPDAs will push
more than one kind of symbol onto the stack and make use of that information as they
perform a computation. A simple example is a machine for recognizing strings that
contain equal numbers of two characters, say a and b:

118 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

Our simulation shows that it does the job:

>> rulebook = DPDARulebook.new([
 PDARule.new(1, 'a', 2, '$', ['a', '$']),
 PDARule.new(1, 'b', 2, '$', ['b', '$']),
 PDARule.new(2, 'a', 2, 'a', ['a', 'a']),
 PDARule.new(2, 'b', 2, 'b', ['b', 'b']),
 PDARule.new(2, 'a', 2, 'b', []),
 PDARule.new(2, 'b', 2, 'a', []),
 PDARule.new(2, nil, 1, '$', ['$'])
])
=> #<struct DPDARulebook rules=[…]>
>> dpda_design = DPDADesign.new(1, '$', [1], rulebook)
=> #<struct DPDADesign …>
>> dpda_design.accepts?('ababab')
=> true
>> dpda_design.accepts?('bbbaaaab')
=> true
>> dpda_design.accepts?('baa')
=> false

This is similar to the balanced-brackets machine, except its behavior is controlled by
which character is uppermost on the stack. An a on the top of the stack means that the
machine’s seen a surplus of as, so any extra as read from the input will accumulate on
the stack, and each b read will pop an a off the stack to cancel it out; conversely, when
there’s a b on the stack, it’s the bs that accumulate and the as that cancel them out.

Even this DPDA isn’t taking full advantage of the stack, though. There’s never any
interesting history stored up beneath the top character, just a featureless pile of as or
bs, so we can achieve the same result by pushing only one kind of character onto the
stack (i.e., treating it as a simple counter again) and using two separate states to dis-
tinguish “counting surplus as” from “counting surplus bs”:

Nondeterministic Pushdown Automata | 119

www.it-ebooks.info

http://www.it-ebooks.info/

To really exploit the potential of the stack, we need a tougher problem that’ll force us
to store structured information. The classic example is recognizing palindromes: as we
read the input string, character by character, we have to remember what we see; once
we pass the halfway point, we check our memory to decide whether the characters we
saw earlier are now appearing in reverse order. Here’s a DPDA that can recognize pal-
indromes made up of a and b characters, as long as they have an m character (for “mid-
dle”) at the halfway point of the string:

This machine starts in state 1, repeatedly reading as and bs from the input and pushing
them onto the stack. When it reads an m, it moves into state 2, where it keeps reading
input characters while trying to pop each one off the stack. If every character in the
second half of the string matches the stack contents as they’re popped off, the machine
stays in state 2 and eventually hits the $ at the bottom of the stack, at which point it
moves into state 3 and accepts the input string. If any of the characters it reads while
in state 2 don’t match what’s on the top of the stack, there’s no rule for it to follow, so
it’ll go into a stuck state and reject the string.

120 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

We can simulate this DPDA to check that it works:

>> rulebook = DPDARulebook.new([
 PDARule.new(1, 'a', 1, '$', ['a', '$']),
 PDARule.new(1, 'a', 1, 'a', ['a', 'a']),
 PDARule.new(1, 'a', 1, 'b', ['a', 'b']),
 PDARule.new(1, 'b', 1, '$', ['b', '$']),
 PDARule.new(1, 'b', 1, 'a', ['b', 'a']),
 PDARule.new(1, 'b', 1, 'b', ['b', 'b']),
 PDARule.new(1, 'm', 2, '$', ['$']),
 PDARule.new(1, 'm', 2, 'a', ['a']),
 PDARule.new(1, 'm', 2, 'b', ['b']),
 PDARule.new(2, 'a', 2, 'a', []),
 PDARule.new(2, 'b', 2, 'b', []),
 PDARule.new(2, nil, 3, '$', ['$'])
])
=> #<struct DPDARulebook rules=[…]>
>> dpda_design = DPDADesign.new(1, '$', [3], rulebook)
=> #<struct DPDADesign …>
>> dpda_design.accepts?('abmba')
=> true
>> dpda_design.accepts?('babbamabbab')
=> true
>> dpda_design.accepts?('abmb')
=> false
>> dpda_design.accepts?('baambaa')
=> false

That’s great, but the m in the middle of the input string is a cop-out. Why can’t we
design a machine that just recognizes palindromes—aa, abba, babbaabbab, etc.—
without having to put a marker halfway through?

The machine has to change from state 1 to state 2 as soon as it reaches the halfway
point of the string, and without a marker, it has no way of knowing when to do that.
As we’ve seen before with NFAs, these “how do I know when to…?” problems can be
solved by relaxing the determinism constraints and allowing the machine the freedom
to make that vital state change at any point, so that it’s possible for it to accept a pal-
indrome by following the right rule at the right time.

Unsurprisingly, a pushdown automaton without determinism constraints is called a
nondeterministic pushdown automaton. Here’s one for recognizing palindromes with
an even number of letters:6

6. The “even number of letters” restriction keeps the machine simple: a palindrome of length 2n can be
accepted by pushing n characters onto the stack and then popping n characters off. To recognize any
palindrome requires a few more rules going from state 1 to state 2.

Nondeterministic Pushdown Automata | 121

www.it-ebooks.info

http://www.it-ebooks.info/

This is identical to the DPDA version except for the rules that lead from state 1 to state
2: in the DPDA, they read an m from the input, but here they’re free moves. This gives
the NPDA the opportunity to change state anywhere during the input string without
needing a marker.

Simulation
A nondeterministic machine is more difficult to simulate than a deterministic one, but
we’ve already done the hard work for NFAs in “Nondeterminism” on page 70, and we
can reuse the same ideas for NPDAs. We need an NPDARulebook for holding a nonde-
terministic collection of PDARules, and its implementation is almost exactly the same as
NFARulebook:

require 'set'

class NPDARulebook < Struct.new(:rules)
 def next_configurations(configurations, character)
 configurations.flat_map { |config| follow_rules_for(config, character) }.to_set
 end

 def follow_rules_for(configuration, character)
 rules_for(configuration, character).map { |rule| rule.follow(configuration) }
 end

 def rules_for(configuration, character)
 rules.select { |rule| rule.applies_to?(configuration, character) }
 end
end

In “Nondeterminism” on page 70, we simulated an NFA by keeping track of a Set of
possible states; here we’re simulating an NPDA with a Set of possible configurations.

Our rulebook needs the usual support for free moves, again virtually identical to NFAR
ulebook’s implementation:

class NPDARulebook
 def follow_free_moves(configurations)
 more_configurations = next_configurations(configurations, nil)

122 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

 if more_configurations.subset?(configurations)
 configurations
 else
 follow_free_moves(configurations + more_configurations)
 end
 end
end

And we need an NPDA class to wrap up a rulebook alongside the Set of current config-
urations:

class NPDA < Struct.new(:current_configurations, :accept_states, :rulebook)
 def accepting?
 current_configurations.any? { |config| accept_states.include?(config.state) }
 end

 def read_character(character)
 self.current_configurations =
 rulebook.next_configurations(current_configurations, character)
 end

 def read_string(string)
 string.chars.each do |character|
 read_character(character)
 end
 end

 def current_configurations
 rulebook.follow_free_moves(super)
 end
end

This lets us step through a simulation of all possible configurations of an NPDA as each
character is read:

>> rulebook = NPDARulebook.new([
 PDARule.new(1, 'a', 1, '$', ['a', '$']),
 PDARule.new(1, 'a', 1, 'a', ['a', 'a']),
 PDARule.new(1, 'a', 1, 'b', ['a', 'b']),
 PDARule.new(1, 'b', 1, '$', ['b', '$']),
 PDARule.new(1, 'b', 1, 'a', ['b', 'a']),
 PDARule.new(1, 'b', 1, 'b', ['b', 'b']),
 PDARule.new(1, nil, 2, '$', ['$']),
 PDARule.new(1, nil, 2, 'a', ['a']),
 PDARule.new(1, nil, 2, 'b', ['b']),
 PDARule.new(2, 'a', 2, 'a', []),
 PDARule.new(2, 'b', 2, 'b', []),
 PDARule.new(2, nil, 3, '$', ['$'])
])
=> #<struct NPDARulebook rules=[…]>
>> configuration = PDAConfiguration.new(1, Stack.new(['$']))
=> #<struct PDAConfiguration state=1, stack=#<Stack ($)>>
>> npda = NPDA.new(Set[configuration], [3], rulebook)
=> #<struct NPDA …>
>> npda.accepting?
=> true

Nondeterministic Pushdown Automata | 123

www.it-ebooks.info

http://www.it-ebooks.info/

>> npda.current_configurations
=> #<Set: {
 #<struct PDAConfiguration state=1, stack=#<Stack ($)>>,
 #<struct PDAConfiguration state=2, stack=#<Stack ($)>>,
 #<struct PDAConfiguration state=3, stack=#<Stack ($)>>
 }>
>> npda.read_string('abb'); npda.accepting?
=> false
>> npda.current_configurations
=> #<Set: {
 #<struct PDAConfiguration state=1, stack=#<Stack (b)ba$>>,
 #<struct PDAConfiguration state=2, stack=#<Stack (a)$>>,
 #<struct PDAConfiguration state=2, stack=#<Stack (b)ba$>>
 }>
>> npda.read_character('a'); npda.accepting?
=> true
>> npda.current_configurations
=> #<Set: {
 #<struct PDAConfiguration state=1, stack=#<Stack (a)bba$>>,
 #<struct PDAConfiguration state=2, stack=#<Stack ($)>>,
 #<struct PDAConfiguration state=2, stack=#<Stack (a)bba$>>,
 #<struct PDAConfiguration state=3, stack=#<Stack ($)>>
 }>

And finally an NPDADesign class for testing strings directly:

class NPDADesign < Struct.new(:start_state, :bottom_character,
 :accept_states, :rulebook)
 def accepts?(string)
 to_npda.tap { |npda| npda.read_string(string) }.accepting?
 end

 def to_npda
 start_stack = Stack.new([bottom_character])
 start_configuration = PDAConfiguration.new(start_state, start_stack)
 NPDA.new(Set[start_configuration], accept_states, rulebook)
 end
end

Now we can check that our NPDA actually does recognize palindromes:

>> npda_design = NPDADesign.new(1, '$', [3], rulebook)
=> #<struct NPDADesign …>
>> npda_design.accepts?('abba')
=> true
>> npda_design.accepts?('babbaabbab')
=> true
>> npda_design.accepts?('abb')
=> false
>> npda_design.accepts?('baabaa')
=> false

Looks good! Nondeterminism has apparently given us the power to recognize lan-
guages that deterministic machines can’t handle.

124 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

Nonequivalence
But wait: we saw in “Equivalence” on page 94 that nondeterministic machines without
a stack are exactly equivalent in power to deterministic ones. Our Ruby NFA simulation
behaved like a DFA—moving between a finite number of “simulation states” as it read
each character of the input string—which gave us a way to turn any NFA into a DFA
that accepts the same strings. So has nondeterminism really given us any extra power,
or does our Ruby NPDA simulation just behave like a DPDA? Is there an algorithm for
converting any nondeterministic pushdown automaton into a deterministic one?

Well, no, it turns out that there isn’t. The NFA-to-DFA trick only works because we
can use a single DFA state to represent many possible NFA states. To simulate an NFA,
we only need to keep track of what states it could currently be in, then pick a different
set of possible states each time we read an input character, and a DFA can easily do
that job if we give it the right rules.

But that trick doesn’t work for PDAs: we can’t usefully represent multiple NPDA con-
figurations as a single DPDA configuration. The problem, unsurprisingly, is the stack.
An NPDA simulation needs to know all the characters that could currently be on top
of the stack, and it must be able to pop and push several of the simulated stacks si-
multaneously. There’s no way to combine all the possible stacks into a single stack so
that a DPDA can still see all the topmost characters and access every possible stack
individually. We didn’t have any difficulty writing a Ruby program to do all this, but
a DPDA just isn’t powerful enough to handle it.

So unfortunately, our NPDA simulation does not behave like a DPDA, and there isn’t
an NPDA-to-DPDA algorithm. The unmarked palindrome problem is an example of a
job where an NPDA can do something that a DPDA can’t, so nondeterministic push-
down automata really do have more power than deterministic ones.

Parsing with Pushdown Automata
“Regular Expressions” on page 79 showed how nondeterministic finite automata can
be used to implement regular expression matching. Pushdown automata have an im-
portant practical application too: they can be used to parse programming languages.

We already saw in “Implementing Parsers” on page 58 how to use Treetop to build a
parser for part of the SIMPLE language. Treetop parsers use a single parsing expression
grammar to describe the complete syntax of the language being parsed, but that’s a
relatively modern idea. A more traditional approach is to break the parsing process
apart into two separate stages:

Lexical analysis
Read a raw string of characters and turn it into a sequence of tokens. Each token
represents an individual building block of program syntax, like “variable name,”
“opening bracket,” or “while keyword.” A lexical analyzer uses a language-specific

Parsing with Pushdown Automata | 125

www.it-ebooks.info

http://www.it-ebooks.info/

set of rules called a lexical grammar to decide which sequences of characters should
produce which tokens. This stage deals with messy character-level details like vari-
able-naming rules, comments, and whitespace, leaving a clean sequence of tokens
for the next stage to consume.

Syntactic analysis
Read a sequence of tokens and decide whether they represent a valid program
according to the syntactic grammar of the language being parsed. If the program is
valid, the syntactic analyzer may produce additional information about its struc-
ture (e.g., a parse tree).

Lexical Analysis
The lexical analysis stage is usually pretty straightforward. It can be done with regular
expressions (and therefore by an NFA), because it involves simply matching a flat se-
quence of characters against some rules and deciding whether those characters look
like a keyword, a variable name, an operator, or whatever else. Here’s some quick-and-
dirty Ruby code to chop up a SIMPLE program into tokens:

class LexicalAnalyzer < Struct.new(:string)
 GRAMMAR = [
 { token: 'i', pattern: /if/ }, # if keyword
 { token: 'e', pattern: /else/ }, # else keyword
 { token: 'w', pattern: /while/ }, # while keyword
 { token: 'd', pattern: /do-nothing/ }, # do-nothing keyword
 { token: '(', pattern: /\(/ }, # opening bracket
 { token: ')', pattern: /\)/ }, # closing bracket
 { token: '{', pattern: /\{/ }, # opening curly bracket
 { token: '}', pattern: /\}/ }, # closing curly bracket
 { token: ';', pattern: /;/ }, # semicolon
 { token: '=', pattern: /=/ }, # equals sign
 { token: '+', pattern: /\+/ }, # addition sign
 { token: '*', pattern: /*/ }, # multiplication sign
 { token: '<', pattern: /</ }, # less-than sign
 { token: 'n', pattern: /[0-9]+/ }, # number
 { token: 'b', pattern: /true|false/ }, # boolean
 { token: 'v', pattern: /[a-z]+/ } # variable name
]

 def analyze
 [].tap do |tokens|
 while more_tokens?
 tokens.push(next_token)
 end
 end
 end

 def more_tokens?
 !string.empty?
 end

 def next_token

126 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

 rule, match = rule_matching(string)
 self.string = string_after(match)
 rule[:token]
 end

 def rule_matching(string)
 matches = GRAMMAR.map { |rule| match_at_beginning(rule[:pattern], string) }
 rules_with_matches = GRAMMAR.zip(matches).reject { |rule, match| match.nil? }
 rule_with_longest_match(rules_with_matches)
 end

 def match_at_beginning(pattern, string)
 /\A#{pattern}/.match(string)
 end

 def rule_with_longest_match(rules_with_matches)
 rules_with_matches.max_by { |rule, match| match.to_s.length }
 end

 def string_after(match)
 match.post_match.lstrip
 end
end

This implementation uses single characters as tokens—w means “the
while keyword,” + means “the addition sign,” and so on—because soon
we’re going to be feeding those tokens to a PDA, and our Ruby PDA
simulations expect to read characters as input.

Single-character tokens are good enough for a basic demonstration
where we don’t need to retain the names of variables or the values of
literals. In a real parser, however, we’d want to use a proper data struc-
ture to represent tokens so they could communicate more information
than just “some unknown variable name” or “some unknown Boolean.”

By creating a LexicalAnalyzer instance with a string of SIMPLE code and calling its
#analyze method, we can get back an array of tokens showing how the code breaks
down into keywords, operators, punctuation, and other pieces of syntax:

>> LexicalAnalyzer.new('y = x * 7').analyze
=> ["v", "=", "v", "*", "n"]
>> LexicalAnalyzer.new('while (x < 5) { x = x * 3 }').analyze
=> ["w", "(", "v", "<", "n", ")", "{", "v", "=", "v", "*", "n", "}"]
>> LexicalAnalyzer.new('if (x < 10) { y = true; x = 0 } else { do-nothing }').analyze
=> ["i", "(", "v", "<", "n", ")", "{", "v", "=", "b", ";", "v", "=", "n", "}", "e", ↵
"{", "d", "}"]

Parsing with Pushdown Automata | 127

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing the rule with the longest match allows the lexical analyzer to
handle variables whose names would otherwise cause them to be
wrongly identified as keywords:

>> LexicalAnalyzer.new('x = false').analyze
=> ["v", "=", "b"]
>> LexicalAnalyzer.new('x = falsehood').analyze
=> ["v", "=", "v"]

There are other ways of dealing with this problem. One alternative
would be to write more restrictive regular expressions in the rules: if the
Boolean rule used the pattern /(true|false)(?![a-z])/, then it
wouldn’t match the string 'falsehood' in the first place.

Syntactic Analysis
Once we’ve done the easy work of turning a string into tokens, the harder problem is
to decide whether those tokens represent a syntactically valid SIMPLE program. We can’t
use regular expressions or NFAs to do it—SIMPLE’s syntax allows arbitrary nesting of
brackets, and we already know that finite automata aren’t powerful enough to recog-
nize languages like that. It is possible to use a pushdown automaton to recognize valid
sequences of tokens, though, so let’s see how to construct one.

First we need a syntactic grammar that describes how tokens may be combined to form
programs. Here’s part of a grammar for SIMPLE, based on the structure of the Treetop
grammar in “Implementing Parsers” on page 58:

<statement> ::= <while> | <assign>
<while> ::= 'w' '(' <expression> ')' '{' <statement> '}'
<assign> ::= 'v' '=' <expression>
<expression> ::= <less-than>
<less-than> ::= <multiply> '<' <less-than> | <multiply>
<multiply> ::= <term> '*' <multiply> | <term>
<term> ::= 'n' | 'v'

This is called a context-free grammar (CFG).7 Each rule has a symbol on the lefthand
side and one or more sequences of symbols and tokens on the right. For example, the
rule <statement> ::= <while> | <assign> means that a SIMPLE statement is either a
while loop or an assignment, and <assign> ::= 'v' '=' <expression> means that an
assignment statement consists of a variable name followed by an equals sign and an
expression.

The CFG is a static description of SIMPLE’s structure, but we can also think of it as a set
of rules for generating SIMPLE programs. Starting from the <statement> symbol, we can

7. The grammar is “context free” in the sense that its rules don’t say anything about the context in which
each piece of syntax may appear; an assignment statement always consists of a variable name, equals sign,
and expression, regardless of what other tokens surround it. Not all imaginable languages can be described
by this kind of grammar, but almost all programming languages can.

128 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

apply the grammar rules to recursively expand symbols until only tokens remain. Here’s
one of many ways to fully expand <statement> according to the rules:

<statement> → <assign>
 → 'v' '=' <expression>
 → 'v' '=' <less-than>
 → 'v' '=' <multiply>
 → 'v' '=' <term> '*' <multiply>
 → 'v' '=' 'v' '*' <multiply>
 → 'v' '=' 'v' '*' <term>
 → 'v' '=' 'v' '*' 'n'

This tells us that 'v' '=' 'v' '*' 'n' represents a syntactically valid program, but we
want the ability to go in the opposite direction: to recognize valid programs, not gen-
erate them. When we get a sequence of tokens out of the lexical analyzer, we’d like to
know whether it’s possible to expand the <statement> symbol into those tokens by
applying the grammar rules in some order. Fortunately, there’s a way to turn a context-
free grammar into a nondeterministic pushdown automaton that can make exactly this
decision.

The technique for converting a CFG into a PDA works like this:

1. Pick a character to represent each symbol from the grammar. In this case, we’ll
use the uppercase initial of each symbol—S for <statement>, W for <while>, and so
on—to distinguish them from the lowercase characters we’re using as tokens.

2. Use the PDA’s stack to store characters that represent grammar symbols (S, W, A,
E, …) and tokens (w, v, =, *, …). When the PDA starts, have it immediately push a
symbol onto the stack to represent the structure it’s trying to recognize. We want
to recognize SIMPLE statements, so our PDA will begin by pushing S onto the stack:

 >> start_rule = PDARule.new(1, nil, 2, '$', ['S', '$'])
 => #<struct PDARule …>

3. Translate the grammar rules into PDA rules that expand symbols on the top of the
stack without reading any input. Each grammar rule describes how to expand a
single symbol into a sequence of other symbols and tokens, and we can turn that
description into a PDA rule that pops a particular symbol’s character off the stack
and pushes other characters on:

 >> symbol_rules = [
 # <statement> ::= <while> | <assign>
 PDARule.new(2, nil, 2, 'S', ['W']),
 PDARule.new(2, nil, 2, 'S', ['A']),

 # <while> ::= 'w' '(' <expression> ')' '{' <statement> '}'
 PDARule.new(2, nil, 2, 'W', ['w', '(', 'E', ')', '{', 'S', '}']),

 # <assign> ::= 'v' '=' <expression>
 PDARule.new(2, nil, 2, 'A', ['v', '=', 'E']),

 # <expression> ::= <less-than>
 PDARule.new(2, nil, 2, 'E', ['L']),

Parsing with Pushdown Automata | 129

www.it-ebooks.info

http://www.it-ebooks.info/

 # <less-than> ::= <multiply> '<' <less-than> | <multiply>
 PDARule.new(2, nil, 2, 'L', ['M', '<', 'L']),
 PDARule.new(2, nil, 2, 'L', ['M']),

 # <multiply> ::= <term> '*' <multiply> | <term>
 PDARule.new(2, nil, 2, 'M', ['T', '*', 'M']),
 PDARule.new(2, nil, 2, 'M', ['T']),

 # <term> ::= 'n' | 'v'
 PDARule.new(2, nil, 2, 'T', ['n']),
 PDARule.new(2, nil, 2, 'T', ['v'])
]
 => [#<struct PDARule …>, #<struct PDARule …>, …]

For example, the rule for assignment statements says that the <assign> symbol can
be expanded to the tokens v and = followed by the <expression> symbol, so we
have a corresponding PDA rule that spontaneously pops an A off the stack and
pushes the characters v=E back on. The <statement> rule says that we can replace
the <statement> symbol with a <while> or <assign> symbol; we’ve turned that into
one PDA rule that pops an S from the stack and replaces it with a W, and another
rule that pops an S and pushes an A.

4. Give every token character a PDA rule that reads that character from the input and
pops it off the stack:

 >> token_rules = LexicalAnalyzer::GRAMMAR.map do |rule|
 PDARule.new(2, rule[:token], 2, rule[:token], [])
 end
 => [#<struct PDARule …>, #<struct PDARule …>, …]

These token rules work in opposition to the symbol rules. The symbol rules tend
to make the stack larger, sometimes pushing several characters to replace the one
that’s been popped; the token rules always make the stack smaller, consuming
input as they go.

5. Finally, make a PDA rule that will allow the machine to enter an accept state if the
stack becomes empty:

 >> stop_rule = PDARule.new(2, nil, 3, '$', ['$'])
 => #<struct PDARule …>

Now we can build a PDA with these rules and feed it a string of tokens to see whether
it recognizes them. The rules generated by the SIMPLE grammar are nondeterministic—
there’s more than one applicable rule whenever the character S, L, M, or T is topmost on
the stack—so it’ll have to be an NPDA:

>> rulebook = NPDARulebook.new([start_rule, stop_rule] + symbol_rules + token_rules)
=> #<struct NPDARulebook rules=[…]>
>> npda_design = NPDADesign.new(1, '$', [3], rulebook)
=> #<struct NPDADesign …>
>> token_string = LexicalAnalyzer.new('while (x < 5) { x = x * 3 }').analyze.join
=> "w(v<n){v=v*n}"
>> npda_design.accepts?(token_string)

130 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

=> true
>> npda_design.accepts?(LexicalAnalyzer.new('while (x < 5 x = x * }').analyze.join)
=> false

To show exactly what’s going on, here’s one possible execution of the NPDA when it’s
fed the string 'w(v<n){v=v*n}':

State Accepting? Stack contents Remaining input Action

1 no $ w(v<n){v=v*n} push S, go to state 2

2 no S$ w(v<n){v=v*n} pop S, push W

2 no W$ w(v<n){v=v*n} pop W, push w(E){S}

2 no w(E){S}$ w(v<n){v=v*n} read w, pop w

2 no (E){S}$ (v<n){v=v*n} read (, pop (

2 no E){S}$ v<n){v=v*n} pop E, push L

2 no L){S}$ v<n){v=v*n} pop L, push M<L

2 no M<L){S}$ v<n){v=v*n} pop M, push T

2 no T<L){S}$ v<n){v=v*n} pop T, push v

2 no v<L){S}$ v<n){v=v*n} read v, pop v

2 no <L){S}$ <n){v=v*n} read <, pop <

2 no L){S}$ n){v=v*n} pop L, push M

2 no M){S}$ n){v=v*n} pop M, push T

2 no T){S}$ n){v=v*n} pop T, push n

2 no n){S}$ n){v=v*n} read n, pop n

2 no){S}$){v=v*n} read), pop)

2 no {S}$ {v=v*n} read {, pop {

2 no S}$ v=v*n} pop S, push A

2 no A}$ v=v*n} pop A, push v=E

2 no v=E}$ v=v*n} read v, pop v

2 no =E}$ =v*n} read =, pop =

2 no E}$ v*n} pop E, push L

2 no L}$ v*n} pop L, push M

2 no M}$ v*n} pop M, push T*M

2 no T*M}$ v*n} pop T, push v

2 no v*M}$ v*n} read v, pop v

2 no *M}$ *n} read *, pop *

2 no M}$ n} pop M, push T

2 no T}$ n} pop T, push n

2 no n}$ n} read n, pop n

Parsing with Pushdown Automata | 131

www.it-ebooks.info

http://www.it-ebooks.info/

State Accepting? Stack contents Remaining input Action

2 no }$ } read }, pop }

2 no $ go to state 3

3 yes $ —

This execution trace shows us how the machine ping-pongs between symbol and token
rules: the symbol rules repeatedly expand the symbol on the top of the stack until it
gets replaced by a token, then the token rules consume the stack (and the input) until
they hit a symbol. This back and forth eventually results in an empty stack as long as
the input string can be generated by the grammar rules.8

How does the PDA know which rule to choose at each step of execution? Well, that’s
the power of nondeterminism: our NPDA simulation tries all possible rules, so as long
as there’s some way of getting to an empty stack, we’ll find it.

Practicalities
This parsing procedure relies on nondeterminism, but in real applications, it’s best to
avoid nondeterminism, because a deterministic PDA is much faster and easier to sim-
ulate than a nondeterministic one. Fortunately, it’s almost always possible to eliminate
nondeterminism by using the input tokens themselves to make decisions about which
symbol rule to apply at each stage—a technique called lookahead—but that makes the
translation from CFG to PDA more complicated.

It’s also not really good enough to only be able to recognize valid programs. As we saw
in “Implementing Parsers” on page 58, the whole point of parsing a program is to turn
it into a structured representation that we can then do something useful with. In prac-
tice, we can create this representation by instrumenting our PDA simulation to record
the sequence of rules it follows to reach an accept state, which provides enough infor-
mation to construct a parse tree. For example, the above execution trace shows us how
the symbols on the stack get expanded to form the desired sequence of tokens, and that
tells us the shape of the parse tree for the string 'w(v<n){v=v*n}':

8. This algorithm is called LL parsing. The first L stands for “left-to-right,” because the input string is read
in that direction, and the second L stands for “left derivation,” because it’s always the leftmost (i.e.,
uppermost) symbol on the stack that gets expanded.

132 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

How Much Power?
In this chapter, we’ve encountered two new levels of computing power: DPDAs are
more powerful than DFAs and NFAs, and NPDAs are more powerful again. Having
access to a stack, it seems, gives pushdown automata a bit more power and sophisti-
cation than finite automata.

The main consequence of having a stack is the ability to recognize certain languages
that finite automata aren’t capable of recognizing, like palindromes and strings of bal-
anced brackets. The unlimited storage provided by a stack lets a PDA remember arbi-
trary amounts of information during a computation and refer back to it later.

Unlike finite automata, a PDA can loop indefinitely without reading any input, which
is curious even if it’s not particularly useful. A DFA can only ever change state by
consuming a character of input, and although an NFA can change state spontaneously
by following a free move, it can only do that a finite number of times before it ends up
back where it started. A PDA, on the other hand, can sit in a single state and keep
pushing characters onto its stack forever, never once repeating the same configuration.

How Much Power? | 133

www.it-ebooks.info

http://www.it-ebooks.info/

Pushdown automata can also control themselves to a limited extent. There’s a feedback
loop between the rules and the stack—the contents of the stack affect which rules the
machine can follow, and following a rule will affect the stack contents—which allows
a PDA to store away information on the stack that will influence its future execution.
Finite automata rely upon a similar feedback loop between their rules and current state,
but the feedback is less powerful because the current state is completely forgotten when
it changes, whereas pushing characters onto a stack preserves the old contents for later
use.

Okay, so PDAs are a bit more powerful, but what are their limitations? Even if we’re
only interested in the kinds of pattern-matching applications we’ve already seen, push-
down automata are still seriously limited by the way a stack works. There’s no random
access to stack contents below the topmost character, so if a machine wants to read a
character that’s buried halfway down the stack, it has to pop everything above it. Once
characters have been popped, they’re gone forever; we designed a PDA to recognize
strings with equal numbers of as and bs, but we can’t adapt it to recognize strings with
equal numbers of three different types of character ('abc', 'aabbcc', 'aaabbbccc', …)
because the information about the number of as gets destroyed by the process of
counting the bs.

Aside from the number of times that pushed characters can be used, the last-in-first-
out nature of a stack causes a problem with the order in which information is stored
and retrieved. PDAs can recognize palindromes, but they can’t recognize doubled-up
strings like 'abab' and 'baaabaaa', because once information has been pushed onto a
stack, it can only be consumed in reverse order.

If we move away from the specific problem of recognizing strings and try to treat these
machines as a model of general-purpose computers, we can see that DFAs, NFAs, and
PDAs are still a long way from being properly useful. For starters, none of them has a
decent output mechanism: they can communicate success by going into an accept state,
but can’t output even a single character (much less a whole string of characters) to
indicate a more detailed result. This inability to send information back out into the
world means that they can’t implement even a simple algorithm like adding two num-
bers together. And like finite automata, an individual PDA has a fixed program; there
isn’t an obvious way to build a PDA that can somehow read a program from its input
and run it.

All of these weaknesses mean that we need a better model of computation to really
investigate what computers are capable of, and that’s exactly what the next chapter is
about.

134 | Chapter 4: Just Add Power

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

The Ultimate Machine

In Chapter 3 and Chapter 4, we investigated the capabilities of simple models of com-
putation. We’ve seen how to recognize strings of increasing complexity, how to match
regular expressions, and how to parse programming languages, all using basic machines
with very little complexity.

But we’ve also seen that these machines—finite automata and pushdown automata—
come with serious limitations that undermine their usefulness as realistic models of
computation. How much more powerful do our toy systems need to get before they’re
able to escape these limitations and do everything that a normal computer can do? How
much more complexity is required to model the behavior of RAM, or a hard drive, or
a proper output mechanism? What does it take to design a machine that can actually
run programs instead of always executing a single hardcoded task?

In the 1930s, Alan Turing was working on essentially this problem. At that time, the
word “computer” meant a person, usually a woman, whose job was to perform long
calculations by repeating a series of laborious mathematical operations by hand. Turing
was looking for a way to understand and characterize the operation of a human com-
puter so that the same tasks could be performed entirely by machines. In this chapter,
we’ll look at Turing’s revolutionary ideas about how to design the simplest possible
“automatic machine” that captures the full power and complexity of manual compu-
tation.

Deterministic Turing Machines
In Chapter 4, we were able to increase the computational power of a finite automaton
by giving it a stack to use as external memory. Compared to the finite internal memory
provided by a machine’s states, the real advantage of a stack is that it can grow dy-
namically to accommodate any amount of information, allowing a pushdown autom-
aton to handle problems where an arbitrary amount of data needs to be stored.

However, this particular form of external memory imposes inconvenient limitations on
how data can be used after it’s been stored. By replacing the stack with a more flexible

135

www.it-ebooks.info

http://www.it-ebooks.info/

storage mechanism, we can remove those limitations and achieve another increase in
power.

Storage
Computing is normally done by writing certain symbols on paper. We may suppose this
paper is divided into squares like a child’s arithmetic book. In elementary arithmetic the
two-dimensional character of the paper is sometimes used. But such a use is always
avoidable, and I think that it will be agreed that the two-dimensional character of paper
is no essential of computation. I assume then that the computation is carried out on one-
dimensional paper, i.e. on a tape divided into squares.

—Alan Turing, On Computable Numbers, with an
Application to the Entscheidungsproblem

Turing’s solution was to equip a machine with a blank tape of unlimited length—
effectively a one-dimensional array that can grow at both ends as needed—and allow
it to read and write characters anywhere on the tape. A single tape serves as both storage
and input: it can be prefilled with a string of characters to be treated as input, and the
machine can read those characters during execution and overwrite them if necessary.

A finite state machine with access to an infinitely long tape is called a Turing machine
(TM). That name usually refers to a machine with deterministic rules, but we can also
call it a deterministic Turing machine (DTM) to be completely unambiguous.

We already know that a pushdown automaton can only access a single fixed location
in its external storage—the top of the stack—but that seems too restrictive for a Turing
machine. The whole point of providing a tape is to allow arbitrary amounts of data to
be stored anywhere on it and read off again in any order, so how do we design a machine
that can interact with the entire length of its tape?

One option is make the tape addressable by random access, labeling each square with
a unique numerical address like computer RAM, so that the machine can immediately
read or write any location. But that’s more complicated than strictly necessary, and
requires working out details like how to assign addresses to all the squares of an infinite
tape and how the machine should specify the address of the square it wants to access.

Instead, a conventional Turing machine uses a simpler arrangement: a tape head that
points at a specific position on the tape and can only read or write the character at that
position. The tape head can move left or right by a single square after each step of
computation, which means that a Turing machine has to move its head laboriously
back and forth over the tape in order to reach distant locations. The use of a slow-
moving head doesn’t affect the machine’s ability to access any of the data on the tape,
only the amount of time it takes to do it, so it’s a worthwhile trade-off for the sake of
keeping things simple.

Having access to a tape allows us to solve new kinds of problems beyond simply ac-
cepting or rejecting strings. For example, we can design a DTM for incrementing a

136 | Chapter 5: The Ultimate Machine

www.it-ebooks.info

http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://www.it-ebooks.info/

binary number in-place on the tape. To do this, we need to know how to increment a
single digit of a binary number, but fortunately, that’s easy: if the digit is a zero, replace
it with a one; if the digit is a one, replace it with a zero, then increment the digit im-
mediately to its left (“carry the one”) using the same technique. The Turing machine
just has to use this procedure to increment the binary number’s rightmost digit and
then return the tape head to its starting position:

• Give the machine three states, 1, 2 and 3, with state 3 being the accept state.

• Start the machine in state 1 with the tape head positioned over the rightmost digit
of a binary number.

• When in state 1 and a zero (or blank) is read, overwrite it with a one, move the
head right, and go into state 2.

• When in state 1 and a one is read, overwrite it with a zero and move the head left.

• When in state 2 and a zero or one is read, move the head right.

• When in state 2 and a blank is read, move the head left and go into state 3.

This machine is in state 1 when it’s trying to increment a digit, state 2 when it’s moving
back to its starting position, and state 3 when it has finished. Below is a trace of its
execution when the initial tape contains the string '1011'; the character currently un-
derneath the tape head is shown surrounded by brackets, and the underscores represent
the blank squares on either side of the input string.

State Accepting? Tape contents Action

1 no _101(1)__ write 0, move left

1 no __10(1)0_ write 0, move left

1 no ___1(0)00 write 1, move right, go to state 2

2 no __11(0)0_ move right

2 no _110(0)__ move right

2 no 1100(_)__ move left, go to state 3

3 yes _110(0)__ —

Moving the tape head back to its initial position isn’t strictly necessary
—if we made state 2 an accept state, the machine would halt immedi-
ately once it had successfully replaced a zero with a one, and the tape
would still contain the correct result—but it’s a desirable feature, be-
cause it leaves the head in a position where the machine can be run again
by simply changing its state back to 1. By running the machine several
times, we can repeatedly increment the number stored on the tape. This
functionality could be reused as part of a larger machine for, say, adding
or multiplying two binary numbers.

Deterministic Turing Machines | 137

www.it-ebooks.info

http://www.it-ebooks.info/

Rules
Let us imagine the operations performed by the computer to be split up into “simple
operations” that are so elementary that it is not easy to imagine them further divided.
[…] The operation actually performed is determined […] by the state of mind of the
computer and the observed symbols. In particular, they determine the state of mind of
the computer after the operation is carried out.

We may now construct a machine to do the work of this computer.

—Alan Turing, On Computable Numbers, with an
Application to the Entscheidungsproblem

There are several “simple operations” we might want a Turing machine to perform in
each step of computation: read the character at the tape head’s current position, write
a new character at that position, move the head left or right, or change state. Instead
of having different kinds of rule for all these actions, we can keep things simple by
designing a single format of rule that is flexible enough for every situation, just as we
did for pushdown automata.

This unified rule format has five parts:

• The current state of the machine

• The character that must appear at the tape head’s current position

• The next state of the machine

• The character to write at the tape head’s current position

• The direction (left or right) in which to move the head after writing to the tape

Here we’re making the assumption that a Turing machine will change state and write
a character to the tape every time it follows a rule. As usual for a state machine, we can
always make the “next state” the same as the current one if we want a rule that doesn’t
actually change state; similarly, if we want a rule that doesn’t change the tape contents,
we can just use one that writes the same character that it reads.

We’re also assuming that the tape head always moves at every step. This
makes it impossible to write a single rule that updates the state or the
tape contents without moving the head, but we can get the same effect
by writing one rule that makes the desired change and another rule that
moves the head back to its original position afterward.

The Turing machine for incrementing a binary number has six rules when they’re writ-
ten in this style:

• When in state 1 and a zero is read, write a one, move right, and go into state 2.

• When in state 1 and a one is read, write a zero, move left, and stay in state 1.

• When in state 1 and a blank is read, write a one, move right, and go into state 2.

138 | Chapter 5: The Ultimate Machine

www.it-ebooks.info

http://www.it-ebooks.info/

• When in state 2 and a zero is read, write a zero, move right, and stay in state 2.

• When in state 2 and a one is read, write a one, move right, and stay in state 2.

• When in state 2 and a blank is read, write a blank, move left, and go into state 3.

We can show this machine’s states and rules on a diagram similar to the ones we’ve
already been using for finite and pushdown automata:

In fact, this is just like a DFA diagram except for the labels on the arrows. A label of
the form a/b;L indicates a rule that reads character a from the tape, writes character
b, and then moves the tape head one square to the left; a rule labelled a/b;R does almost
the same, but moves the head to the right instead of the left.

Let’s see how to use a Turing machine to solve a string-recognition problem that push-
down automata can’t handle: identifying inputs that consist of one or more a characters
followed by the same number of bs and cs (e.g., 'aaabbbccc'). The Turing machine that
solves this problem has 6 states and 16 rules:

It works roughly like this:

1. Scan across the input string by repeatedly moving the tape head to the right until
an a is found, then cross it out by replacing it with an X (state 1).

2. Scan right looking for a b, then cross it out (state 2).

3. Scan right looking for a c, then cross it out (state 3).

4. Scan right looking for the end of the input string (state 4), then scan left looking
for the beginning (state 5).

Deterministic Turing Machines | 139

www.it-ebooks.info

http://www.it-ebooks.info/

5. Repeat these steps until all characters have been crossed out.

If the input string consists of one or more a characters followed by the same number
of bs and cs, the machine will make repeated passes across the whole string, crossing
out one of each character on every pass, and then enter an accept state when the entire
string has been crossed out. Here’s a trace of its execution when the input is 'aabbcc':

State Accepting? Tape contents Action

1 no ______(a)abbcc_ write X, move right, go to state 2

2 no _____X(a)bbcc__ move right

2 no ____Xa(b)bcc___ write X, move right, go to state 3

3 no ___XaX(b)cc____ move right

3 no __XaXb(c)c_____ write X, move right, go to state 4

4 no _XaXbX(c)______ move right

4 no XaXbXc(_)______ move left, go to state 5

5 no _XaXbX(c)______ move left

5 no __XaXb(X)c_____ move left

5 no ___XaX(b)Xc____ move left

5 no ____Xa(X)bXc___ move left

5 no _____X(a)XbXc__ move left

5 no ______(X)aXbXc_ move left

5 no ______(_)XaXbXc move right, go to state 1

1 no ______(X)aXbXc_ move right

1 no _____X(a)XbXc__ write X, move right, go to state 2

2 no ____XX(X)bXc___ move right

2 no ___XXX(b)Xc____ write X, move right, go to state 3

3 no __XXXX(X)c_____ move right

3 no _XXXXX(c)______ write X, move right, go to state 4

4 no XXXXXX(_)______ move left, go to state 5

5 no _XXXXX(X)______ move left

5 no __XXXX(X)X_____ move left

5 no ___XXX(X)XX____ move left

5 no ____XX(X)XXX___ move left

5 no _____X(X)XXXX__ move left

5 no ______(X)XXXXX_ move left

5 no ______(_)XXXXXX move right, go to state 1

1 no ______(X)XXXXX_ move right

140 | Chapter 5: The Ultimate Machine

www.it-ebooks.info

http://www.it-ebooks.info/

State Accepting? Tape contents Action

1 no _____X(X)XXXX__ move right

1 no ____XX(X)XXX___ move right

1 no ___XXX(X)XX____ move right

1 no __XXXX(X)X_____ move right

1 no _XXXXX(X)______ move right

1 no XXXXXX(_)______ move left, go to state 6

6 yes _XXXXX(X)______ —

This machine works because of the exact choice of rules during the scanning stages.
For example, while the machine is in state 3—scanning right and looking for a c—it
only has rules for moving the head past bs and Xs. If it hits some other character (e.g.,
an unexpected a), then it has no rule to follow, in which case it’ll go into an implicit
stuck state and stop executing, thereby rejecting that input.

We’re keeping things simple by assuming that the input can only ever
contain the characters a, b, and c, but this machine won’t work properly
if that’s not true; for example, it will accept the string 'XaXXbXXXc' even
though it should be rejected. To correctly handle that sort of input, we’d
need to add more states and rules that scan over the whole string to
check that it doesn’t contain any unexpected characters before the ma-
chine starts crossing anything off.

Determinism
For a particular Turing machine design to be deterministic, it has to obey the same
constraints as a deterministic pushdown automaton (see “Determin-
ism” on page 111), although this time we don’t have to worry about free moves, because
Turing machines don’t have them.

A Turing machine’s next action is chosen according to its current state and the character
currently underneath its tape head, so a deterministic machine can only have one rule
for each combination of state and character—the “no contradictions” rule—in order
to prevent any ambiguity over what its next action will be. For simplicity, we’ll relax
the “no omissions” rule, just as we did for DPDAs, and assume there’s an implicit stuck
state that the machine can go into when no rule applies, instead of insisting that it must
have a rule for every possible situation.

Simulation
Now that we have a good idea of how a deterministic Turing machine should work,
let’s build a Ruby simulation of one so we can see it in action.

Deterministic Turing Machines | 141

www.it-ebooks.info

http://www.it-ebooks.info/

The first step is to implement a Turing machine tape. This implementation obviously
has to store the characters that are written on the tape, but it also needs to remember
the current position of the tape head so that the simulated machine can read the current
character, write a new character at the current position, and move the head left and
right to reach other positions.

An elegant way of doing this is to split up the tape into three separate parts—all the
characters to the left of the tape head, the single character directly underneath it, and
all the characters to its right—and store each part separately. This makes it very easy
to read and write the current character, and moving the tape head can be achieved by
shuffling characters between all three parts; moving one square to the right, for in-
stance, means that the current character becomes the last character to the left of the
head, and the first character to the right of the head becomes the current one.

Our implementation must also maintain the illusion that the tape is infinitely long and
filled with blank squares, but fortunately, we don’t need an infinitely large data struc-
ture to do this. The only tape location that can be read at any given moment is the one
that’s beneath the head, so we just need to arrange for a new blank character to appear
there whenever the head is moved beyond the finite number of nonblank characters
already written on the tape. To make this work, we need to know in advance which
character represents a blank square, and then we can make that character automatically
appear underneath the tape head whenever it moves into an unexplored part of the tape.

So, the basic representation of a tape looks like this:

class Tape < Struct.new(:left, :middle, :right, :blank)
 def inspect
 "#<Tape #{left.join}(#{middle})#{right.join}>"
 end
end

This lets us create a tape and read the character beneath the tape head:

>> tape = Tape.new(['1', '0', '1'], '1', [], '_')
=> #<Tape 101(1)>
>> tape.middle
=> "1"

We can add operations to write to the current tape position1 and move the head left
and right:

class Tape
 def write(character)
 Tape.new(left, character, right, blank)
 end

 def move_head_left
 Tape.new(left[0..-2], left.last || blank, [middle] + right, blank)
 end

1. Tape, like Stack, is purely functional: writing to the tape and moving the head are nondestructive
operations that return a new Tape object rather than updating the existing one.

142 | Chapter 5: The Ultimate Machine

www.it-ebooks.info

http://www.it-ebooks.info/

 def move_head_right
 Tape.new(left + [middle], right.first || blank, right.drop(1), blank)
 end
end

Now we can write onto the tape and move the head around:

>> tape
=> #<Tape 101(1)>
>> tape.move_head_left
=> #<Tape 10(1)1>
>> tape.write('0')
=> #<Tape 101(0)>
>> tape.move_head_right
=> #<Tape 1011(_)>
>> tape.move_head_right.write('0')
=> #<Tape 1011(0)>

In Chapter 4, we used the word configuration to refer to the combination of a pushdown
automaton’s state and stack, and the same idea is useful here. We can say that a Turing
machine configuration is the combination of a state and a tape, and implement Turing
machine rules that deal directly with those configurations:

class TMConfiguration < Struct.new(:state, :tape)
end

class TMRule < Struct.new(:state, :character, :next_state,
 :write_character, :direction)
 def applies_to?(configuration)
 state == configuration.state && character == configuration.tape.middle
 end
end

A rule only applies when the machine’s current state and the character currently un-
derneath the tape head match its expectations:

>> rule = TMRule.new(1, '0', 2, '1', :right)
=> #<struct TMRule
 state=1,
 character="0",
 next_state=2,
 write_character="1",
 direction=:right
 >
>> rule.applies_to?(TMConfiguration.new(1, Tape.new([], '0', [], '_')))
=> true
>> rule.applies_to?(TMConfiguration.new(1, Tape.new([], '1', [], '_')))
=> false
>> rule.applies_to?(TMConfiguration.new(2, Tape.new([], '0', [], '_')))
=> false

Once we know that a rule applies to a particular configuration, we need the ability to
update that configuration by writing a new character, moving the tape head, and
changing the machine’s state in accordance with the rule:

Deterministic Turing Machines | 143

www.it-ebooks.info

http://www.it-ebooks.info/

class TMRule
 def follow(configuration)
 TMConfiguration.new(next_state, next_tape(configuration))
 end

 def next_tape(configuration)
 written_tape = configuration.tape.write(write_character)

 case direction
 when :left
 written_tape.move_head_left
 when :right
 written_tape.move_head_right
 end
 end
end

That code seems to work fine:

>> rule.follow(TMConfiguration.new(1, Tape.new([], '0', [], '_')))
=> #<struct TMConfiguration state=2, tape=#<Tape 1(_)>>

The implementation of DTMRulebook is almost the same as DFARulebook and DPDARule
book, except #next_configuration doesn’t take a character argument, because there’s
no external input to read characters from (only the tape, which is already part of the
configuration):

class DTMRulebook < Struct.new(:rules)
 def next_configuration(configuration)
 rule_for(configuration).follow(configuration)
 end

 def rule_for(configuration)
 rules.detect { |rule| rule.applies_to?(configuration) }
 end
end

Now we can make a DTMRulebook for the “increment a binary number” Turing machine
and use it to manually step through a few configurations:

>> rulebook = DTMRulebook.new([
 TMRule.new(1, '0', 2, '1', :right),
 TMRule.new(1, '1', 1, '0', :left),
 TMRule.new(1, '_', 2, '1', :right),
 TMRule.new(2, '0', 2, '0', :right),
 TMRule.new(2, '1', 2, '1', :right),
 TMRule.new(2, '_', 3, '_', :left)
])
=> #<struct DTMRulebook rules=[…]>
>> configuration = TMConfiguration.new(1, tape)
=> #<struct TMConfiguration state=1, tape=#<Tape 101(1)>>
>> configuration = rulebook.next_configuration(configuration)
=> #<struct TMConfiguration state=1, tape=#<Tape 10(1)0>>
>> configuration = rulebook.next_configuration(configuration)
=> #<struct TMConfiguration state=1, tape=#<Tape 1(0)00>>

144 | Chapter 5: The Ultimate Machine

www.it-ebooks.info

http://www.it-ebooks.info/

>> configuration = rulebook.next_configuration(configuration)
=> #<struct TMConfiguration state=2, tape=#<Tape 11(0)0>>

It’s convenient to wrap all this up in a DTM class so we can have #step and #run methods,
just like we did with the small-step semantics implementation in Chapter 2:

class DTM < Struct.new(:current_configuration, :accept_states, :rulebook)
 def accepting?
 accept_states.include?(current_configuration.state)
 end

 def step
 self.current_configuration = rulebook.next_configuration(current_configuration)
 end

 def run
 step until accepting?
 end
end

We now have a working simulation of a deterministic Turing machine, so let’s give it
some input and try it out:

>> dtm = DTM.new(TMConfiguration.new(1, tape), [3], rulebook)
=> #<struct DTM …>
>> dtm.current_configuration
=> #<struct TMConfiguration state=1, tape=#<Tape 101(1)>>
>> dtm.accepting?
=> false
>> dtm.step; dtm.current_configuration
=> #<struct TMConfiguration state=1, tape=#<Tape 10(1)0>>
>> dtm.accepting?
=> false
>> dtm.run
=> nil
>> dtm.current_configuration
=> #<struct TMConfiguration state=3, tape=#<Tape 110(0)_>>
>> dtm.accepting?
=> true

As with our DPDA simulation, we need to do a bit more work to gracefully handle a
Turing machine becoming stuck:

>> tape = Tape.new(['1', '2', '1'], '1', [], '_')
=> #<Tape 121(1)>
>> dtm = DTM.new(TMConfiguration.new(1, tape), [3], rulebook)
=> #<struct DTM …>
>> dtm.run
NoMethodError: undefined method `follow' for nil:NilClass

This time we don’t need a special representation of a stuck state. Unlike a PDA, a Turing
machine doesn’t have an external input, so we can tell it’s stuck just by looking at its
rulebook and current configuration:

class DTMRulebook
 def applies_to?(configuration)

Deterministic Turing Machines | 145

www.it-ebooks.info

http://www.it-ebooks.info/

 !rule_for(configuration).nil?
 end
end

class DTM
 def stuck?
 !accepting? && !rulebook.applies_to?(current_configuration)
 end

 def run
 step until accepting? || stuck?
 end
end

Now the simulation will notice it’s stuck and stop automatically:

>> dtm = DTM.new(TMConfiguration.new(1, tape), [3], rulebook)
=> #<struct DTM …>
>> dtm.run
=> nil
>> dtm.current_configuration
=> #<struct TMConfiguration state=1, tape=#<Tape 1(2)00>>
>> dtm.accepting?
=> false
>> dtm.stuck?
=> true

Just for fun, here’s the Turing machine we saw earlier, for recognizing strings like
'aaabbbccc':

>> rulebook = DTMRulebook.new([
 # state 1: scan right looking for a
 TMRule.new(1, 'X', 1, 'X', :right), # skip X
 TMRule.new(1, 'a', 2, 'X', :right), # cross out a, go to state 2
 TMRule.new(1, '_', 6, '_', :left), # find blank, go to state 6 (accept)

 # state 2: scan right looking for b
 TMRule.new(2, 'a', 2, 'a', :right), # skip a
 TMRule.new(2, 'X', 2, 'X', :right), # skip X
 TMRule.new(2, 'b', 3, 'X', :right), # cross out b, go to state 3

 # state 3: scan right looking for c
 TMRule.new(3, 'b', 3, 'b', :right), # skip b
 TMRule.new(3, 'X', 3, 'X', :right), # skip X
 TMRule.new(3, 'c', 4, 'X', :right), # cross out c, go to state 4

 # state 4: scan right looking for end of string
 TMRule.new(4, 'c', 4, 'c', :right), # skip c
 TMRule.new(4, '_', 5, '_', :left), # find blank, go to state 5

 # state 5: scan left looking for beginning of string
 TMRule.new(5, 'a', 5, 'a', :left), # skip a
 TMRule.new(5, 'b', 5, 'b', :left), # skip b
 TMRule.new(5, 'c', 5, 'c', :left), # skip c
 TMRule.new(5, 'X', 5, 'X', :left), # skip X
 TMRule.new(5, '_', 1, '_', :right) # find blank, go to state 1

146 | Chapter 5: The Ultimate Machine

www.it-ebooks.info

http://www.it-ebooks.info/

])
=> #<struct DTMRulebook rules=[…]>
>> tape = Tape.new([], 'a', ['a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'], '_')
=> #<Tape (a)aabbbccc>
>> dtm = DTM.new(TMConfiguration.new(1, tape), [6], rulebook)
=> #<struct DTM …>
>> 10.times { dtm.step }; dtm.current_configuration
=> #<struct TMConfiguration state=5, tape=#<Tape XaaXbbXc(c)_>>
>> 25.times { dtm.step }; dtm.current_configuration
=> #<struct TMConfiguration state=5, tape=#<Tape _XXa(X)XbXXc_>>
>> dtm.run; dtm.current_configuration
=> #<struct TMConfiguration state=6, tape=#<Tape _XXXXXXXX(X)_>>

This implementation was pretty easy to build—it’s not hard to simulate a Turing ma-
chine as long as we’ve got data structures to represent tapes and rulebooks. Of course,
Alan Turing specifically intended them to be simple so they would be easy to build and
to reason about, and we’ll see later (in “General-Purpose Machines” on page 154) that
this ease of implementation is an important property.

Nondeterministic Turing Machines
In “Equivalence” on page 94, we saw that nondeterminism makes no difference to what
a finite automaton is capable of, while “Nonequivalence” on page 125 showed us that
a nondeterministic pushdown automaton can do more than a deterministic one. That
leaves us with an obvious question about Turing machines: does adding nondetermin-
ism2 make a Turing machine more powerful?

In this case the answer is no: a nondeterministic Turing machine can’t do any more
than a deterministic one. Pushdown automata are the exception here, because both
DFAs and DTMs have enough power to simulate their nondeterministic counterparts.
A single state of a finite automaton can be used to represent a combination of many
states, and a single Turing machine tape can be used to store the contents of many
tapes, but a single pushdown automaton stack can’t represent many possible stacks at
once.

So, just as with finite automata, a deterministic Turing machine can simulate a non-
deterministic one. The simulation works by using the tape to store a queue of suitably
encoded Turing machine configurations, each one containing a possible current state
and tape of the simulated machine. When the simulation starts, there’s only one con-
figuration stored on the tape, representing the starting configuration of the simulated
machine. Each step of the simulated computation is performed by reading the config-
uration at the front of the queue, finding each rule that applies to it, and using that rule
to generate a new configuration that is written onto the tape at the back of the queue.
Once this has been done for every applicable rule, the frontmost configuration is erased

2. For a Turing machine, “nondeterminism” means allowing more than one rule per combination of state
and character, so that multiple execution paths are possible from a single starting configuration.

Nondeterministic Turing Machines | 147

www.it-ebooks.info

http://www.it-ebooks.info/

and the process starts again with the next configuration in the queue. The simulated
machine step is repeated until the configuration at the front of the queue represents a
machine that has reached an accept state.

This technique allows a deterministic Turing machine to explore all possible configu-
rations of a simulated machine in breadth-first order; if there is any way for the non-
deterministic machine to reach an accept state, the simulation will find it, even if other
execution paths lead to infinite loops. Actually implementing the simulation as a rule-
book requires a lot of detail, so we won’t try to do it here, but the fact that it’s possible
means that we can’t make a Turing machine any more powerful just by adding non-
determinism.

Maximum Power
Deterministic Turing machines represent a dramatic tipping point from limited com-
puting machines to full-powered ones. In fact, any attempt to upgrade the specification
of Turing machines to make them more powerful is doomed to failure, because they’re
already capable of simulating any potential enhancement.3 While adding certain fea-
tures can make Turing machines smaller or more efficient, there’s no way to give them
fundamentally new capabilities.

We’ve already seen why this is true for nondeterminism. Let’s look at four other ex-
tensions to conventional Turing machines—internal storage, subroutines, multiple
tapes, and multidimensional tape—and see why none of them provides an increase in
computational power. While some of the simulation techniques involved are compli-
cated, in the end, they’re all just a matter of programming.

Internal Storage
Designing a rulebook for a Turing machine can be frustrating because of the lack of
arbitrary internal storage. For instance, we often want the machine to move the tape
head to a particular position, read the character that’s stored there, then move to a
different part of the tape and perform some action that depends on which character it
read earlier. Superficially, this seems impossible, because there’s nowhere for the ma-
chine to “remember” that character—it’s still written on the tape, of course, and we
can move the head back over there and read it again whenever we like, but once the
head moves away from that square, we can no longer trigger a rule based on its contents.

3. Strictly speaking, this is only true for enhancements that we actually know how to implement. A Turing
machine would become more powerful if we gave it the magical ability to instantly deduce the answers
to questions that no conventional Turing machine can answer (see Chapter 8), but in practice, there’s no
way of doing that.

148 | Chapter 5: The Ultimate Machine

www.it-ebooks.info

http://www.it-ebooks.info/

It would be more convenient if a Turing machine had some temporary internal storage
—call it “RAM,” “registers,” “local variables,” or whatever—where it could save the
character from the current tape square and refer back to it later, even after the head has
moved to a different part of the tape entirely. In fact, if a Turing machine had that
capability, we wouldn’t need to limit it to storing characters from the tape: it could
store any relevant information, like the intermediate result of some calculation the
machine is performing, and free us from the chore of having to move the head around
to write scraps of data onto the tape. This extra flexibility feels like it could give a Turing
machine the ability to perform new kinds of tasks.

Well, as with nondeterminism, adding extra internal storage to a Turing machine cer-
tainly would make certain tasks easier to perform, but it wouldn’t enable the machine
to do anything it can’t already do. The desire to store intermediate results inside the
machine instead of on the tape is relatively easy to dismiss, because the tape works just
fine for storing that kind of information, even if it takes a while for the head to move
back and forth to access it. But we have to take the character-remembering point more
seriously, because a Turing machine would be very limited if it couldn’t make use of
the contents of a tape square after moving the head somewhere else.

Fortunately, a Turing machine already has perfectly good internal storage: its current
state. There is no upper limit to the number of states available to a Turing machine,
although for any particular set of rules, that number must be finite and decided in
advance, because there’s no way to create new states during a computation. If neces-
sary, we can design a machine with a hundred states, or a thousand, or a billion, and
use its current state to retain arbitrary amounts of information from one step to the next.

This inevitably means duplicating rules to accommodate multiple states whose mean-
ings are identical except for the information they are “remembering.” Instead of having
a single state that means “scan right looking for a blank square,” a machine can have
one state for “scan right looking for a blank square (remembering that I read an a
earlier),” another for “scan right looking for a blank square (remembering that I read
a b earlier),” and so on for all possible characters—although the number of characters
is finite too, so this duplication always has a limit.

Maximum Power | 149

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s a simple Turing machine that uses this technique to copy a character from the
beginning of a string to the end:

>> rulebook = DTMRulebook.new([
 # state 1: read the first character from the tape
 TMRule.new(1, 'a', 2, 'a', :right), # remember a
 TMRule.new(1, 'b', 3, 'b', :right), # remember b
 TMRule.new(1, 'c', 4, 'c', :right), # remember c

 # state 2: scan right looking for end of string (remembering a)
 TMRule.new(2, 'a', 2, 'a', :right), # skip a
 TMRule.new(2, 'b', 2, 'b', :right), # skip b
 TMRule.new(2, 'c', 2, 'c', :right), # skip c
 TMRule.new(2, '_', 5, 'a', :right), # find blank, write a

 # state 3: scan right looking for end of string (remembering b)
 TMRule.new(3, 'a', 3, 'a', :right), # skip a
 TMRule.new(3, 'b', 3, 'b', :right), # skip b
 TMRule.new(3, 'c', 3, 'c', :right), # skip c
 TMRule.new(3, '_', 5, 'b', :right), # find blank, write b

 # state 4: scan right looking for end of string (remembering c)
 TMRule.new(4, 'a', 4, 'a', :right), # skip a
 TMRule.new(4, 'b', 4, 'b', :right), # skip b

150 | Chapter 5: The Ultimate Machine

www.it-ebooks.info

http://www.it-ebooks.info/

 TMRule.new(4, 'c', 4, 'c', :right), # skip c
 TMRule.new(4, '_', 5, 'c', :right) # find blank, write c
])
=> #<struct DTMRulebook rules=[…]>
>> tape = Tape.new([], 'b', ['c', 'b', 'c', 'a'], '_')
=> #<Tape (b)cbca>
>> dtm = DTM.new(TMConfiguration.new(1, tape), [5], rulebook)
=> #<struct DTM …>
>> dtm.run; dtm.current_configuration.tape
=> #<Tape bcbcab(_)>

States 2, 3, and 4 of this machine are almost identical, except they each represent a
machine that is remembering a different character from the beginning of the string, and
in this case, they all do something different when they reach the end.

The machine only works for strings made up of the characters a, b, and
c; if we wanted it to work for strings containing any alphabetic charac-
ters (or alphanumeric characters, or whatever larger set we chose), we’d
have to add a lot more states—one for each character that might need
to be remembered—and a lot more rules to go with them.

Exploiting the current state in this way allows us to design Turing machines that can
remember any finite combination of facts while the tape head moves back and forth,
effectively giving us the same capabilities as a machine with explicit “registers” for
internal storage, at the expense of using a large number of states.

Subroutines
A Turing machine’s rulebook is a long, hardcoded list of extremely low-level instruc-
tions, and it can be difficult to write these rules without losing sight of the high-level
task that the machine is meant to perform. Designing a rulebook would be easier if
there was a way of calling a subroutine: if some part of the machine could store all the
rules for, say, incrementing a number, then our rulebook could just say “now increment
a number” instead of having to manually string together the instructions to make that
happen. And again, perhaps that extra flexibility would allow us to design machines
with new capabilities.

But this is another feature that is really just about convenience, not overall power. Just
like the finite automata that implement individual fragments of a regular expression
(see “Semantics” on page 83), several small Turing machines can be connected together
to make a larger one, with each small machine effectively acting as a subroutine. The
binary-increment machine we saw earlier can have its states and rules built into a larger
machine that adds two binary numbers together, and that adder can itself be built into
an even larger machine that performs multiplication.

When the smaller machine only needs to be “called” from a single state of the larger
one, this is easy to arrange: just include a copy of the smaller machine, merging its start

Maximum Power | 151

www.it-ebooks.info

http://www.it-ebooks.info/

and accept states with the states of the larger machine where the subroutine call should
begin and end. This is how we’d expect to use the incrementing machine as part of an
adding machine, because the overall design of the rulebook would be to repeat the
single task “if the first number isn’t zero, decrement the first number and increment
the second number” as many times as possible. There’d only be one place in the ma-
chine where incrementing would need to happen, and only one place for execution to
continue after the incrementing work had completed.

The only difficulty comes when we want to call a particular subroutine from more than
one place in the overall machine. A Turing machine has no way to store a “return
address” to let the subroutine know which state to move back into once it has finished,
so superficially, we can’t support this more general kind of code reuse. But we can solve
this problem with duplication, just like we did in “Internal Storage” on page 148: rather
than incorporating a single copy of the smaller machine’s states and rules, we can build
in many copies, one for each place where it needs to be used in the larger machine.

For example, the easiest way to turn the “increment a number” machine into an “add
three to a number” machine is to connect three copies together to achieve an overall
design of “increment the number, then increment the number, then increment the
number.” This takes the larger machine through several intermediate states that track
its progress toward the final goal, with each use of “increment the number” originating
from and returning to a different intermediate state:

>> def increment_rules(start_state, return_state)
 incrementing = start_state
 finishing = Object.new
 finished = return_state

 [
 TMRule.new(incrementing, '0', finishing, '1', :right),
 TMRule.new(incrementing, '1', incrementing, '0', :left),
 TMRule.new(incrementing, '_', finishing, '1', :right),
 TMRule.new(finishing, '0', finishing, '0', :right),
 TMRule.new(finishing, '1', finishing, '1', :right),
 TMRule.new(finishing, '_', finished, '_', :left)
]
 end
=> nil
>> added_zero, added_one, added_two, added_three = 0, 1, 2, 3
=> [0, 1, 2, 3]
>> rulebook = DTMRulebook.new(
 increment_rules(added_zero, added_one) +
 increment_rules(added_one, added_two) +

152 | Chapter 5: The Ultimate Machine

www.it-ebooks.info

http://www.it-ebooks.info/

 increment_rules(added_two, added_three)
)
=> #<struct DTMRulebook rules=[…]>
>> rulebook.rules.length
=> 18
>> tape = Tape.new(['1', '0', '1'], '1', [], '_')
=> #<Tape 101(1)>
>> dtm = DTM.new(TMConfiguration.new(added_zero, tape), [added_three], rulebook)
=> #<struct DTM …>
>> dtm.run; dtm.current_configuration.tape
=> #<Tape 111(0)_>

The ability to compose states and rules in this way allows us to build Turing machine
rulebooks of arbitrary size and complexity, without needing any explicit support for
subroutines, as long as we’re prepared to accept the increase in machine size.

Multiple Tapes
The power of a machine can sometimes be increased by expanding its external storage.
For example, a pushdown automaton becomes more powerful when we give it access
to a second stack, because two stacks can be used to simulate an infinite tape: each
stack stores the characters from one half of the simulated tape, and the PDA can pop
and push characters between the stacks to simulate the motion of the tape head, just
like our Tape implementation in “Simulation” on page 141. Any finite state machine
with access to an infinite tape is effectively a Turing machine, so just adding an extra
stack makes a pushdown automaton significantly more powerful.

It’s therefore reasonable to expect that a Turing machine might be made more powerful
by adding one or more extra tapes, each with its own independent tape head, but again
that’s not the case. A single Turing machine tape has enough space to store the contents
of any number of tapes by interleaving them: three tapes containing abc, def, and ghi
can be stored together as adgbehcfi. If we leave a blank square alongside each inter-
leaved character, the machine has space to write markers indicating where all of the
simulated tape heads are located: by using X characters to mark the current position of
each head, we can represent both the contents and the head positions of the tapes ab(c),
(d)ef, and g(h)i with the single tape a_dXg_b_e_hXcXf_i_.

Programming a Turing machine to use multiple simulated tapes is complicated, but
the fiddly details of reading, writing, and moving the heads of the tapes can be wrapped
up in dedicated states and rules (“subroutines”) so that the main logic of the machine
doesn’t become too convoluted. In any case, however inconvenient the programming
turns out to be, a single-tape Turing machine is ultimately capable of performing any
task that a multitape machine can, so adding extra tapes to a Turing machine doesn’t
give it any new abilities.

Maximum Power | 153

www.it-ebooks.info

http://www.it-ebooks.info/

Multidimensional Tape
Finally, it’s tempting to try giving a Turing machine a more spacious storage device.
Instead of using a linear tape, we could provide an infinite two-dimensional grid of
squares and allow the tape head to move up and down as well as left and right. That
would be useful for any situation where we want the machine to quickly access a par-
ticular part of its external storage without having to move the head past everything else
on it, and it would allow us to leave an unlimited amount of blank space around mul-
tiple strings so that each of them can easily grow longer, rather than having to manually
shuffle information along the whole tape to make space whenever we want to insert a
character.

Inevitably, though, a grid can be simulated with one-dimensional tape. The easiest way
is to use two one-dimensional tapes: a primary tape for actually storing data, and a
secondary tape to use as scratch space. Each row of the simulated grid4 is stored on the
primary tape, top row first, with a special character marking the end of each row.

The primary tape head is positioned over the current character as usual, so to move left
and right on the simulated grid, the machine simply moves the head left and right. If
the head hits an end-of-row marker, a subroutine is used to shuffle everything along
the tape to make the grid one space wider.

To move up or down on the simulated grid, the tape head must move a complete row
to the left or right respectively. The machine can do this by first moving the tape head
to the beginning or end of the current row, using the secondary tape to record the
distance travelled, and then moving the head to the same offset in the previous or next
row. If the head moves off the top or bottom of the simulated grid, a subroutine can
be used to allocate a new empty row for the head to move into.

This simulation does require a machine with two tapes, but we know how to simulate
that too, so we end up with a simulated grid stored on two simulated tapes that are
themselves stored on a single native tape. The two layers of simulation introduce a lot
of extra rules and states, and require the underlying machine to take many steps to
perform a single step of the simulated one, but the added size and slowness don’t
prevent it from (eventually) doing what it’s supposed to do.

General-Purpose Machines
All the machines we’ve seen so far have a serious shortcoming: their rules are hardco-
ded, leaving them unable to adapt to different tasks. A DFA that accepts all the strings
that match a particular regular expression can’t learn to accept a different set of strings;
an NPDA that recognizes palindromes will only ever recognize palindromes; a Turing
machine that increments a binary number will never be useful for anything else.

4. Although the grid itself is infinite, it can only ever have a finite number of characters written onto it, so
we only need to store the rectangular area containing all the nonblank characters.

154 | Chapter 5: The Ultimate Machine

www.it-ebooks.info

http://www.it-ebooks.info/

This isn’t how most real-world computers work. Rather than being specialized for a
particular job, modern digital computers are designed to be general purpose and can
be programmed to perform many different tasks. Although the instruction set and CPU
design of a programmable computer is fixed, it’s able to use software to control its
hardware and adapt its behavior to whatever job its user wants it to do.

Can any of our simple machines do that? Instead of having to design a new machine
every time we want to do a different job, can we design a single machine that can read
a program from its input and then do whatever job the program specifies?

Perhaps unsurprisingly, a Turing machine is powerful enough to read the description
of a simple machine from its tape—a deterministic finite automaton, say—and then
run a simulation of that machine to find out what it does. In “Simula-
tion” on page 66, we wrote some Ruby code to simulate a DFA from its description,
and with a bit of work, the ideas from that code can be turned into the rulebook of a
Turing machine that runs the same simulation.

There’s an important difference between a Turing machine that simu-
lates a particular DFA and one that can simulate any DFA.

Designing a Turing machine to reproduce the behavior of a specific DFA
is very easy—after all, a Turing machine is just a deterministic finite
automaton with a tape attached. Every rule from the DFA’s rulebook
can be converted directly into an equivalent Turing machine rule; in-
stead of reading from the DFA’s external input stream, each converted
rule reads a character from the tape and moves the head to the next
square. But this isn’t especially interesting, since the resulting Turing
machine is no more useful than the original DFA.

More interesting is a Turing machine that performs a general DFA sim-
ulation. This machine can read a DFA design from the tape—rules, start
state, and accept states—and walk through each step of that DFA’s ex-
ecution, using another part of the tape to keep track of the simulated
machine’s current state and remaining input. The general simulation is
much harder to implement, but it gives us a single Turing machine that
can adapt itself to any job that a DFA can do, just by being fed a de-
scription of that DFA as input.

The same applies to our deterministic Ruby simulations of NFAs, DPDAs and NPDAs,
each of which can be turned into a Turing machine capable of simulating any autom-
aton of that type. But crucially, it also works for our simulation of Turing machines
themselves: by reimplementing Tape, TMRule, DTMRulebook, and DTM as Turing machine
rules, we are able to design a machine that can simulate any other DTM by reading its
rules, accept states, and initial configuration from the tape and stepping through its
execution, essentially acting as a Turing machine rulebook interpreter. A machine that
does this is called a universal Turing machine (UTM).

General-Purpose Machines | 155

www.it-ebooks.info

http://www.it-ebooks.info/

This is exciting, because it makes the maximum computational power of Turing ma-
chines available in a single programmable device. We can write software—an encoded
description of a Turing machine—onto a tape, feed that tape to the UTM, and have
our software executed to produce the behavior we want. Finite automata and push-
down automata can’t simulate their own kind in this way, so Turing machines not only
mark the transition from limited to powerful computing machines, but also from single-
purpose devices to fully programmable ones.

Let’s look briefly at how a universal Turing machine works. There are a lot of fiddly
and uninteresting technical details involved in actually building a UTM, so our explo-
ration will be relatively superficial, but we should at least be able to convince ourselves
that such a thing is possible.

Encoding
Before we can design a UTM’s rulebook, we have to decide how to represent an entire
Turing machine as a sequence of characters on a tape. A UTM has to read in the rules,
accept states, and starting configuration of an arbitrary Turing machine, then repeat-
edly update the simulated machine’s current configuration as the simulation pro-
gresses, so we need a practical way of storing all this information in a way that the UTM
can work with.

One challenge is that every Turing machine has a finite number of states and a finite
number of different characters it can store on its tape, with both of these numbers being
fixed in advance by its rulebook, and a UTM is no exception. If we design a UTM that
can handle 10 different tape characters, how can it simulate a machine whose rules use
11 characters? If we’re more generous and design it to handle a hundred different char-
acters, what happens when we want to simulate a machine that uses a thousand? How-
ever many characters we decide to use for the UTM’s own tape, it’ll never be enough
to directly represent every possible Turing machine.

There’s also the risk of unintentional character collisions between the simulated ma-
chine and the UTM. To store Turing machine rules and configurations on a tape, we
need to be able to mark their boundaries with characters that will have special meaning
to the UTM, so that it can tell where one rule ends and another begins. But if we choose,
say, X as the special marker between rules, we’ll run into problems if any of the simulated
rules contain the character X. Even if we set aside a super-special set of reserved char-
acters that only a universal Turing machine is allowed to use, they’d still cause problems
if we ever tried to simulate the UTM with itself, so the machine wouldn’t be truly
universal. This suggests we need to do some kind of escaping to prevent ordinary char-
acters from the simulated machine getting incorrectly interpreted as special characters
by the UTM.

We can solve both of these problems by coming up with a scheme that uses a fixed
repertoire of characters to encode the tape contents of a simulated machine. If the
encoding scheme only uses certain characters, then we can be sure it’s safe for the UTM

156 | Chapter 5: The Ultimate Machine

www.it-ebooks.info

http://www.it-ebooks.info/

to use other characters for special purposes, and if the scheme can accommodate any
number of simulated states and characters, then we don’t need to worry about the size
and complexity of the machine being simulated.

The precise details of the encoding scheme aren’t important as long as it meets these
goals. To give an example, one possible scheme uses a unary5 representation to encode
different values as different-sized strings of a single repeated character (e.g., 1): if the
simulated machine uses the characters a, b, and c, these could be encoded in unary as
1, 11, and 111. Another character, say 0, can be used as a marker to delimit unary values:
the string acbc might be represented as 101110110111. This isn’t a very space-efficient
scheme, but it can scale up to accommodate any number of encoded characters simply
by storing longer and longer strings of 1s on the tape.

Once we’ve decided how to encode individual characters, we need a way to represent
the rules of the simulated Turing machine. We can do that by encoding the separate
parts of the rule (state, character, next state, character to write, direction to move) and
concatenating them together on the tape, using special separator characters where nec-
essary. In our example encoding scheme, we could represent states in unary too—state
1 is 1, state 2 is 11, and so on—although we’re free to use dedicated characters to
represent left and right (say, L and R), since we know there will only ever be two direc-
tions.

We can concatenate individual rules together to represent an entire rulebook; similarly,
we can encode the current configuration of the simulated machine by concatenating
the representation of its current state with the representation of its current tape con-
tents.6 And that gives us what we want: a complete Turing machine written as a se-
quence of characters on another Turing machine’s tape, ready to be brought to life by
a simulation.

Simulation
Fundamentally a universal Turing machine works in the same way as the Ruby simu-
lation we built in “Simulation” on page 141, just much more laboriously.

The description of the simulated machine—its rulebook, accept states, and starting
configuration—is stored in encoded form on the UTM’s tape. To perform a single step
of the simulation, the UTM moves its head back and forth between the rules, current
state, and tape of the simulated machine in search of a rule that applies to the current
configuration. When it finds one, it updates the simulated tape according to the char-
acter and direction specified by that rule, and puts the simulated machine into its new
state.

5. Binary is base two, unary is base one.

6. We’ve glossed over exactly how a tape should be represented, but that’s not difficult either, and we always
have the option of storing it on a simulated second tape by using the technique from “Multiple
Tapes” on page 153.

General-Purpose Machines | 157

www.it-ebooks.info

http://www.it-ebooks.info/

That process is repeated until the simulated machine enters an accept state, or gets
stuck by reaching a configuration to which no rule applies.

158 | Chapter 5: The Ultimate Machine

www.it-ebooks.info

http://www.it-ebooks.info/

PART II

Computation and Computability

Throughout the first part of this book we’ve played around with familiar examples of
computation: imperative programming languages, state machines, and general-pur-
pose computers. Those examples have showed us that computation is—more or less
—the process of using a system to manipulate information and answer questions.

Now, in this second part, we’re going to be a bit more adventurous. We’ll start by
looking for computation in unfamiliar places, and finish by exploring the fundamental
limits of what computing machines can do.

As programmers we work with languages and machines that are designed to fit our
mental models of the world, and we expect them to come equipped with features that
make it easy to translate our ideas into implementations. These human-centered de-
signs are motivated by convenience rather than necessity; even the simple design of a
Turing machine is meant to remind us of a mathematician working with pencil and
paper.

But friendly, familiar machines aren’t the only places where computation can happen.
More unusual systems can be just as computationally powerful, even if their inner
workings aren’t as easy for humans to control or to understand. We’ll investigate this
idea in Chapter 6 by trying to write programs in an extremely minimal language that
doesn’t seem to have any useful features at all, and follow the thread further in Chap-
ter 7, where we’ll survey a variety of simple systems and see how they’re able to perform
the same computations as more complex machines.

Once we’ve convinced ourselves that full-powered computation can happen in many
different kinds of system, we’ll spend Chapter 8 examining what computation itself is
actually capable of. It’s natural to assume that computers can solve essentially any
problem as long as enough time and effort is spent on writing a suitable program, but
there turn out to be hard theoretical constraints: certain problems just can’t be solved
by any computer, no matter how fast and efficient it is.

Unfortunately some of these insoluble problems are concerned with predicting the
behavior of programs, which is exactly the kind of thing that programmers would like

www.it-ebooks.info

http://www.it-ebooks.info/

computers to help them with. We’ll look at some strategies for coping with these hard
limits of the computational universe, and conclude in Chapter 9 by exploring how to
use abstraction to squeeze approximate answers out of unanswerable questions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Programming with Nothing

If you wish to make an apple pie from scratch, you must
first invent the universe.

—Carl Sagan

In this book, we’ve been trying to understand computation by building models of it.
So far, we’ve modelled computation by designing simple imaginary machines with
various constraints, and seen that different constraints produce systems with different
amounts of computational power.

The Turing machines from Chapter 5 are interesting because they’re able to implement
complex behavior without relying on complex features. Equipped with just a tape, a
read/write head, and a fixed set of rules, Turing machines have enough flexibility to
simulate the behavior of machines with better storage capabilities, or nondeterministic
execution, or any other fancy feature we might want. This tells us that full-blown com-
putation doesn’t require a machine with a lot of underlying complexity, just the ability
to store values, retrieve them, and use them to make simple decisions.

Models of computation don’t have to look like machines; they can look like program-
ming languages instead. The SIMPLE programming language from Chapter 2 can cer-
tainly perform computation, but it’s not elegant in the way that a Turing machine is.
It already has plenty of syntax—numbers, Booleans, binary expressions, variables, as-
signments, sequences, conditionals, loops—and we haven’t even started to add the
features that would make it suitable for writing real programs: strings, data structures,
procedure calls, and so on.

To turn SIMPLE into a genuinely useful programming language would be hard work, and
the resulting design would contain a lot of incidental detail and not reveal very much
about the basic nature of computation. It would be more interesting to start from
scratch and create something minimal, a Turing machine of the programming language
world, so that we can see which features are essential for computation and which are
just incidental noise.

161

www.it-ebooks.info

http://www.it-ebooks.info/

In this chapter, we’re going to investigate an extremely minimal programming language
called the untyped lambda calculus. First, we’ll experiment with writing programs in a
dialect of Ruby that approximates the lambda calculus by using as few language features
as possible; this will still just be Ruby programming, but imposing imaginary con-
straints gives us an easy way to explore a restricted semantics without having to learn
a whole new language. Then, once we’ve seen what this very limited feature set is
capable of, we’ll take those features and implement them as a standalone language—
with its own parser, abstract syntax, and operational semantics—using the techniques
we’ve learned in earlier chapters.

Impersonating the Lambda Calculus
To see how programming in a minimal language can work, let’s try solving a problem
in Ruby without taking advantage of its many helpful features. Naturally, that means
no gems, no standard library, and no modules, methods, classes, or objects, but since
we’re trying to be as minimal as possible, we’ll also avoid the use of control structures,
assignment, arrays, strings, numbers, and Booleans.

Of course, there won’t be a language left to program in if we avoid absolutely every
feature of Ruby, so here are the ones we’re going to keep:

• Referring to variables

• Creating procs

• Calling procs

That means we can only write Ruby code that looks like this:

-> x { -> y { x.call(y) } }

This is roughly how untyped lambda calculus programs look, and that’s
a good enough approximation for our purposes. We’ll look at the
lambda calculus itself in more detail in “Implementing the Lambda Cal-
culus” on page 197.

To make our code shorter and easier to read, we’re also going to allow ourselves to use
constants as abbreviations: if we create a complex expression, we can assign it to a
constant to give it a short name that we can reuse later. Referring to the name is no
different from retyping the original expression again—the name just makes the code
less verbose—so we won’t be making ourselves dependent upon Ruby’s assignment
features. At any time, we can decide to be more strict and undo the abbreviations by
replacing each constant with the proc it refers to, at the expense of making our programs
much longer.

162 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Procs
Since we’re going to be building entire programs out of procs, let’s spend a minute
looking at their properties before we dive into using them.

For the moment, we’re still using full-featured Ruby to illustrate the
general behavior of procs. We won’t impose the restrictions until we
start writing code to tackle “The Problem” on page 164.

Plumbing

Procs are plumbing for moving values around programs. Consider what happens when
we call a proc:

-> x { x + 2 }.call(1)

The value that’s provided as an argument to the call, in this case 1, flows into the
parameter of the block, in this case x, and then flows out of the parameter to all the
places where it’s used, so Ruby ends up evaluating 1 + 2. It’s the rest of the language
that does the actual work; procs just connect parts of the program together and make
values flow to where they’re needed.

This already doesn’t bode well for our experiment in minimal Ruby. If procs can only
move values between the pieces of Ruby that actually do something with them, how
are we ever going to be able to build useful programs out of procs alone? We’ll get to
that once we’ve explored some other properties of procs.

Arguments

Procs can take multiple arguments, but this isn’t an essential feature. If we’ve got a proc
that takes multiple arguments…

-> x, y {
 x + y
}.call(3, 4)

…we can always rewrite it as nested single-argument procs:

-> x {
 -> y {
 x + y
 }
}.call(3).call(4)

Here, the outer proc takes one argument, x, and returns the inner proc, which also takes
one argument, y. We can call the outer proc with a value for x and then call the inner
proc with a value for y, and we get the same result as in the multiargument case.1

1. This is called currying, and we can use Proc#curry to do this transformation automatically.

Impersonating the Lambda Calculus | 163

www.it-ebooks.info

http://www.it-ebooks.info/

Since we’re trying to remove as many features of Ruby as possible, let’s restrict ourselves
to creating and calling single-argument procs; it won’t make things much worse.

Equality

The only way to find out about the code inside a proc is to call it, so two procs are
interchangeable if they produce identical results when called with the same arguments,
even if their internal code is different. This idea of treating two things as equal based
on their externally visible behavior is called extensional equality.

For example, say we have a proc p:

>> p = -> n { n * 2 }
=> #<Proc (lambda)>

We can make another proc, q, which takes an argument and simply calls p with it:

>> q = -> x { p.call(x) }
=> #<Proc (lambda)>

p and q are obviously two different procs, but they’re extensionally equal, because they
do exactly the same thing for any argument:

>> p.call(5)
=> 10
>> q.call(5)
=> 10

Knowing that p is equivalent to -> x { p.call(x) } opens up new opportunities for
refactoring. If we see the general pattern -> x { p.call(x) } in our program, we may
choose to eliminate it by replacing the whole expression with just p, and under certain
circumstances (which we’ll see later), we might decide to go in the other direction too.

Syntax

Ruby provides a choice of syntax for creating and calling procs. From this point onward,
we’ll use -> arguments { body } to create a proc and square brackets to call it:

>> -> x { x + 5 }[6]
=> 11

This makes it easy to see the body and argument of the proc without too much extra
syntax getting in the way.

The Problem
Our goal is to write the well-known FizzBuzz program:

Write a program that prints the numbers from 1 to 100. But for multiples of three, print
“Fizz” instead of the number, and for the multiples of five, print “Buzz.” For numbers
that are multiples of both three and five, print “FizzBuzz.”

—Imran Ghory, Using FizzBuzz to Find Developers who Grok Coding

164 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://www.it-ebooks.info/

This is an intentionally simple problem, designed to test whether an interview candidate
has any programming experience at all. Anybody who knows how to program should
be able to solve it without much difficulty.

Here’s an implementation of FizzBuzz in full-featured Ruby:

(1..100).each do |n|
 if (n % 15).zero?
 puts 'FizzBuzz'
 elsif (n % 3).zero?
 puts 'Fizz'
 elsif (n % 5).zero?
 puts 'Buzz'
 else
 puts n.to_s
 end
end

This isn’t the cleverest implementation of FizzBuzz—there are plenty of clever ones out
there—but it’s a straightforward one that anyone could write without thinking about it.

However, this program contains some puts statements, and we have no way to print
text to the console using only procs,2 so we’re going to replace it with a roughly equiv-
alent program that returns an array of strings rather than printing them:

(1..100).map do |n|
 if (n % 15).zero?
 'FizzBuzz'
 elsif (n % 3).zero?
 'Fizz'
 elsif (n % 5).zero?
 'Buzz'
 else
 n.to_s
 end
end

This is still a meaningful solution to the FizzBuzz problem, but now it’s one that we
have a chance of implementing using only procs.

Despite its simplicity, this is quite an ambitious program if we don’t have any of the
features of a programming language: it creates a range, maps over it, evaluates a big
conditional, does some arithmetic with the modulo operator, uses the Fixnum#zero?
predicate, uses some string literals, and turns numbers into strings with Fixnum#to_s.
That’s a fair amount of built-in Ruby functionality, and we’re going to have to strip it
all out and reimplement it with procs.

2. We could certainly model printing to the console by introducing a proc to represent standard output and
devising a convention for how to send text to it, but that would complicate the exercise in an uninteresting
way. FizzBuzz isn’t about printing, it’s about arithmetic and control flow.

Impersonating the Lambda Calculus | 165

www.it-ebooks.info

http://redd.it/10d7w
http://redd.it/10d7w
http://www.it-ebooks.info/

Numbers
We’re going to start by focusing on the numbers that appear in FizzBuzz. How can we
possibly represent numbers without using Fixnums or any of the other datatypes that
Ruby provides?

If we’re going to try to implement numbers3 from scratch, we’d better have a solid
understanding of what we’re implementing. What is a number, anyway? It’s hard to
come up with a concrete definition that doesn’t accidentally assume some aspect of
what we’re trying to define; for example, “something that tells us how many…” is not
very useful, because “how many” is really just another way of saying “number.”

Here’s one way of characterizing numbers: imagine we have a bag of apples and a bag
of oranges. We take an apple out of one bag, an orange out of the other, and put them
aside; then we keep taking out an apple and an orange together until at least one of the
bags is empty.

If both bags become empty at the same time, we’ve learned something interesting: in
spite of containing different things, those bags had some shared property that meant
they became empty at the same time; at every point during the procedure of repeatedly
removing an item from each bag, either both bags were nonempty or both bags were
empty. This abstract property shared by the bags is what we can call a number (although
we don’t know which number!), and we can compare these bags with any other bag in
the world to see if it has the same “number” as them.

So one way to characterize numbers is by repetition (or iteration) of some action, in
this case, taking an item from a bag. Each number corresponds to a unique way of
repeating an action: the number one corresponds to just performing the action; the
number two corresponds to performing it and then performing it again; and so on. The
number zero, unsurprisingly, corresponds to not performing the action at all.

Since making and calling procs are the only “actions” our program can perform, we
can try implementing a number n with code that repeats the action of calling a proc n
times.

For example, if we were allowed to define methods—which we’re not, but play along
—then we could define #one as a method that takes a proc and some arbitrary second
argument, and then calls the proc with that argument once:

def one(proc, x)
 proc[x]
end

We could also define #two, which calls the proc once and then calls it again with what-
ever the result of calling it the first time was:4

3. To be more specific, what we want to implement here are the nonnegative integers: zero, one, two, three,
and so on.

4. This is called “iterating the function.”

166 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

def two(proc, x)
 proc[proc[x]]
end

And so on:

def three(proc, x)
 proc[proc[proc[x]]]
end

Following this pattern, it’s natural to define #zero as a method that takes a proc and
some other argument, ignores the proc entirely (i.e., calls it zero times), and returns the
second argument untouched:

def zero(proc, x)
 x
end

All of these implementations can be translated into methodless representations; for
example, we can replace the method #one with a proc that takes two arguments5 and
then calls the first argument with the second one. They look like this:

ZERO = -> p { -> x { x } }
ONE = -> p { -> x { p[x] } }
TWO = -> p { -> x { p[p[x]] } }
THREE = -> p { -> x { p[p[p[x]]] } }

This avoids functionality that we’re not allowed to use, and instead gives names to
procs by assigning them to constants.

This technique of representing data as pure code is named Church en-
coding after Alonzo Church, the inventor of the lambda calculus. The
encoded numbers are Church numerals, and we’ll shortly be seeing ex-
amples of Church Booleans and Church pairs.

Now, although we’re eschewing Ruby’s features inside our FizzBuzz solution, it would
be useful to translate these foreign representations of numbers into native Ruby values
once they’re outside our code—so that they can be usefully inspected on the console
or asserted against in tests, or at least so that we can convince ourselves that they really
do represent numbers in the first place.

Fortunately we can write a #to_integer method that performs this conversion:

def to_integer(proc)
 proc[-> n { n + 1 }][0]
end

5. Actually, “takes two arguments” is inaccurate, because we’re restricting ourselves to single-argument
procs (see “Arguments” on page 163). To be technically correct, we should say “takes one argument and
returns a new proc that takes another argument,” but that’s too long-winded, so we’ll stick with the
shorthand and just remember what we really mean.

Impersonating the Lambda Calculus | 167

www.it-ebooks.info

http://dx.doi.org/10.2307/2371045
http://www.it-ebooks.info/

This method takes a proc that represents a number and calls it with another proc (which
just increments its argument) and the native Ruby number 0. If we call #to_integer
with ZERO then, because of ZERO’s definition, the incrementing proc doesn’t get called
at all and we get an untouched Ruby 0 back:

>> to_integer(ZERO)
=> 0

And if we call #to_integer with THREE, the incrementing proc gets called three times
and we get a Ruby 3 back:

>> to_integer(THREE)
=> 3

So these proc-based representations really do encode numbers, and we can convert
them into a more practical representation whenever we want to.

For FizzBuzz, we need the numbers five, fifteen, and one hundred, which can all be
implemented with the same technique:

FIVE = -> p { -> x { p[p[p[p[p[x]]]]] } }
FIFTEEN = -> p { -> x { p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[x]]]]]]]]]]]]]]] } }
HUNDRED = -> p { -> x { p[↵
p[↵
p[x]]]]]]]]]]]]]]]]]]]]]]]]]]]↵
]]] } }

These aren’t very compact definitions, but they work, as we can confirm with #to_inte
ger:

>> to_integer(FIVE)
=> 5
>> to_integer(FIFTEEN)
=> 15
>> to_integer(HUNDRED)
=> 100

So, going back to the FizzBuzz program, all of the Ruby numbers can be replaced with
their proc-based implementations:

(ONE..HUNDRED).map do |n|
 if (n % FIFTEEN).zero?
 'FizzBuzz'
 elsif (n % THREE).zero?
 'Fizz'
 elsif (n % FIVE).zero?
 'Buzz'
 else
 n.to_s
 end
end

168 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

As promised, we’re writing ONE instead of -> p { -> x { p[x] } }, and
so on, to make the code clearer.

Unfortunately, this program doesn’t work anymore, because we’re now using opera-
tions like .. and % on the proc-based implementations of numbers. Because Ruby
doesn’t know how to treat these as numbers it’ll just blow up: TypeError: can't iter
ate from Proc, NoMethodError: undefined method `%' for #<Proc (lambda)>, and so
on. We need to replace all of the operations to work with these representations—and
we can only use procs to do it.

Before we can reimplement any of the operations, though, we need implementations
of true and false.

Booleans
How can we represent Booleans using only procs? Well, Booleans exist solely to be
used in conditional statements, and in general, a conditional says “if some Boolean then
this else that”:

>> success = true
=> true
>> if success then 'happy' else 'sad' end
=> "happy"
>> success = false
=> false
>> if success then 'happy' else 'sad' end
=> "sad"

So the real job of a Boolean is to allow us to choose between two options, and we can
take advantage of this by representing a Boolean as a proc that chooses one of two
values. Instead of thinking of a Boolean as a lifeless piece of data that can be read by
some future code to decide which of two options to choose, we’ll just implement it
directly as a piece of code that, when called with two options, either chooses the first
option or chooses the second option.

Implemented as methods, then, #true and #false could be:

def true(x, y)
 x
end

def false(x, y)
 y
end

#true is a method that takes two arguments and returns the first one, and #false takes
two arguments and returns the second. This is enough to give us crude conditional
behavior:

Impersonating the Lambda Calculus | 169

www.it-ebooks.info

http://www.it-ebooks.info/

>> success = :true
=> :true
>> send(success, 'happy', 'sad')
=> "happy"
>> success = :false
=> :false
>> send(success, 'happy', 'sad')
=> "sad"

As before, it’s straightforward to translate these methods into procs:

TRUE = -> x { -> y { x } }
FALSE = -> x { -> y { y } }

And just as we defined #to_integer as a sanity check, to make sure it was possible to
convert proc-based numbers into Ruby numbers, so we can define a #to_boolean
method that can turn the TRUE and FALSE procs into Ruby’s native true and false objects:

def to_boolean(proc)
 proc[true][false]
end

This works by taking a proc that represents a Boolean and calling it with true as its first
argument and false as its second. TRUE just returns its first argument, so
to_boolean(TRUE) will return true, and likewise for FALSE:

>> to_boolean(TRUE)
=> true
>> to_boolean(FALSE)
=> false

So representing Booleans with procs is surprisingly easy, but for FizzBuzz, we don’t
just need Booleans, we need a proc-only implementation of Ruby’s if-elsif-else. In
fact, because of the way these Boolean implementations work, it’s easy to write an
#if method too:

def if(proc, x, y)
 proc[x][y]
end

And that’s easy to translate into a proc:

IF =
 -> b {
 -> x {
 -> y {
 b[x][y]
 }
 }
 }

Clearly IF doesn’t need to do any useful work, because the Boolean itself picks the right
argument—IF is just sugar—but it looks more natural than calling the Boolean directly:

>> IF[TRUE]['happy']['sad']
=> "happy"

170 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

>> IF[FALSE]['happy']['sad']
=> "sad"

Incidentally, this means we can revise the definition of #to_boolean to use IF:

def to_boolean(proc)
 IF[proc][true][false]
end

While we’re refactoring, it’s worth noting that the implementation of IF can be cleaned
up significantly, because it contains some procs that are equivalent to simpler ones, as
discussed in “Equality” on page 164. For example, look at IF’s innermost proc:

-> y {
 b[x][y]
}

This code means:

1. Take an argument y.

2. Call b with x to get a proc.

3. Call that proc with y.

Steps 1 and 3 are dead wood: when we call this proc with an argument, it just passes
it on to another proc. So the whole thing is equivalent to just step 2, b[x], and we can
remove the dead wood in the implementation of IF to make it simpler:

IF =
 -> b {
 -> x {
 b[x]
 }
 }

We can see the same pattern again in what’s now the innermost proc:

-> x {
 b[x]
}

For the same reason, this proc is the same as just b, so we can simplify IF even further:

IF = -> b { b }

We’re not going to be able to simplify it any more than that.

IF doesn’t do anything useful—it’s TRUE and FALSE that do all the work
—so we could simplify further by getting rid of it altogether. But our
goal is to translate the original FizzBuzz solution into procs as faithfully
as possible, so it’s convenient to use IF to remind us where the if-elsif-
else expression appeared in the original, even though it’s purely deco-
rative.

Impersonating the Lambda Calculus | 171

www.it-ebooks.info

http://www.it-ebooks.info/

Anyway, now that we have IF, we can go back to the FizzBuzz program and replace
the Ruby if-elsif-else with nested calls to IF:

(ONE..HUNDRED).map do |n|
 IF[(n % FIFTEEN).zero?][
 'FizzBuzz'
][IF[(n % THREE).zero?][
 'Fizz'
][IF[(n % FIVE).zero?][
 'Buzz'
][
 n.to_s
]]]
end

Predicates
Our next job is to replace Fixnum#zero? with a proc-based implementation that will
work with proc-based numbers. The underlying algorithm of #zero? for Ruby values is
something like this:

def zero?(n)
 if n == 0
 true
 else
 false
 end
end

(This is more verbose than is necessary, but it’s explicit about what happens: compare
the number with 0; if it’s equal, then return true; otherwise, return false.)

How can we adapt this to handle procs instead of Ruby numbers? Look at our imple-
mentation of numbers again:

ZERO = -> p { -> x { x } }
ONE = -> p { -> x { p[x] } }
TWO = -> p { -> x { p[p[x]] } }
THREE = -> p { -> x { p[p[p[x]]] } }
⋮

Notice that ZERO is the only number that doesn’t call p—it just returns x—whereas all
of the other numbers call p at least once. We can take advantage of this: if we call an
unknown number with TRUE as its second argument, it’ll return TRUE immediately if the
number is ZERO. If it’s not ZERO, then it’ll return whatever calling p returns, so if we make
p a proc that always returns FALSE, we’ll get the behavior we want:

def zero?(proc)
 proc[-> x { FALSE }][TRUE]
end

Again, it’s easy to rewrite this as a proc:

IS_ZERO = -> n { n[-> x { FALSE }][TRUE] }

172 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

We can use #to_boolean on the console to check that it works:

>> to_boolean(IS_ZERO[ZERO])
=> true
>> to_boolean(IS_ZERO[THREE])
=> false

That’s working fine, so in FizzBuzz, we can replace all of the calls to #zero? with IS_ZERO:

(ONE..HUNDRED).map do |n|
 IF[IS_ZERO[n % FIFTEEN]][
 'FizzBuzz'
][IF[IS_ZERO[n % THREE]][
 'Fizz'
][IF[IS_ZERO[n % FIVE]][
 'Buzz'
][
 n.to_s
]]]
end

Pairs
We have usable data in the form of numbers and Booleans, but we don’t have any data
structures for storing more than one value in an organized way. We’ll soon need some
kind of data structure in order to implement more complex functionality, so let’s pause
briefly to introduce one.

The simplest data structure is a pair, which is like a two-element array. Pairs are quite
easy to implement:

PAIR = -> x { -> y { -> f { f[x][y] } } }
LEFT = -> p { p[-> x { -> y { x } }] }
RIGHT = -> p { p[-> x { -> y { y } }] }

The purpose of a pair is to store two values and provide them again later on request.
To construct a pair, we call PAIR with two values, an x and a y, and it returns its inner
proc:

-> f { f[x][y] }

This is a proc that, when called with another proc f, will call it back with the earlier
values of x and y as arguments. LEFT and RIGHT are the operations that pick out the left
and the right element of a pair by calling it with a proc that returns its first or second
argument respectively. It all works simply enough:

>> my_pair = PAIR[THREE][FIVE]
=> #<Proc (lambda)>
>> to_integer(LEFT[my_pair])
=> 3
>> to_integer(RIGHT[my_pair])
=> 5

Impersonating the Lambda Calculus | 173

www.it-ebooks.info

http://www.it-ebooks.info/

This very simple data structure is enough to get us started; we’ll use pairs later, in
“Lists” on page 180, as a building block for more complex structures.

Numeric Operations
Now that we have numbers, Booleans, conditionals, predicates, and pairs, we’re almost
ready to reimplement the modulo operator.

Before we can do anything as ambitious as taking the modulo of two numbers, we need
to be able to perform simpler operations like incrementing and decrementing a single
number. Incrementing is fairly straightforward:

INCREMENT = -> n { -> p { -> x { p[n[p][x]] } } }

Look at how INCREMENT works: we call it with a proc-based number n, and it’ll return a
new proc that takes some other proc p and some arbitrary second argument x, just like
numbers do.

What does this new proc do when we call it? First it calls n with p and x—since n is a
number, this means “call p, n times, on x,” just as the original number would have done
—and then calls p one more time on the result. Overall, then, this is a proc whose first
argument gets called n + 1 times on its second argument, which is exactly how to
represent the number n + 1.

But what about decrementing? This looks like a much harder problem: once a proc has
already been called n times, it’s easy enough to add an extra call so that it’s been called
n + 1 times, but there’s no obvious way to “undo” one of them to make n - 1 calls.

One solution is to design a proc that, when called n times on some initial argument,
returns the number n - 1. Fortunately, pairs give us a way of doing exactly that. Think
about what this Ruby method does:

def slide(pair)
 [pair.last, pair.last + 1]
end

When we call slide with a two-element array of numbers, it returns a new two-element
array containing the second number and the number that’s one greater than it; if the
input array contains consecutive numbers, the effect is that of “sliding” a narrow win-
dow up the number line:

>> slide([3, 4])
=> [4, 5]
>> slide([8, 9])
=> [9, 10]

This is useful to us, because by starting that window at -1, we can arrange a situation
where the first number in the array is one less than the number of times we’ve called
slide on it, even though we’re only ever incrementing numbers:

>> slide([-1, 0])
=> [0, 1]

174 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

>> slide(slide([-1, 0]))
=> [1, 2]
>> slide(slide(slide([-1, 0])))
=> [2, 3]
>> slide(slide(slide(slide([-1, 0]))))
=> [3, 4]

We can’t do exactly this with proc-based numbers, because we don’t have a way of
representing -1, but what’s interesting about slide is that it only looks at the second
number in the array anyway, so we can put any dummy value—say, 0—in place of -1
and still get exactly the same result:

>> slide([0, 0])
=> [0, 1]
>> slide(slide([0, 0]))
=> [1, 2]
>> slide(slide(slide([0, 0])))
=> [2, 3]
>> slide(slide(slide(slide([0, 0]))))
=> [3, 4]

This is the key to making DECREMENT work: we can turn slide into a proc, use the proc
representation of the number n to call slide n times on a pair of ZEROs, and then use
LEFT to pull out the left number from the resulting pair.

SLIDE = -> p { PAIR[RIGHT[p]][INCREMENT[RIGHT[p]]] }
DECREMENT = -> n { LEFT[n[SLIDE][PAIR[ZERO][ZERO]]] }

Here’s DECREMENT in action:

>> to_integer(DECREMENT[FIVE])
=> 4
>> to_integer(DECREMENT[FIFTEEN])
=> 14
>> to_integer(DECREMENT[HUNDRED])
=> 99
>> to_integer(DECREMENT[ZERO])
=> 0

The result of DECREMENT[ZERO] is actually just the dummy left element
from the initial PAIR[ZERO][ZERO] value, which doesn’t get SLIDE called
on it at all in this case. Since we don’t have negative numbers, 0 is the
closest reasonable answer we can give for DECREMENT[ZERO], so using
ZERO as the dummy value is a good idea.

Now that we have INCREMENT and DECREMENT, it’s possible to implement more useful
numeric operations like addition, subtraction, multiplication, and exponentiation:

ADD = -> m { -> n { n[INCREMENT][m] } }
SUBTRACT = -> m { -> n { n[DECREMENT][m] } }
MULTIPLY = -> m { -> n { n[ADD[m]][ZERO] } }
POWER = -> m { -> n { n[MULTIPLY[m]][ONE] } }

Impersonating the Lambda Calculus | 175

www.it-ebooks.info

http://www.it-ebooks.info/

These implementations are largely self-explanatory. If we want to add m and n, that’s
just “starting with m, INCREMENT it n times,” and likewise for subtraction; once we have
ADD, we can multiply m and n by saying “starting with ZERO, ADD m to it n times,” and
similarly for exponentiation with MULTIPLY and ONE.

In “Reducing expressions” on page 202, we’ll get Ruby to work through
the small-step evaluation of ADD[ONE][ONE] to show how it produces TWO.

That should be enough arithmetic to get us started, but before we can implement %
with procs, we need to know an algorithm for performing the modulo operation. Here’s
one that works on Ruby’s numbers:

def mod(m, n)
 if n <= m
 mod(m - n, n)
 else
 m
 end
end

For example, to calculate 17 modulo 5:

• If 5 is less than or equal to 17, which it is, then subtract 5 from 17 and call #mod
again with the result, i.e. try 12 modulo 5.

• 5 is less than or equal to 12, so try 7 modulo 5.

• 5 is less than or equal to 7, so try 2 modulo 5.

• 5 is not less than or equal to 2, so return the result 2.

But we can’t implement #mod with procs yet, because it uses another operator, <=, for
which we don’t yet have an implementation, so we need to digress briefly to implement
<= with procs.

We can begin with what looks like a pointlessly circular implementation of
#less_or_equal? for Ruby numbers:

def less_or_equal?(m, n)
 m - n <= 0
end

This isn’t very useful, because it begs the question by relying on <=, but it does at least
recast the problem in terms of two other problems we’ve already looked at: subtraction
and comparison with zero. Subtraction we’ve already dealt with, and we’ve done com-
parison for equality with zero, but how do we implement less-than-or-equal-to zero?

As it happens we don’t need to worry about it, because zero is already the smallest
number we know how to implement—recall that our proc-based numbers are the non-
negative integers—so “less than zero” is a meaningless concept in our number system.

176 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

If we use SUBTRACT to subtract a larger number from a smaller one, it’ll just return
ZERO, because there’s no way for it to return a negative number, and ZERO is the closest
it can get:6

>> to_integer(SUBTRACT[FIVE][THREE])
=> 2
>> to_integer(SUBTRACT[THREE][FIVE])
=> 0

We’ve already written IS_ZERO, and since SUBTRACT[m][n] will return ZERO if m is less than
or equal to n (i.e., if n is at least as large as m), we have enough to implement
#less_or_equal? with procs:

def less_or_equal?(m, n)
 IS_ZERO[SUBTRACT[m][n]]
end

And let’s turn that method into a proc:

IS_LESS_OR_EQUAL =
 -> m { -> n {
 IS_ZERO[SUBTRACT[m][n]]
 } }

Does it work?

>> to_boolean(IS_LESS_OR_EQUAL[ONE][TWO])
=> true
>> to_boolean(IS_LESS_OR_EQUAL[TWO][TWO])
=> true
>> to_boolean(IS_LESS_OR_EQUAL[THREE][TWO])
=> false

Looks good.

This gives us the missing piece for our implementation of #mod, so we can rewrite it
with procs:

def mod(m, n)
 IF[IS_LESS_OR_EQUAL[n][m]][
 mod(SUBTRACT[m][n], n)
][
 m
]
end

And replace the method definition with a proc:

MOD =
 -> m { -> n {
 IF[IS_LESS_OR_EQUAL[n][m]][
 MOD[SUBTRACT[m][n]][n]

6. You might protest that 3 - 5 = 0 isn’t called “subtraction” where you come from, and you’d be right:
the technical name for this operation is “monus,” because the nonnegative integers under addition form
a commutative monoid instead of a proper abelian group.

Impersonating the Lambda Calculus | 177

www.it-ebooks.info

http://en.wikipedia.org/wiki/Monus
http://en.wikipedia.org/wiki/Monoid#Commutative_monoid
http://en.wikipedia.org/wiki/Abelian_group
http://www.it-ebooks.info/

][
 m
]
 } }

Great! Does it work?

>> to_integer(MOD[THREE][TWO])
SystemStackError: stack level too deep

No.

Ruby dives off into an infinite recursive loop when we call MOD, because our translation
of Ruby’s native functionality into procs has missed something important about the
semantics of conditionals. In languages like Ruby, the if-else statement is nonstrict
(or lazy): we give it a condition and two blocks, and it evaluates the condition to decide
which of the two blocks to evaluate and return—it never evaluates both.

The problem with our IF implementation is that we can’t take advantage of the lazy
behavior that’s built into Ruby if-else; we just say “call a proc, IF, with two other
procs,” so Ruby charges ahead and evaluates both arguments before IF gets a chance
to decide which one to return.

Look again at MOD:

MOD =
 -> m { -> n {
 IF[IS_LESS_OR_EQUAL[n][m]][
 MOD[SUBTRACT[m][n]][n]
][
 m
]
 } }

When we call MOD with values for m and n, and Ruby starts evaluating the body of the
inner proc, it reaches the recursive call to MOD[SUBTRACT[m][n]][n] and immediately
starts evaluating it as an argument to pass to IF, regardless of whether
IS_LESS_OR_EQUAL[n][m] evaluated to TRUE or FALSE. This second call to MOD results in
another unconditional recursive call, and so on, hence the infinite recursion.

To fix this, we need a way of telling Ruby to defer evaluation of IF’s second argument
until we’re sure we need it. Evaluation of any expression in Ruby can be deferred by
wrapping it in a proc, but wrapping an arbitrary Ruby value in a proc will generally
change its meaning (e.g., the result of 1 + 2 does not equal -> { 1 + 2 }), so we might
need to be more clever.

Fortunately we don’t, because this is a special case: we know that the result of calling
MOD will be a single-argument proc, because all of our values are single-argument procs,
and we already know (from “Equality” on page 164) that wrapping any proc p with
another proc that takes the same arguments as p and immediately calls p with them will
produce a value that is indistinguishable from just p, so we can use that trick here to
defer the recursive call without affecting the meaning of the value being passed into IF:

178 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

MOD =
 -> m { -> n {
 IF[IS_LESS_OR_EQUAL[n][m]][
 -> x {
 MOD[SUBTRACT[m][n]][n][x]
 }
][
 m
]
 } }

This wraps the recursive MOD call in -> x { …[x] } to defer it; Ruby now won’t try to
evaluate the body of that proc when it calls IF, but if the proc gets chosen by IF and
returned as the result, it can be called by its recipient to finally trigger the (now definitely
required) recursive call to MOD.

Does MOD work now?

>> to_integer(MOD[THREE][TWO])
=> 1
>> to_integer(MOD[
 POWER[THREE][THREE]
][
 ADD[THREE][TWO]
])
=> 2

Yes! Hooray!

But don’t celebrate yet, because there’s another, more insidious problem: we are defin-
ing the constant MOD in terms of the constant MOD, so this definition is not just an innocent
abbreviation. This time we’re not merely assigning a complex proc to a constant in
order to reuse it later; in fact, we’re relying on Ruby’s assignment semantics in order
to assume that, even though MOD has obviously not yet been defined while we’re still
defining it, we can nonetheless refer to it in MOD’s implementation and expect it to have
become defined by the time we evaluate it later.

That’s cheating, because in principle, we should be able to undo all of the abbreviations
—“where we said MOD, what we actually meant was this long proc”—but that’s impos-
sible as long as MOD is defined in terms of itself.

We can solve this problem with the Y combinator, a famous piece of helper code de-
signed for exactly this purpose: defining a recursive function without cheating. Here’s
what it looks like:

Y = -> f { -> x { f[x[x]] }[-> x { f[x[x]] }] }

The Y combinator is hard to explain accurately without lots of detail, but here’s a
(technically inaccurate) sketch: when we call the Y combinator with a proc, it will call
that proc with the proc itself as the first argument. So, if we write a proc that expects an
argument and then call the Y combinator with that proc, then the proc will get itself as
that argument and therefore can use that argument whenever it wants to call itself.

Impersonating the Lambda Calculus | 179

www.it-ebooks.info

http://www.it-ebooks.info/

Sadly, for the same reason that MOD was looping forever, the Y combinator will loop
forever in Ruby too, so we need a modified version. It’s the expression x[x] that causes
the problem, and we can again fix the problem by wrapping the occurrences of that
expression in inert -> y { …[y] } procs to defer their evaluation:

Z = -> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }

This is the Z combinator, which is just the Y combinator adapted for strict languages
like Ruby.

We can now finally make a satisfactory implementation of MOD by giving it an extra
argument, f, wrapping a call to the Z combinator around it, and calling f where we
used to call MOD:

MOD =
 Z[-> f { -> m { -> n {
 IF[IS_LESS_OR_EQUAL[n][m]][
 -> x {
 f[SUBTRACT[m][n]][n][x]
 }
][
 m
]
 } } }]

Thankfully this noncheating version of MOD still works:

>> to_integer(MOD[THREE][TWO])
=> 1
>> to_integer(MOD[
 POWER[THREE][THREE]
][
 ADD[THREE][TWO]
])
=> 2

Now we can replace all of the occurrences of % in the FizzBuzz program with calls to MOD:

(ONE..HUNDRED).map do |n|
 IF[IS_ZERO[MOD[n][FIFTEEN]]][
 'FizzBuzz'
][IF[IS_ZERO[MOD[n][THREE]]][
 'Fizz'
][IF[IS_ZERO[MOD[n][FIVE]]][
 'Buzz'
][
 n.to_s
]]]
end

Lists
We only have a few Ruby features left to reimplement for FizzBuzz: the range, the
#map, the string literals, and the Fixnum#to_s. We’ve seen lots of detail for the other

180 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

values and operations we’ve implemented, so we’ll go through the remaining ones
quickly and in as little detail as possible. (Don’t worry about understanding everything;
we’ll just be getting a flavor.)

To be able to implement ranges and #map, we need an implementation of lists, and the
easiest way to build lists is to use pairs. The implementation works like a linked list,
where each pair stores a value and a pointer to the next pair in the list; in this case, we
use nested pairs instead of pointers. The standard list operations look like this:

EMPTY = PAIR[TRUE][TRUE]
UNSHIFT = -> l { -> x {
 PAIR[FALSE][PAIR[x][l]]
 } }
IS_EMPTY = LEFT
FIRST = -> l { LEFT[RIGHT[l]] }
REST = -> l { RIGHT[RIGHT[l]] }

And they work like this:

>> my_list =
 UNSHIFT[
 UNSHIFT[
 UNSHIFT[EMPTY][THREE]
][TWO]
][ONE]
=> #<Proc (lambda)>
>> to_integer(FIRST[my_list])
=> 1
>> to_integer(FIRST[REST[my_list]])
=> 2
>> to_integer(FIRST[REST[REST[my_list]]])
=> 3
>> to_boolean(IS_EMPTY[my_list])
=> false
>> to_boolean(IS_EMPTY[EMPTY])
=> true

Using FIRST and REST to pull out individual elements of lists is quite clumsy, so as with
numbers and Booleans we can write a #to_array method to help us on the console:

def to_array(proc)
 array = []

 until to_boolean(IS_EMPTY[proc])
 array.push(FIRST[proc])
 proc = REST[proc]
 end

 array
end

This makes it easier to inspect lists:

>> to_array(my_list)
=> [#<Proc (lambda)>, #<Proc (lambda)>, #<Proc (lambda)>]

Impersonating the Lambda Calculus | 181

www.it-ebooks.info

http://www.it-ebooks.info/

>> to_array(my_list).map { |p| to_integer(p) }
=> [1, 2, 3]

How can we implement ranges? In fact, instead of finding a way to explicitly represent
ranges as procs, let’s just write a proc that can build a list of all the elements in a range.
For native Ruby numbers and “lists” (i.e., arrays), we can write it like this:

def range(m, n)
 if m <= n
 range(m + 1, n).unshift(m)
 else
 []
 end
end

This algorithm is slightly contrived in anticipation of the available list operations, but
it makes sense: the list of all the numbers from m to n is the same as the list of all the
numbers from m + 1 to n with m unshifted onto the front; if m is greater than n, then the
list of numbers is empty.

Happily, we already have everything we need to translate this method directly into
procs:

RANGE =
 Z[-> f {
 -> m { -> n {
 IF[IS_LESS_OR_EQUAL[m][n]][
 -> x {
 UNSHIFT[f[INCREMENT[m]][n]][m][x]
 }
][
 EMPTY
]
 } }
 }]

Note the use of the Z combinator for recursion, and a deferring -> x { …
[x] } proc around the TRUE branch of the conditional.

Does this work?

>> my_range = RANGE[ONE][FIVE]
=> #<Proc (lambda)>
>> to_array(my_range).map { |p| to_integer(p) }
=> [1, 2, 3, 4, 5]

Yes, so let’s use it in FizzBuzz:

RANGE[ONE][HUNDRED].map do |n|
 IF[IS_ZERO[MOD[n][FIFTEEN]]][
 'FizzBuzz'
][IF[IS_ZERO[MOD[n][THREE]]][

182 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

 'Fizz'
][IF[IS_ZERO[MOD[n][FIVE]]][
 'Buzz'
][
 n.to_s
]]]
end

To implement #map, we can use a helper called FOLD, which is a bit like Ruby’s Enumera
ble#inject:

FOLD =
 Z[-> f {
 -> l { -> x { -> g {
 IF[IS_EMPTY[l]][
 x
][
 -> y {
 g[f[REST[l]][x][g]][FIRST[l]][y]
 }
]
 } } }
 }]

FOLD makes it easier to write procs that process every item in a list:

>> to_integer(FOLD[RANGE[ONE][FIVE]][ZERO][ADD])
=> 15
>> to_integer(FOLD[RANGE[ONE][FIVE]][ONE][MULTIPLY])
=> 120

Once we have FOLD, we can write MAP concisely:

MAP =
 -> k { -> f {
 FOLD[k][EMPTY][
 -> l { -> x { UNSHIFT[l][f[x]] } }
]
 } }

Does MAP work?

>> my_list = MAP[RANGE[ONE][FIVE]][INCREMENT]
=> #<Proc (lambda)>
>> to_array(my_list).map { |p| to_integer(p) }
=> [2, 3, 4, 5, 6]

Yes. So we can replace #map in FizzBuzz:

MAP[RANGE[ONE][HUNDRED]][-> n {
 IF[IS_ZERO[MOD[n][FIFTEEN]]][
 'FizzBuzz'
][IF[IS_ZERO[MOD[n][THREE]]][
 'Fizz'
][IF[IS_ZERO[MOD[n][FIVE]]][
 'Buzz'
][
 n.to_s

Impersonating the Lambda Calculus | 183

www.it-ebooks.info

http://www.it-ebooks.info/

]]]
}]

Nearly finished! All that remains is to deal with the strings.

Strings
Strings are easy to handle: we can just represent them as lists of numbers, as long as we
agree on an encoding that determines which number represents which character.

We can choose any encoding we want, so instead of using a general-purpose one like
ASCII, let’s design a new one that’s more convenient for FizzBuzz. We only need to
encode digits and the strings 'FizzBuzz', 'Fizz', and 'Buzz', so we can use the numbers
0 to 9 to represent the characters '0' to '9', and the numbers from 10 to 14 to encode
the characters 'B', 'F', 'i', 'u', and 'z'.

This already gives us a way to represent the string literals we need (being careful not to
clobber the Z combinator):

TEN = MULTIPLY[TWO][FIVE]
B = TEN
F = INCREMENT[B]
I = INCREMENT[F]
U = INCREMENT[I]
ZED = INCREMENT[U]

FIZZ = UNSHIFT[UNSHIFT[UNSHIFT[UNSHIFT[EMPTY][ZED]][ZED]][I]][F]
BUZZ = UNSHIFT[UNSHIFT[UNSHIFT[UNSHIFT[EMPTY][ZED]][ZED]][U]][B]
FIZZBUZZ = UNSHIFT[UNSHIFT[UNSHIFT[UNSHIFT[BUZZ][ZED]][ZED]][I]][F]

To check that these work, we can write some external methods to convert them into
Ruby strings:

def to_char(c)
 '0123456789BFiuz'.slice(to_integer(c))
end

def to_string(s)
 to_array(s).map { |c| to_char(c) }.join
end

Alright, do the strings work?

>> to_char(ZED)
=> "z"
>> to_string(FIZZBUZZ)
=> "FizzBuzz"

Great. So we can use them in FizzBuzz:

MAP[RANGE[ONE][HUNDRED]][-> n {
 IF[IS_ZERO[MOD[n][FIFTEEN]]][
 FIZZBUZZ
][IF[IS_ZERO[MOD[n][THREE]]][
 FIZZ

184 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

][IF[IS_ZERO[MOD[n][FIVE]]][
 BUZZ
][
 n.to_s
]]]
}]

The very last thing to implement is Fixnum#to_s. For that, we need to be able to split a
number into its component digits, and here’s one way to do that in Ruby:

def to_digits(n)
 previous_digits =
 if n < 10
 []
 else
 to_digits(n / 10)
 end

 previous_digits.push(n % 10)
end

We haven’t implemented <, but we can dodge that problem by using n <= 9 instead of
n < 10. Unfortunately, we can’t dodge implementing Fixnum#/ and Array#push, so here
they are:

DIV =
 Z[-> f { -> m { -> n {
 IF[IS_LESS_OR_EQUAL[n][m]][
 -> x {
 INCREMENT[f[SUBTRACT[m][n]][n]][x]
 }
][
 ZERO
]
 } } }]

PUSH =
 -> l {
 -> x {
 FOLD[l][UNSHIFT[EMPTY][x]][UNSHIFT]
 }
 }

Now we can translate #to_digits into a proc:

TO_DIGITS =
 Z[-> f { -> n { PUSH[
 IF[IS_LESS_OR_EQUAL[n][DECREMENT[TEN]]][
 EMPTY
][
 -> x {
 f[DIV[n][TEN]][x]
 }
]
][MOD[n][TEN]] } }]

Impersonating the Lambda Calculus | 185

www.it-ebooks.info

http://www.it-ebooks.info/

Does it work?

>> to_array(TO_DIGITS[FIVE]).map { |p| to_integer(p) }
=> [5]
>> to_array(TO_DIGITS[POWER[FIVE][THREE]]).map { |p| to_integer(p) }
=> [1, 2, 5]

Yes. And because we had the foresight to design a string encoding where 1 represents
'1' and so on, the arrays produced by TO_DIGITS are already valid strings:

>> to_string(TO_DIGITS[FIVE])
=> "5"
>> to_string(TO_DIGITS[POWER[FIVE][THREE]])
=> "125"

So we can replace #to_s with TO_DIGITS in FizzBuzz:

MAP[RANGE[ONE][HUNDRED]][-> n {
 IF[IS_ZERO[MOD[n][FIFTEEN]]][
 FIZZBUZZ
][IF[IS_ZERO[MOD[n][THREE]]][
 FIZZ
][IF[IS_ZERO[MOD[n][FIVE]]][
 BUZZ
][
 TO_DIGITS[n]
]]]
}]

The Solution
We’ve finally finished! (This would’ve been the longest, most awkward job interview
ever.) We now have an implementation of FizzBuzz written entirely with procs. Let’s
run it to make sure it works properly:

>> solution =
 MAP[RANGE[ONE][HUNDRED]][-> n {
 IF[IS_ZERO[MOD[n][FIFTEEN]]][
 FIZZBUZZ
][IF[IS_ZERO[MOD[n][THREE]]][
 FIZZ
][IF[IS_ZERO[MOD[n][FIVE]]][
 BUZZ
][
 TO_DIGITS[n]
]]]
 }]
=> #<Proc (lambda)>
>> to_array(solution).each do |p|
 puts to_string(p)
 end; nil
1
2
Fizz
4

186 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

Buzz
Fizz
7
⋮
94
Buzz
Fizz
97
98
Fizz
Buzz
=> nil

Having gone to so much trouble to make sure that every constant is just an abbreviation
of some longer expression, we owe it to ourselves to replace each constant with its
definition so we can see the complete program:

-> k { -> f { -> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }
[-> f { -> l { -> x { -> g { -> b { b }[-> p { p[-> x { -> y { x } }] }[l]][x]
[-> y { g[f[-> l { -> p { p[-> x { -> y { y } }] }[-> p { p[-> x { -> y { y } }] }
[l]] }[l]][x][g]][-> l { -> p { p[-> x { -> y { x } }] }[-> p { p[-> x { -> y
{ y } }] }[l]] }[l]][y] }] } } } }][k][-> x { -> y { -> f { f[x][y] } } }[-> x
{ -> y { x } }][-> x { -> y { x } }]][-> l { -> x { -> l { -> x { -> x { -> y
{ -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }
[x][l]] } }[l][f[x]] } }] } }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y
{ x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x
{ -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-
> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x
{ -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { ->
y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-
> p { -> x { x } }]]] }][m] } }[m][n]] } }[m][n]][-> x { -> l { -> x { -> x { -
> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }
[x][l]] } }[f[-> n { -> p { -> x { p[n[p][x]] } } }[m]][n]][m][x] }][-> x { ->
y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]] } } }][-> p
{ -> x { p[x] } }][-> p { -> x
{ p[
p[
p[x]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]] } }]][->
n { -> b { b }[-> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-
> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m
{ -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x
{ -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p
{ -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n
{ -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x
{ -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }]
[m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -> p { p[-> x { -> y

Impersonating the Lambda Calculus | 187

www.it-ebooks.info

http://www.it-ebooks.info/

{ x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y
{ y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y
{ y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p
{ -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> p { -> x
{ p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[x]]]]]]]]]]]]]]] } }]]][-> l { -> x { -> x { -
> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }
[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }]
[-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f
{ f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }
[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -
> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x]
[y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-
> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { ->
y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x]
[y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-
> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { ->
y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -
> y { x } }][-> x { -> y { x } }]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n
{ -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -
> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { ->
x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x
{ p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x
{ p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x
{ p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m
{ -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x
{ x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]]
[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-
> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { ->
p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x
{ p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]][-> m { -> n { n[-> m { -
> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }
[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][-> n { -> p
{ -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -
> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-
> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x
{ x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]]
[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-
> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m
{ -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-
> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x
{ p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p
{ -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x
{ p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }]

188 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

[-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]][-> n { -> p { -> x { p[n[p][x]] } } }
[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }
[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x
{ p[p[p[p[p[x]]]]] } }]]]][-> b { b }[-> n { n[-> x { -> x { -> y { y } } }][-
> x { -> y { x } }] }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x]
[y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x
{ -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x
{ -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -
> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y
{ y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p
{ -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -
> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p
{ p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-
> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x
{ x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> p { -
> x { p[p[p[x]]] } }]]][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x
{ -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { ->
x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x]
[y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -
> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x
{ -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x]
[y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-
> x { -> y { x } }]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x
{ p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x
{ p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p]
[x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p
{ -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n
{ -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -
> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { ->
x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x
{ p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x
{ p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m
{ -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x
{ x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]
[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -
> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x
{ p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]][-> b { b }[-> n { n[-> x
{ -> x { -> y { y } } }][-> x { -> y { x } }] }[-> f { -> x { f[-> y { x[x]
[y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m
{ -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -
> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x]
[y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }
[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[->

Impersonating the Lambda Calculus | 189

www.it-ebooks.info

http://www.it-ebooks.info/

p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-
> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -
> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x
{ p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f
{ f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n]
[x] }][m] } } }][n][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][-> l { -> x { -> x { -
> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }
[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }]
[-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f
{ f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }
[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -
> y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x
{ -> y { x } }][-> x { -> y { x } }]][-> n { -> p { -> x { p[n[p][x]] } } }[->
n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n
{ -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -
> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x
{ p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x
{ p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x
{ p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m
{ -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x
{ x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]]
[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-
> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { ->
p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x
{ p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]][-> m { -> n { n[-> m { -
> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }
[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][-> f { -> x
{ f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> n { -> l { -
> x { -> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f
{ -> l { -> x { -> g { -> b { b }[-> p { p[-> x { -> y { x } }] }[l]][x][-> y
{ g[f[-> l { -> p { p[-> x { -> y { y } }] }[-> p { p[-> x { -> y { y } }] }
[l]] }[l]][x][g]][-> l { -> p { p[-> x { -> y { y } }] }[-> p { p[-> x { -> y
{ y } }] }[l]] }[l]][y] }] } } } }][l][-> l { -> x { -> x { -> y { -> f { f[x]
[y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-
> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][x]]
[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -
> y { -> f { f[x][y] } } }[x][l]] } }] } }[-> b { b }[-> m { -> n { -> n { n[-
> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p
{ p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-
> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x
{ -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }]
[-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][-> n { -> p { p[-> x { -> y
{ x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y

190 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

{ y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y
{ y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p
{ -> x { x } }]]] }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p]
[x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p
{ -> x { p[p[p[p[p[x]]]]] } }]]]][-> x { -> y { -> f { f[x][y] } } }[-> x { ->
y { x } }][-> x { -> y { x } }]][-> x { f[-> f { -> x { f[-> y { x[x][y] }] }[-
> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -
> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-
> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }
[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p
{ p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -
> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { -> n { -
> p { -> x { p[n[p][x]] } } }[f[-> m { -> n { n[-> n { -> p { p[-> x { -> y
{ x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y
{ y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y
{ y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p
{ -> x { x } }]]] }][m] } }[m][n]][n]][x] }][-> p { -> x { x } }] } } }][n][->
m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]]
[-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x
{ p[p[p[p[p[x]]]]] } }]]][x] }]][-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-
> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-
> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p
{ p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-
> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x
{ -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }]
[-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-
> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }
[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p
{ p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -
> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> m
{ -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-
> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x
{ p[p[p[p[p[x]]]]] } }]]] } }][n]]]] }]

Beautiful.

Advanced Programming Techniques
Constructing programs entirely out of procs takes a lot of effort, but we’ve seen that
it’s possible to get real work done as long as we don’t mind applying a bit of ingenuity.
Let’s take a quick look at a couple of other techniques for writing code in this minimal
environment.

Impersonating the Lambda Calculus | 191

www.it-ebooks.info

http://www.it-ebooks.info/

Infinite streams

Using code to represent data has some interesting advantages. Our proc-based lists
don’t have to be static: a list is just code that does the right thing when we pass it to
FIRST and REST, so we can easily implement lists that calculate their contents on the fly,
also known as streams. In fact, there’s no reason why streams even need to be finite,
because the calculation only has to generate the list contents as they’re consumed, so
it can keep producing new values indefinitely.

For example, here’s how to implement an infinite stream of zeros:

ZEROS = Z[-> f { UNSHIFT[f][ZERO] }]

This is the “no cheating” version of ZEROS = UNSHIFT[ZEROS][ZERO], a
data structure defined in terms of itself. As programmers, we’re gener-
ally comfortable with the idea of defining a recursive function in terms
of itself, but defining a data structure in terms of itself might seem weird
and unusual; in this setting, they’re exactly the same thing, and the Z
combinator makes both completely legitimate.

On the console, we can see that ZEROS behaves just like a list, albeit one with no end in
sight:

>> to_integer(FIRST[ZEROS])
=> 0
>> to_integer(FIRST[REST[ZEROS]])
=> 0
>> to_integer(FIRST[REST[REST[REST[REST[REST[ZEROS]]]]]])
=> 0

A helper method to turn this stream into a Ruby array would be convenient, but
to_array will run forever unless we explicitly stop the conversion process. An optional
“maximum size” argument does the trick:

def to_array(l, count = nil)
 array = []

 until to_boolean(IS_EMPTY[l]) || count == 0
 array.push(FIRST[l])
 l = REST[l]
 count = count - 1 unless count.nil?
 end

 array
end

This lets us retrieve any number of elements from the stream and turn them into an
array:

>> to_array(ZEROS, 5).map { |p| to_integer(p) }
=> [0, 0, 0, 0, 0]
>> to_array(ZEROS, 10).map { |p| to_integer(p) }

192 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

=> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>> to_array(ZEROS, 20).map { |p| to_integer(p) }
=> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

ZEROS doesn’t calculate a new element each time, but that’s easy enough to do. Here’s
a stream that counts upward from a given number:

>> UPWARDS_OF = Z[-> f { -> n { UNSHIFT[-> x { f[INCREMENT[n]][x] }][n] } }]
=> #<Proc (lambda)>
>> to_array(UPWARDS_OF[ZERO], 5).map { |p| to_integer(p) }
=> [0, 1, 2, 3, 4]
>> to_array(UPWARDS_OF[FIFTEEN], 20).map { |p| to_integer(p) }
=> [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]

A more elaborate stream contains all the multiples of a given number:

>> MULTIPLES_OF =
 -> m {
 Z[-> f {
 -> n { UNSHIFT[-> x { f[ADD[m][n]][x] }][n] }
 }][m]
 }
=> #<Proc (lambda)>
>> to_array(MULTIPLES_OF[TWO], 10).map { |p| to_integer(p) }
=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
>> to_array(MULTIPLES_OF[FIVE], 20).map { |p| to_integer(p) }
=> [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100]

Remarkably, we can manipulate these infinite streams like any other list. For example,
we can make a new stream by mapping a proc over an existing one:

>> to_array(MULTIPLES_OF[THREE], 10).map { |p| to_integer(p) }
=> [3, 6, 9, 12, 15, 18, 21, 24, 27, 30]
>> to_array(MAP[MULTIPLES_OF[THREE]][INCREMENT], 10).map { |p| to_integer(p) }
=> [4, 7, 10, 13, 16, 19, 22, 25, 28, 31]
>> to_array(MAP[MULTIPLES_OF[THREE]][MULTIPLY[TWO]], 10).map { |p| to_integer(p) }
=> [6, 12, 18, 24, 30, 36, 42, 48, 54, 60]

We can even write procs that combine two streams to make a third:

>> MULTIPLY_STREAMS =
 Z[-> f {
 -> k { -> l {
 UNSHIFT[-> x { f[REST[k]][REST[l]][x] }][MULTIPLY[FIRST[k]][FIRST[l]]]
 } }
 }]
=> #<Proc (lambda)>
>> to_array(MULTIPLY_STREAMS[UPWARDS_OF[ONE]][MULTIPLES_OF[THREE]], 10).
 map { |p| to_integer(p) }
=> [3, 12, 27, 48, 75, 108, 147, 192, 243, 300]

Since the contents of a stream can be generated by any computation, there’s nothing
to stop us creating an infinite list of the Fibonacci series, or the prime numbers, or all
possible strings in alphabetical order, or anything else computable. This abstraction is
a powerful one and doesn’t require any clever features on top of what we already have.

Impersonating the Lambda Calculus | 193

www.it-ebooks.info

http://www.it-ebooks.info/

Native Ruby Streams
Ruby has an Enumerator class that can be used to build infinite streams without relying
on procs. Here’s how to implement the “multiples of a given number” stream:

def multiples_of(n)
 Enumerator.new do |yielder|
 value = n
 loop do
 yielder.yield(value)
 value = value + n
 end
 end
end

This method returns an Enumerator that performs one iteration of the loop each time
we call #next on it, returning the yielded value each time:

>> multiples_of_three = multiples_of(3)
=> #<Enumerator: #<Enumerator::Generator>:each>
>> multiples_of_three.next
=> 3
>> multiples_of_three.next
=> 6
>> multiples_of_three.next
=> 9

The Enumerator class includes the Enumerable module, so we can also call methods like
#first, #take, and #detect:

>> multiples_of(3).first
=> 3
>> multiples_of(3).take(10)
=> [3, 6, 9, 12, 15, 18, 21, 24, 27, 30]
>> multiples_of(3).detect { |x| x > 100 }
=> 102

Other Enumerable methods like #map and #select won’t work properly on this Enumera
tor, because they’ll try to process every item in the infinite stream. However, Ruby 2.0’s
Enumerator::Lazy class reimplements some Enumerable methods so that they work even
when the underlying Enumerator goes on forever. We can get an Enumerator::Lazy by
calling #lazy on an Enumerator, and then we can manipulate these infinite streams just
as we could with the proc versions:

>> multiples_of(3).lazy.map { |x| x * 2 }.take(10).force
=> [6, 12, 18, 24, 30, 36, 42, 48, 54, 60]
>> multiples_of(3).lazy.map { |x| x * 2 }.select { |x| x > 100 }.take(10).force
=> [102, 108, 114, 120, 126, 132, 138, 144, 150, 156]
>> multiples_of(3).lazy.zip(multiples_of(4)).map { |a, b| a * b }.take(10).force
=> [12, 48, 108, 192, 300, 432, 588, 768, 972, 1200]

This isn’t quite as tidy as proc-based lists—we have to write special code to work with
infinite streams, instead of just treating them like conventional Enumerables—but it
shows that Ruby does have a built-in way of handling these unusual data structures.

194 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

Avoiding arbitrary recursion

During the FizzBuzz exercise, we used recursive functions like MOD and RANGE to demon-
strate the use of the Z combinator. This is convenient, because it lets us translate from
an unconstrained recursive Ruby implementation to a proc-only one without changing
the structure of the code, but technically, we can implement these functions without
the Z combinator by taking advantage of the behavior of Church numerals.

For example, our implementation of MOD[m][n] works by repeatedly subtracting n from
m as long as n <= m, always checking the condition to decide whether to make the next
recursive call. But we can get the same result by blindly performing the action “subtract
n from m if n <= m” a fixed number of times instead of using recursion to dynamically
control the repetition. We don’t know exactly how many times we need to repeat it,
but we do know that m times is definitely enough (for the worst case where n is 1), and
it doesn’t hurt to do it more times than necessary:

def decrease(m, n)
 if n <= m
 m - n
 else
 m
 end
end

>> decrease(17, 5)
=> 12
>> decrease(decrease(17, 5), 5)
=> 7
>> decrease(decrease(decrease(17, 5), 5), 5)
=> 2
>> decrease(decrease(decrease(decrease(17, 5), 5), 5), 5)
=> 2
>> decrease(decrease(decrease(decrease(decrease(17, 5), 5), 5), 5), 5)
=> 2

We can therefore rewrite MOD to make use of a proc that takes a number and either
subtracts n from it (if it’s greater than n) or returns it untouched. This proc gets called
m times on m itself to give the final answer:

MOD =
 -> m { -> n {
 m[-> x {
 IF[IS_LESS_OR_EQUAL[n][x]][
 SUBTRACT[x][n]
][
 x
]
 }][m]
 } }

This version of MOD works just as well as the recursive one:

>> to_integer(MOD[THREE][TWO])
=> 1

Impersonating the Lambda Calculus | 195

www.it-ebooks.info

http://www.it-ebooks.info/

>> to_integer(MOD[
 POWER[THREE][THREE]
][
 ADD[THREE][TWO]
])
=> 2

Although this implementation is arguably simpler than the original, it is both harder
to read and less efficient in general, because it always performs a worst-case number of
repeated calls instead of stopping as soon as possible. It’s also not extensionally equal
to the original, because the old version of MOD would loop forever if we asked it to divide
by ZERO (the condition n <= m would never become false), whereas this implementation
just returns its first argument:

>> to_integer(MOD[THREE][ZERO])
=> 3

RANGE is slightly more challenging, but we can use a trick similar to the one that makes
DECREMENT work: design a function that, when called n times on some initial argument,
returns a list of n numbers from the desired range. As with DECREMENT, the secret is to
use a pair to store both the resulting list and the information needed by the next iter-
ation:

def countdown(pair)
 [pair.first.unshift(pair.last), pair.last - 1]
end

>> countdown([[], 10])
=> [[10], 9]
>> countdown(countdown([[], 10]))
=> [[9, 10], 8]
>> countdown(countdown(countdown([[], 10])))
=> [[8, 9, 10], 7]
>> countdown(countdown(countdown(countdown([[], 10]))))
=> [[7, 8, 9, 10], 6]

This is easy to rewrite with procs:

COUNTDOWN = -> p { PAIR[UNSHIFT[LEFT[p]][RIGHT[p]]][DECREMENT[RIGHT[p]]] }

Now we just need to implement RANGE so that it calls COUNTDOWN the right number of
times (the range from m to n always has m - n + 1 elements) and unpacks the result list
from the final pair:

RANGE = -> m { -> n { LEFT[INCREMENT[SUBTRACT[n][m]][COUNTDOWN][PAIR[EMPTY][n]]] } }

Again, this combinator-free version works just fine:

>> to_array(RANGE[FIVE][TEN]).map { |p| to_integer(p) }
=> [5, 6, 7, 8, 9, 10]

196 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

We’re able to implement MOD and RANGE by performing a predetermined
number of iterations—rather than executing an arbitrary loop that runs
until its condition becomes true—because they’re primitive recursive
functions. See “Partial Recursive Functions” on page 210 for more
about this.

Implementing the Lambda Calculus
Our FizzBuzz experiment has given us a sense of how it feels to write programs in the
untyped lambda calculus. The constraints forced us to implement a lot of basic func-
tionality from scratch rather than relying on features of the language, but we did even-
tually manage to build all of the data structures and algorithms we needed to solve the
problem we were given.

Of course, we haven’t really been writing lambda calculus programs, because we don’t
have a lambda calculus interpreter; we’ve just written Ruby programs in the style of
the lambda calculus to get a feel for how such a minimal language can work. But we
already have all the knowledge we need to build a lambda calculus interpreter and use
it to evaluate actual lambda calculus expressions, so let’s give that a try.

Syntax
The untyped lambda calculus is a programming language with only three kinds of
expression: variables, function definitions, and calls. Rather than introduce a new con-
crete syntax for lambda calculus expressions, we’ll stick with the Ruby conventions—
variables look like x, functions look like -> x { x }, and calls look like x[y]—and try
not to get the two languages confused.

Why “lambda calculus”?
In this context, the word calculus means a system of rules for manipu-
lating strings of symbols.7 The native syntax of the lambda calculus uses
the Greek letter lambda (λ) in place of Ruby’s -> symbol; for instance,
ONE is written as λp.λx.p x.

We can implement LCVariable, LCFunction, and LCCall syntax classes in the usual way:

class LCVariable < Struct.new(:name)
 def to_s
 name.to_s
 end

 def inspect

7. Most people associate it with the differential and integral calculus, a system concerned with
rates of change and accumulation of quantities in mathematical functions.

Implementing the Lambda Calculus | 197

www.it-ebooks.info

http://www.it-ebooks.info/

 to_s
 end
end

class LCFunction < Struct.new(:parameter, :body)
 def to_s
 "-> #{parameter} { #{body} }"
 end

 def inspect
 to_s
 end
end

class LCCall < Struct.new(:left, :right)
 def to_s
 "#{left}[#{right}]"
 end

 def inspect
 to_s
 end
end

These classes let us build abstract syntax trees of lambda calculus expressions, just like
we did with SIMPLE in Chapter 2 and regular expressions in Chapter 3:

>> one =
 LCFunction.new(:p,
 LCFunction.new(:x,
 LCCall.new(LCVariable.new(:p), LCVariable.new(:x))
)
)
=> -> p { -> x { p[x] } }
>> increment =
 LCFunction.new(:n,
 LCFunction.new(:p,
 LCFunction.new(:x,
 LCCall.new(
 LCVariable.new(:p),
 LCCall.new(
 LCCall.new(LCVariable.new(:n), LCVariable.new(:p)),
 LCVariable.new(:x)
)
)
)
)
)
=> -> n { -> p { -> x { p[n[p][x]] } } }
>> add =
 LCFunction.new(:m,
 LCFunction.new(:n,
 LCCall.new(LCCall.new(LCVariable.new(:n), increment), LCVariable.new(:m))
)
)
=> -> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }

198 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

Because the language has such minimal syntax, those three classes are enough to rep-
resent any lambda calculus program.

Semantics
Now we’re going to give a small-step operational semantics for the lambda calculus by
implementing a #reduce method on each syntax class. Small-step is an attractive choice,
because it allows us to see the individual steps of evaluation, which is something we
can’t easily do for Ruby expressions.

Replacing variables

Before we can implement #reduce, we need another operation called #replace, which
finds occurrences of a particular variable inside an expression and replaces them with
some other expression:

class LCVariable
 def replace(name, replacement)
 if self.name == name
 replacement
 else
 self
 end
 end
end

class LCFunction
 def replace(name, replacement)
 if parameter == name
 self
 else
 LCFunction.new(parameter, body.replace(name, replacement))
 end
 end
end

class LCCall
 def replace(name, replacement)
 LCCall.new(left.replace(name, replacement), right.replace(name, replacement))
 end
end

This works in the obvious way on variables and calls:

>> expression = LCVariable.new(:x)
=> x
>> expression.replace(:x, LCFunction.new(:y, LCVariable.new(:y)))
=> -> y { y }
>> expression.replace(:z, LCFunction.new(:y, LCVariable.new(:y)))
=> x
>> expression =
 LCCall.new(
 LCCall.new(

Implementing the Lambda Calculus | 199

www.it-ebooks.info

http://www.it-ebooks.info/

 LCCall.new(
 LCVariable.new(:a),
 LCVariable.new(:b)
),
 LCVariable.new(:c)
),
 LCVariable.new(:b)
)
=> a[b][c][b]
>> expression.replace(:a, LCVariable.new(:x))
=> x[b][c][b]
>> expression.replace(:b, LCFunction.new(:x, LCVariable.new(:x)))
=> a[-> x { x }][c][-> x { x }]

For functions, the situation is more complicated. #replace only acts on the body of a
function, and it only replaces free variables—that is, variables that haven’t been
bound to the function by being named as its parameter:

>> expression =
 LCFunction.new(:y,
 LCCall.new(LCVariable.new(:x), LCVariable.new(:y))
)
=> -> y { x[y] }
>> expression.replace(:x, LCVariable.new(:z))
=> -> y { z[y] }
>> expression.replace(:y, LCVariable.new(:z))
=> -> y { x[y] }

This lets us replace occurrences of a variable throughout an expression without acci-
dentally changing unrelated variables that happen to have the same name:

>> expression =
 LCCall.new(
 LCCall.new(LCVariable.new(:x), LCVariable.new(:y)),
 LCFunction.new(:y, LCCall.new(LCVariable.new(:y), LCVariable.new(:x)))
)
=> x[y][-> y { y[x] }]
>> expression.replace(:x, LCVariable.new(:z))
=> z[y][-> y { y[z] }]
>> expression.replace(:y, LCVariable.new(:z))
=> x[z][-> y { y[x] }]

Both occurrences of x are free in the original expression, so they both get replaced.

Only the first occurrence of y is a free variable, so only that one is replaced. The
second y is a function parameter, not a variable, and the third y is a variable that
belongs to that function and shouldn’t be touched.

Our simple #replace implementation won’t work on certain inputs. It
doesn’t properly handle replacements that contain free variables:

>> expression =
 LCFunction.new(:x,
 LCCall.new(LCVariable.new(:x), LCVariable.new(:y))
)
=> -> x { x[y] }

200 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

>> replacement = LCCall.new(LCVariable.new(:z), LCVariable.new(:x))
=> z[x]
>> expression.replace(:y, replacement)
=> -> x { x[z[x]] }

It’s not okay to just paste z[x] into the body of -> x { … } like that,
because the x in z[x] is a free variable and should remain free afterward,
but here it gets accidentally captured by the function parameter with the
same name.8

We can ignore this deficiency, because we’ll only be evaluating expres-
sions that don’t contain any free variables, so it won’t actually cause a
problem, but beware that a more sophisticated implementation is
needed in the general case.

Calling functions

The whole point of #replace is to give us a way to implement the semantics of function
calls. In Ruby, when a proc is called with one or more arguments, the body of the proc
gets evaluated in an environment where each argument has been assigned to a local
variable, so each use of that variable behaves like the argument itself: in a metaphorical
sense, calling the proc -> x, y { x + y } with the arguments 1 and 2 produces the
intermediate expression 1 + 2, and that’s what gets evaluated to produce the final result.

We can apply the same idea more literally in the lambda calculus by actually replacing
variables in a function’s body when we evaluate a call. To do this, we can define a
LCFunction#call method that does the replacement and returns the result:

class LCFunction
 def call(argument)
 body.replace(parameter, argument)
 end
end

This lets us simulate the moment when a function gets called:

>> function =
 LCFunction.new(:x,
 LCFunction.new(:y,
 LCCall.new(LCVariable.new(:x), LCVariable.new(:y))
)
)
=> -> x { -> y { x[y] } }
>> argument = LCFunction.new(:z, LCVariable.new(:z))
=> -> z { z }
>> function.call(argument)
=> -> y { -> z { z }[y] }

8. The correct behavior is to automatically rename the function’s parameter so that it doesn’t
clash with any free variables: rewrite -> x { x[y] } as the equivalent expression -> w
{ w[y] }, say, and then safely perform the replacement to get -> w { w[z[x]] }, leaving x free.

Implementing the Lambda Calculus | 201

www.it-ebooks.info

http://www.it-ebooks.info/

Reducing expressions

Function calls are the only thing that actually happens when a lambda calculus program
is evaluated, so now we’re ready to implement #reduce. It’ll find a place in the expres-
sion where a function call can occur, then use #call to make it happen. We just need
to be able to identify which expressions are actually callable…

class LCVariable
 def callable?
 false
 end
end

class LCFunction
 def callable?
 true
 end
end

class LCCall
 def callable?
 false
 end
end

…and then we can write #reduce:

class LCVariable
 def reducible?
 false
 end
end

class LCFunction
 def reducible?
 false
 end
end

class LCCall
 def reducible?
 left.reducible? || right.reducible? || left.callable?
 end

 def reduce
 if left.reducible?
 LCCall.new(left.reduce, right)
 elsif right.reducible?
 LCCall.new(left, right.reduce)
 else
 left.call(right)
 end
 end
end

202 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

In this implementation, function calls are the only kind of syntax that can be reduced.
Reducing LCCall works a bit like reducing Add or Multiply from SIMPLE: if either of its
subexpressions is reducible, we reduce that; if not, we actually perform the call by
calling the left subexpression (which should be a LCFunction) with the right one as its
argument. This strategy is known as call-by-value evaluation—first we reduce the ar-
gument to an irreducible value, then we perform the call.

Let’s test our implementation by using the lambda calculus to calculate one plus one:

>> expression = LCCall.new(LCCall.new(add, one), one)
=> -> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[-> p { -> x { p[x] } ↵
}][-> p { -> x { p[x] } }]
>> while expression.reducible?
 puts expression
 expression = expression.reduce
 end; puts expression
-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[-> p { -> x { p[x] } }]↵
[-> p { -> x { p[x] } }]
-> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][-> p { -> x { p[x] } }] }[-> p { -> x ↵
{ p[x] } }]
-> p { -> x { p[x] } }[-> n { -> p { -> x { p[n[p][x]] } } }][-> p { -> x { p[x] } }]
-> x { -> n { -> p { -> x { p[n[p][x]] } } }[x] }[-> p { -> x { p[x] } }]
-> n { -> p { -> x { p[n[p][x]] } } }[-> p { -> x { p[x] } }]
-> p { -> x { p[-> p { -> x { p[x] } }[p][x]] } }
=> nil

Well, something definitely happened, but we didn’t get quite the result we wanted: the
final expression is -> p { -> x { p[-> p { -> x { p[x] } }[p][x]] } }, but the lambda
calculus representation of the number two is supposed to be -> p { -> x
{ p[p[x]] } })]. What went wrong?

The mismatch is caused by the evaluation strategy we’re using. There are still reducible
function calls buried within the result—the call -> p { -> x { p[x] } }[p] could be
reduced to -> x { p[x] }, for instance—but #reduce doesn’t touch them, because they
appear inside the body of a function, and our semantics doesn’t treat functions as
reducible.9

However, as discussed in “Equality” on page 164, two expressions with different syntax
can still be considered equal if they have the same behavior. We know how the lambda
calculus representation of the number two is supposed to behave: if we give it two
arguments, it calls the first argument twice on the second argument. So let’s try calling

9. We could fix this by reimplementing #reduce to use a more aggressive evaluation strategy (like applicative
order or normal order evaluation) that performs reduction on the bodies of functions, but a function body
taken in isolation usually contains free variables, so that would require a more robust implementation of
#replace.

Implementing the Lambda Calculus | 203

www.it-ebooks.info

http://www.it-ebooks.info/

our expression with two made-up variables, inc and zero,10 and see what it actually
does:

>> inc, zero = LCVariable.new(:inc), LCVariable.new(:zero)
=> [inc, zero]
>> expression = LCCall.new(LCCall.new(expression, inc), zero)
=> -> p { -> x { p[-> p { -> x { p[x] } }[p][x]] } }[inc][zero]
>> while expression.reducible?
 puts expression
 expression = expression.reduce
 end; puts expression
-> p { -> x { p[-> p { -> x { p[x] } }[p][x]] } }[inc][zero]
-> x { inc[-> p { -> x { p[x] } }[inc][x]] }[zero]
inc[-> p { -> x { p[x] } }[inc][zero]]
inc[-> x { inc[x] }[zero]]
inc[inc[zero]]
=> nil

That’s exactly how we expect the number two to behave, so -> p { -> x { p[-> p { -
> x { p[x] } }[p][x]] } } is the right result after all, even though it looks slightly
different than the expression we were expecting.

Parsing
Now that we’ve got a working semantics, let’s finish things off by building a parser for
lambda calculus expressions. As usual, we can use Treetop to write a grammar:

grammar LambdaCalculus
 rule expression
 calls / variable / function
 end

 rule calls
 first:(variable / function) rest:('[' expression ']')+ {
 def to_ast
 arguments.map(&:to_ast).inject(first.to_ast) { |l, r| LCCall.new(l, r) }
 end

 def arguments
 rest.elements.map(&:expression)
 end
 }
 end

 rule variable
 [a-z]+ {
 def to_ast
 LCVariable.new(text_value.to_sym)
 end

10. We’re taking a risk by evaluating an expression containing the free variables inc and zero, but fortunately,
none of the functions in the expression have arguments with those names, so in this specific case, there’s
no danger of either variable being accidentally captured.

204 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 end

 rule function
 '-> ' parameter:[a-z]+ ' { ' body:expression ' }' {
 def to_ast
 LCFunction.new(parameter.text_value.to_sym, body.to_ast)
 end
 }
 end
end

As discussed in “Implementing Parsers” on page 58, Treetop grammars
typically generate right-associative trees, so this grammar has to do extra
work to accommodate the lambda calculus’s left-associative function
call syntax. The calls rule matches one or more consecutive calls (like
a[b][c][d]), and the #to_ast method on the resulting concrete syntax
tree node uses Enumerable#inject to roll up the arguments of those calls
into a left-associative abstract syntax tree.

The parser and operational semantics together give us a complete implementation of
the lambda calculus, allowing us to read expressions and evaluate them:

>> require 'treetop'
=> true
>> Treetop.load('lambda_calculus')
=> LambdaCalculusParser
>> parse_tree = LambdaCalculusParser.new.parse('-> x { x[x] }[-> y { y }]')
=> SyntaxNode+Calls2+Calls1 offset=0, "…}[-> y { y }]" (to_ast,arguments,first,rest):
 SyntaxNode+Function1+Function0 offset=0, "… x { x[x] }" (to_ast,parameter,body):
 SyntaxNode offset=0, "-> "
 SyntaxNode offset=3, "x":
 SyntaxNode offset=3, "x"
 SyntaxNode offset=4, " { "
 SyntaxNode+Calls2+Calls1 offset=7, "x[x]" (to_ast,arguments,first,rest):
 SyntaxNode+Variable0 offset=7, "x" (to_ast):
 SyntaxNode offset=7, "x"
 SyntaxNode offset=8, "[x]":
 SyntaxNode+Calls0 offset=8, "[x]" (expression):
 SyntaxNode offset=8, "["
 SyntaxNode+Variable0 offset=9, "x" (to_ast):
 SyntaxNode offset=9, "x"
 SyntaxNode offset=10, "]"
 SyntaxNode offset=11, " }"
 SyntaxNode offset=13, "[-> y { y }]":
 SyntaxNode+Calls0 offset=13, "[-> y { y }]" (expression):
 SyntaxNode offset=13, "["
 SyntaxNode+Function1+Function0 offset=14, "… { y }" (to_ast,parameter,body):
 SyntaxNode offset=14, "-> "
 SyntaxNode offset=17, "y":
 SyntaxNode offset=17, "y"
 SyntaxNode offset=18, " { "
 SyntaxNode+Variable0 offset=21, "y" (to_ast):

Implementing the Lambda Calculus | 205

www.it-ebooks.info

http://www.it-ebooks.info/

 SyntaxNode offset=21, "y"
 SyntaxNode offset=22, " }"
 SyntaxNode offset=24, "]"
>> expression = parse_tree.to_ast
=> -> x { x[x] }[-> y { y }]
>> expression.reduce
=> -> y { y }[-> y { y }]

206 | Chapter 6: Programming with Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Universality Is Everywhere

Most of the complexity we see in the world comes from complicated systems—mam-
mals, microprocessors, the economy, the weather—so it’s natural to assume that a
simple system can only do simple things. But in this book, we’ve seen that simple
systems can have impressive capabilities: Chapter 6 showed that even a very minimal
programming language has enough power to do useful work, and Chapter 5 sketched
the design of a universal Turing machine that can read an encoded description of an-
other machine and then simulate its execution.

The existence of the universal Turing machine is extremely significant. Even though
any individual Turing machine has a hardcoded rulebook, the universal Turing ma-
chine demonstrates that it’s possible to design a device that can adapt to arbitrary tasks
by reading instructions from a tape. These instructions are effectively a piece of software
that controls the operation of the machine’s hardware, just like in the general-purpose
programmable computers we use every day.1 Finite and pushdown automata are
slightly too simple to support this kind of full-blown programmability, but a Turing
machine has just enough complexity to make it work.

In this chapter, we’ll take a tour of several simple systems and see that they’re all uni-
versal—all capable of simulating a Turing machine, and therefore all capable of exe-
cuting an arbitrary program provided as input instead of hardcoded into the rules of
the system—which suggests that universality is a lot more common than we might
expect.

Lambda Calculus
We’ve seen that the lambda calculus is a usable programming language, but we haven’t
yet explored whether it’s as powerful as a Turing machine. In fact, the lambda calculus

1. “Hardware” means the read/write head, the tape, and the rulebook. They’re not literally hardware since
a Turing machine is usually a thought experiment rather than a physical object, but they’re “hard” in the
sense that they’re a fixed part of the system, as opposed to the ever-changing “soft” information that
exists as characters written on the tape.

207

www.it-ebooks.info

http://www.it-ebooks.info/

must be at least that powerful, because it turns out to be capable of simulating any
Turing machine, including (of course) a universal Turing machine.

Let’s get a taste of how that works by quickly implementing part of a Turing machine
—the tape—in the lambda calculus.

As in Chapter 6, we’re going to take the convenient shortcut of repre-
senting lambda calculus expressions as Ruby code, as long as that code
does nothing except make procs, call procs, and use constants as ab-
breviations.

It’s a little risky to bring Ruby into play when it’s not the language we’re
supposed to be investigating, but in exchange, we get a familiar syntax
for expressions and an easy way to evaluate them, and our discoveries
will still be valid as long as we stay within the constraints.

A Turing machine tape has four attributes: the list of characters appearing on the left
of the tape, the character in the middle of the tape (where the machine’s read/write
head is), the list of characters on the right, and the character to be treated as a blank.
We can represent those four values as a pair of pairs:

TAPE = -> l { -> m { -> r { -> b { PAIR[PAIR[l][m]][PAIR[r][b]] } } } }
TAPE_LEFT = -> t { LEFT[LEFT[t]] }
TAPE_MIDDLE = -> t { RIGHT[LEFT[t]] }
TAPE_RIGHT = -> t { LEFT[RIGHT[t]] }
TAPE_BLANK = -> t { RIGHT[RIGHT[t]] }

TAPE acts as a constructor that takes the four tape attributes as arguments and returns
a proc representing a tape, and TAPE_LEFT, TAPE_MIDDLE, TAPE_RIGHT, and TAPE_BLANK are
the accessors that can take one of those tape representations and pull the corresponding
attribute out again.

Once we have this data structure, we can implement TAPE_WRITE, which takes a tape
and a character and returns a new tape with that character written in the middle posi-
tion:

TAPE_WRITE = -> t { -> c { TAPE[TAPE_LEFT[t]][c][TAPE_RIGHT[t]][TAPE_BLANK[t]] } }

We can also define operations to move the tape head. Here’s a TAPE_MOVE_HEAD_RIGHT
proc for moving the head one square to the right, converted directly from the unre-
stricted Ruby implementation of Tape#move_head_right in “Simulation” on page 141:2

TAPE_MOVE_HEAD_RIGHT =
 -> t {
 TAPE[
 PUSH[TAPE_LEFT[t]][TAPE_MIDDLE[t]]
][
 IF[IS_EMPTY[TAPE_RIGHT[t]]][

2. The implementation of TAPE_MOVE_HEAD_LEFT is similar, although it requires some extra list-manipulation
functions that didn’t get defined in “Lists” on page 180.

208 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

 TAPE_BLANK[t]
][
 FIRST[TAPE_RIGHT[t]]
]
][
 IF[IS_EMPTY[TAPE_RIGHT[t]]][
 EMPTY
][
 REST[TAPE_RIGHT[t]]
]
][
 TAPE_BLANK[t]
]
 }

Taken together, these operations give us everything we need to create a tape, read from
it, write onto it, and move its head around. For example, we can start with a blank tape
and write a sequence of numbers into consecutive squares:

>> current_tape = TAPE[EMPTY][ZERO][EMPTY][ZERO]
=> #<Proc (lambda)>
>> current_tape = TAPE_WRITE[current_tape][ONE]
=> #<Proc (lambda)>
>> current_tape = TAPE_MOVE_HEAD_RIGHT[current_tape]
=> #<Proc (lambda)>
>> current_tape = TAPE_WRITE[current_tape][TWO]
=> #<Proc (lambda)>
>> current_tape = TAPE_MOVE_HEAD_RIGHT[current_tape]
=> #<Proc (lambda)>
>> current_tape = TAPE_WRITE[current_tape][THREE]
=> #<Proc (lambda)>
>> current_tape = TAPE_MOVE_HEAD_RIGHT[current_tape]
=> #<Proc (lambda)>
>> to_array(TAPE_LEFT[current_tape]).map { |p| to_integer(p) }
=> [1, 2, 3]
>> to_integer(TAPE_MIDDLE[current_tape])
=> 0
>> to_array(TAPE_RIGHT[current_tape]).map { |p| to_integer(p) }
=> []

We’ll skip over the rest of the details, but it’s not difficult to continue like this, building
proc-based representations of states, configurations, rules, and rulebooks. Once we
have all those pieces, we can write proc-only implementations of DTM#step and DTM#run:
STEP simulates a single step of a Turing machine by applying a rulebook to one con-
figuration to produce another, and RUN simulates a machine’s full execution by using
the Z combinator to repeatedly call STEP until no rule applies or the machine reaches a
halting state.

In other words, RUN is a lambda calculus program that can simulate any Turing ma-
chine.3 It turns out that the reverse is also possible: a Turing machine can act as an

3. The term Turing complete is often used to describe a system or programming language that can simulate
any Turing machine.

Lambda Calculus | 209

www.it-ebooks.info

http://www.it-ebooks.info/

interpreter for the lambda calculus by storing a representation of a lambda calculus
expression on the tape and repeatedly updating it according to a set of reduction rules,
just like the operational semantics from “Semantics” on page 199.

Since every Turing machine can be simulated by a lambda calculus pro-
gram, and every lambda calculus program can be simulated by a Turing
machine, the two systems are exactly equivalent in power. That’s a sur-
prising result, because Turing machines and lambda calculus programs
work in completely different ways and there’s no prior reason to expect
them to have identical capabilities.

This means there’s at least one way to simulate the lambda calculus in itself: first im-
plement a Turing machine in the lambda calculus, then use that simulated machine to
run a lambda calculus interpreter. This simulation-inside-a-simulation is a very ineffi-
cient way of doing things, and we can get the same result more elegantly by designing
data structures to represent lambda calculus expressions and then implementing an
operational semantics directly, but it does show that the lambda calculus must be uni-
versal without having to build anything new. A self-interpreter is the lambda calculus
version of the universal Turing machine: even though the underlying interpreter pro-
gram is fixed, we can make it do any job by supplying a suitable lambda calculus ex-
pression as input.

As we’ve seen, the real benefit of a universal system is that it can be programmed to
perform different tasks, rather than always being hardcoded to perform a single one.
In particular, a universal system can be programmed to simulate any other universal
system; a universal Turing machine can evaluate lambda calculus expressions, and a
lambda calculus interpreter can simulate the execution of a Turing machine.

Partial Recursive Functions
In much the same way that lambda calculus expressions consist entirely of creating and
calling procs, partial recursive functions are programs that are constructed from four
fundamental building blocks in different combinations. The first two building blocks
are called zero and increment, and we can implement them here as Ruby methods:

def zero
 0
end

def increment(n)
 n + 1
end

These are straightforward methods that return the number zero and add one to a num-
ber respectively:

210 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

>> zero
=> 0
>> increment(zero)
=> 1
>> increment(increment(zero))
=> 2

We can use #zero and #increment to define some new methods, albeit not very inter-
esting ones:

>> def two
 increment(increment(zero))
 end
=> nil
>> two
=> 2
>> def three
 increment(two)
 end
=> nil
>> three
=> 3
>> def add_three(x)
 increment(increment(increment(x)))
 end
=> nil
>> add_three(two)
=> 5

The third building block, #recurse, is more complicated:

def recurse(f, g, *values)
 *other_values, last_value = values

 if last_value.zero?
 send(f, *other_values)
 else
 easier_last_value = last_value - 1
 easier_values = other_values + [easier_last_value]

 easier_result = recurse(f, g, *easier_values)
 send(g, *easier_values, easier_result)
 end
end

#recurse takes two method names as arguments, f and g, and uses them to perform a
recursive calculation on some input values. The immediate result of a call to #recurse
is computed by delegating to either f or g depending on what the last input value is:

• If the last input value is zero, #recurse calls the method named by f, passing the
rest of the values as arguments.

• If the last input value is not zero, #recurse decrements it, calls itself with the up-
dated input values, and then calls the method named by g with those same values
and the result of the recursive call.

Partial Recursive Functions | 211

www.it-ebooks.info

http://www.it-ebooks.info/

This sounds more complicated than it is; #recurse is just a template for defining a
certain kind of recursive function. For example, we can use it to define a method called
#add that takes two arguments, x and y, and adds them together. To build this method
with #recurse, we need to implement two other methods that answer these questions:

• Given the value of x, what is the value of add(x, 0)?

• Given the values of x, y - 1, and add(x, y - 1), what is the value of add(x, y)?

The first question is easy: adding zero to a number doesn’t change it, so if we know the
value of x, the value of add(x, 0) will be identical. We can implement this as a method
called #add_zero_to_x that simply returns its argument:

def add_zero_to_x(x)
 x
end

The second question is slightly harder, but still simple enough to answer: if we already
have the value of add(x, y - 1), we just need to increment it to get the value of add(x,
y).4 This means we need a method that increments its third argument (#recurse calls
it with x, y - 1, and add(x, y - 1)). Let’s call it #increment_easier_result:

def increment_easier_result(x, easier_y, easier_result)
 increment(easier_result)
end

Putting these together gives us a definition of #add built out of #recurse and #increment:

def add(x, y)
 recurse(:add_zero_to_x, :increment_easier_result, x, y)
end

The same spirit applies here as in Chapter 6: we may only use method
definitions to give convenient names to expressions, not to sneak re-
cursion into them.5 If we want to write a recursive method, we have to
use #recurse.

Let’s check that #add does what it’s supposed to:

>> add(two, three)
=> 5

Looks good. We can use the same strategy to implement other familiar examples, like
#multiply…

4. Because subtraction is the inverse of addition, (x + (y − 1)) + 1 = (x + (y + −1)) + 1. Because addition is
associative, (x + (y + −1)) + 1 = (x + y) + (−1 + 1). And because −1 + 1 = 0, which is the identity element
for addition, (x + y) + (−1 + 1) = x + y.

5. Of course the underlying implementation of #recurse itself uses a recursive method
definition, but that’s allowed, because we’re treating #recurse as one of the four built-in
primitives of the system, not a user-defined method.

212 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

def multiply_x_by_zero(x)
 zero
end

def add_x_to_easier_result(x, easier_y, easier_result)
 add(x, easier_result)
end

def multiply(x, y)
 recurse(:multiply_x_by_zero, :add_x_to_easier_result, x, y)
end

…and #decrement…

def easier_x(easier_x, easier_result)
 easier_x
end

def decrement(x)
 recurse(:zero, :easier_x, x)
end

…and #subtract:

def subtract_zero_from_x(x)
 x
end

def decrement_easier_result(x, easier_y, easier_result)
 decrement(easier_result)
end

def subtract(x, y)
 recurse(:subtract_zero_from_x, :decrement_easier_result, x, y)
end

These implementations all work as expected:

>> multiply(two, three)
=> 6
>> def six
 multiply(two, three)
 end
=> nil
>> decrement(six)
=> 5
>> subtract(six, two)
=> 4
>> subtract(two, six)
=> 0

The programs that we can assemble out of #zero, #increment, and #recurse are called
the primitive recursive functions.

All primitive recursive functions are total: regardless of their inputs, they always halt
and return an answer. This is because #recurse is the only legitimate way to define a

Partial Recursive Functions | 213

www.it-ebooks.info

http://www.it-ebooks.info/

recursive method, and #recurse always halts: each recursive call makes the last argu-
ment closer to zero, and when it inevitably reaches zero, the recursion will stop.

#zero, #increment, and #recurse are enough to construct many useful functions, in-
cluding all the operations needed to perform a single step of a Turing machine: the
contents of a Turing machine tape can be represented as a large number, and primitive
recursive functions can be used to read the character at the tape head’s current position,
write a new character onto the tape, and move the tape head left or right. However, we
can’t simulate the full execution of an arbitrary Turing machine with primitive recursive
functions, because some Turing machines loop forever, so primitive recursive functions
aren’t universal.

To get a truly universal system we have to add a fourth fundamental operation, #mini
mize:

def minimize
 n = 0
 n = n + 1 until yield(n).zero?
 n
end

#minimize takes a block and calls it repeatedly with a single numeric argument. For the
first call, it provides 0 as the argument, then 1, then 2, and keeps calling the block with
larger and larger numbers until it returns zero.

By adding #minimize to #zero, #increment, and #recurse, we can build many more
functions—all the partial recursive functions—including ones that don’t always halt.
For example, #minimize gives us an easy way to implement #divide:

def divide(x, y)
 minimize { |n| subtract(increment(x), multiply(y, increment(n))) }
end

The expression subtract(increment(x), multiply(y, increment(n))) is
designed to return zero for values of n that make y * (n + 1) greater
than x. If we’re trying to divide 13 by 4 (x = 13, y = 4), look at the values
of y * (n + 1) as n increases:

n x y * (n + 1) Is y * (n + 1) greater than x?

0 13 4 no

1 13 8 no

2 13 12 no

3 13 16 yes

4 13 20 yes

214 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

n x y * (n + 1) Is y * (n + 1) greater than x?

5 13 24 yes

The first value of n that satisfies the condition is 3, so the block we pass
to #minimize will return zero for the first time when n reaches 3, and we’ll
get 3 as the result of divide(13, 4).

When #divide is called with sensible arguments, it always returns a result, just like a
primitive recursive function:

>> divide(six, two)
=> 3
>> def ten
 increment(multiply(three, three))
 end
=> nil
>> ten
=> 10
>> divide(ten, three)
=> 3

But #divide doesn’t have to return an answer, because #minimize can loop forever.
#divide by zero is undefined:

>> divide(six, zero)
SystemStackError: stack level too deep

It’s a little surprising to see a stack overflow here, because the imple-
mentation of #minimize is iterative and doesn’t directly grow the call
stack, but the overflow actually happens during #divide’s call to the
recursive #multiply method. The depth of recursion in the #multiply
call is determined by its second argument, increment(n), and the value
of n becomes very large as the #minimize loop tries to run forever, even-
tually overflowing the stack.

With #minimize, it’s possible to fully simulate a Turing machine by repeatedly calling
the primitive recursive function that performs a single simulation step. The simulation
will continue until the machine halts—and if that never happens, it’ll run forever.

SKI Combinator Calculus
The SKI combinator calculus is a system of rules for manipulating the syntax of expres-
sions, just like the lambda calculus. Although the lambda calculus is already very sim-
ple, it still has three kinds of expression—variables, functions, and calls—and we saw
in “Semantics” on page 199 that variables make the reduction rules a bit complicated.
The SKI calculus is even simpler, with only two kinds of expression—calls and alpha-

SKI Combinator Calculus | 215

www.it-ebooks.info

http://www.it-ebooks.info/

betic symbols—and much easier rules. All of its power comes from the three special
symbols S, K, and I (called combinators), each of which has its own reduction rule:

• Reduce S[a][b][c] to a[c][b[c]], where a, b, and c can be any SKI calculus ex-
pressions.

• Reduce K[a][b] to a.

• Reduce I[a] to a.

For example, here’s one way of reducing the expression I[S][K][S][I[K]]:

I[S][K][S][I[K]] → S[K][S][I[K]] (reduce I[S] to S)
 → S[K][S][K] (reduce I[K] to K)
 → K[K][S[K]] (reduce S[K][S][K] to K[K][S[K]])
 → K (reduce K[K][S[K]] to K)

Notice that there’s no lambda-calculus-style variable replacement going on here, just
symbols being reordered, duplicated, and discarded according to the reduction rules.

It’s easy to implement the abstract syntax of SKI expressions:

class SKISymbol < Struct.new(:name)
 def to_s
 name.to_s
 end

 def inspect
 to_s
 end
end

class SKICall < Struct.new(:left, :right)
 def to_s
 "#{left}[#{right}]"
 end

 def inspect
 to_s
 end
end

class SKICombinator < SKISymbol
end

S, K, I = [:S, :K, :I].map { |name| SKICombinator.new(name) }

Here we’re defining SKICall and SKISymbol classes to represent calls and
symbols generally, then creating the one-off instances S, K, and I to rep-
resent those particular symbols that act as combinators.

We could have made S, K, and I direct instances of SKISymbol, but in-
stead, we’ve used instances of a subclass called SKICombinator. This
doesn’t help us right now, but it’ll make it easier to add methods to all
three combinator objects later on.

216 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

These classes and objects can be used to build abstract syntax trees of SKI expressions:

>> x = SKISymbol.new(:x)
=> x
>> expression = SKICall.new(SKICall.new(S, K), SKICall.new(I, x))
=> S[K][I[x]]

We can give the SKI calculus a small-step operational semantics by implementing its
reduction rules and applying those rules inside expressions. First, we’ll define a method
called #call on the SKICombinator instances; S, K, and I each get their own definition
of #call that implements their reduction rule:

reduce S[a][b][c] to a[c][b[c]]
def S.call(a, b, c)
 SKICall.new(SKICall.new(a, c), SKICall.new(b, c))
end

reduce K[a][b] to a
def K.call(a, b)
 a
end

reduce I[a] to a
def I.call(a)
 a
end

Okay, so this gives us a way to apply the rules of the calculus if we already know what
arguments a combinator is being called with…

>> y, z = SKISymbol.new(:y), SKISymbol.new(:z)
=> [y, z]
>> S.call(x, y, z)
=> x[z][y[z]]

…but to use #call with a real SKI expression, we need to extract a combinator and
arguments from it. This is a bit fiddly since an expression is represented as a binary tree
of SKICall objects:

>> expression = SKICall.new(SKICall.new(SKICall.new(S, x), y), z)
=> S[x][y][z]
>> combinator = expression.left.left.left
=> S
>> first_argument = expression.left.left.right
=> x
>> second_argument = expression.left.right
=> y
>> third_argument = expression.right
=> z
>> combinator.call(first_argument, second_argument, third_argument)
=> x[z][y[z]]

To make this structure easier to handle, we can define the methods #combinator and
#arguments on abstract syntax trees:

SKI Combinator Calculus | 217

www.it-ebooks.info

http://www.it-ebooks.info/

class SKISymbol
 def combinator
 self
 end

 def arguments
 []
 end
end

class SKICall
 def combinator
 left.combinator
 end

 def arguments
 left.arguments + [right]
 end
end

This gives us an easy way to discover which combinator to call and what arguments to
pass to it:

>> expression
=> S[x][y][z]
>> combinator = expression.combinator
=> S
>> arguments = expression.arguments
=> [x, y, z]
>> combinator.call(*arguments)
=> x[z][y[z]]

That works fine for S[x][y][z], but there are a couple of problems in the general case.
First, the #combinator method just returns the leftmost symbol from an expression, but
that symbol isn’t necessarily a combinator:

>> expression = SKICall.new(SKICall.new(x, y), z)
=> x[y][z]
>> combinator = expression.combinator
=> x
>> arguments = expression.arguments
=> [y, z]
>> combinator.call(*arguments)
NoMethodError: undefined method `call' for x:SKISymbol

And second, even if the leftmost symbol is a combinator, it isn’t necessarily being called
with the right number of arguments:

>> expression = SKICall.new(SKICall.new(S, x), y)
=> S[x][y]
>> combinator = expression.combinator
=> S
>> arguments = expression.arguments
=> [x, y]
>> combinator.call(*arguments)
ArgumentError: wrong number of arguments (2 for 3)

218 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

To avoid both these problems, we’ll define a #callable? predicate for checking whether
it’s appropriate to use #call with the results of #combinator and #arguments. A vanilla
symbol is never callable, and a combinator is only callable if the number of arguments
is correct:

class SKISymbol
 def callable?(*arguments)
 false
 end
end

def S.callable?(*arguments)
 arguments.length == 3
end

def K.callable?(*arguments)
 arguments.length == 2
end

def I.callable?(*arguments)
 arguments.length == 1
end

Incidentally, Ruby already has a way to ask a method how many argu-
ments it expects (its arity):

>> def add(x, y)
 x + y
 end
=> nil
>> add_method = method(:add)
=> #<Method: Object#add>
>> add_method.arity
=> 2

So we could replace S, K, and I’s separate implementations of #calla
ble? with a shared one:

class SKICombinator
 def callable?(*arguments)
 arguments.length == method(:call).arity
 end
end

Now we can recognize expressions where the reduction rules directly apply:

>> expression = SKICall.new(SKICall.new(x, y), z)
=> x[y][z]
>> expression.combinator.callable?(*expression.arguments)
=> false
>> expression = SKICall.new(SKICall.new(S, x), y)
=> S[x][y]
>> expression.combinator.callable?(*expression.arguments)
=> false
>> expression = SKICall.new(SKICall.new(SKICall.new(S, x), y), z)

SKI Combinator Calculus | 219

www.it-ebooks.info

http://www.it-ebooks.info/

=> S[x][y][z]
>> expression.combinator.callable?(*expression.arguments)
=> true

We’re finally ready to implement the familiar #reducible? and #reduce methods for SKI
expressions:

class SKISymbol
 def reducible?
 false
 end
end

class SKICall
 def reducible?
 left.reducible? || right.reducible? || combinator.callable?(*arguments)
 end

 def reduce
 if left.reducible?
 SKICall.new(left.reduce, right)
 elsif right.reducible?
 SKICall.new(left, right.reduce)
 else
 combinator.call(*arguments)
 end
 end
end

SKICall#reduce works by recursively looking for a subexpression that
we know how to reduce—the S combinator being called with three ar-
guments, for instance—and then applying the appropriate rule with
#call.

And that’s it! We can now evaluate SKI expressions by repeatedly reducing them until
no more reductions are possible. For example, here’s the expression S[K[S[I]]][K],
which swaps the order of its two arguments, being called with the symbols x and y:

>> swap = SKICall.new(SKICall.new(S, SKICall.new(K, SKICall.new(S, I))), K)
=> S[K[S[I]]][K]
>> expression = SKICall.new(SKICall.new(swap, x), y)
=> S[K[S[I]]][K][x][y]
>> while expression.reducible?
 puts expression
 expression = expression.reduce
 end; puts expression
S[K[S[I]]][K][x][y]
K[S[I]][x][K[x]][y]
S[I][K[x]][y]
I[y][K[x][y]]
y[K[x][y]]
y[x]
=> nil

220 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

The SKI calculus can produce surprisingly complex behavior with its three simple rules
—so complex, in fact, that it turns out to be universal. We can prove it’s universal by
showing how to translate any lambda calculus expression into an SKI expression that
does the same thing, effectively using the SKI calculus to give a denotational semantics
for the lambda calculus. We already know that the lambda calculus is universal, so if
the SKI calculus can completely simulate it, it follows that the SKI calculus is universal
too.

At the heart of the translation is a method called #as_a_function_of:

class SKISymbol
 def as_a_function_of(name)
 if self.name == name
 I
 else
 SKICall.new(K, self)
 end
 end
end

class SKICombinator
 def as_a_function_of(name)
 SKICall.new(K, self)
 end
end

class SKICall
 def as_a_function_of(name)
 left_function = left.as_a_function_of(name)
 right_function = right.as_a_function_of(name)

 SKICall.new(SKICall.new(S, left_function), right_function)
 end
end

The precise details of how #as_a_function_of works aren’t important, but roughly
speaking, it converts an SKI expression into a new one that turns back into the original
when called with an argument. For example, the expression S[K][I] gets converted into
S[S[K[S]][K[K]]][K[I]]:

>> original = SKICall.new(SKICall.new(S, K), I)
=> S[K][I]
>> function = original.as_a_function_of(:x)
=> S[S[K[S]][K[K]]][K[I]]
>> function.reducible?
=> false

When S[S[K[S]][K[K]]][K[I]] is called with an argument, say, the symbol y, it reduces
back to S[K][I]:

>> expression = SKICall.new(function, y)
=> S[S[K[S]][K[K]]][K[I]][y]
>> while expression.reducible?
 puts expression

SKI Combinator Calculus | 221

www.it-ebooks.info

http://www.it-ebooks.info/

 expression = expression.reduce
 end; puts expression
S[S[K[S]][K[K]]][K[I]][y]
S[K[S]][K[K]][y][K[I][y]]
K[S][y][K[K][y]][K[I][y]]
S[K[K][y]][K[I][y]]
S[K][K[I][y]]
S[K][I]
=> nil
>> expression == original
=> true

The name parameter is only used if the original expression contains a symbol with that
name. In that case, #as_a_function_of produces something more interesting: an ex-
pression that, when called with an argument, reduces to the original expression with
that argument in place of the symbol:

>> original = SKICall.new(SKICall.new(S, x), I)
=> S[x][I]
>> function = original.as_a_function_of(:x)
=> S[S[K[S]][I]][K[I]]
>> expression = SKICall.new(function, y)
=> S[S[K[S]][I]][K[I]][y]
>> while expression.reducible?
 puts expression
 expression = expression.reduce
 end; puts expression
S[S[K[S]][I]][K[I]][y]
S[K[S]][I][y][K[I][y]]
K[S][y][I[y]][K[I][y]]
S[I[y]][K[I][y]]
S[y][K[I][y]]
S[y][I]
=> nil
>> expression == original
=> false

This is an explicit reimplementation of the way that variables get replaced inside the
body of a lambda calculus function when it’s called. Essentially, #as_a_function_of
gives us a way to use an SKI expression as the body of a function: it creates a new
expression that behaves just like a function with a particular body and parameter name,
even though the SKI calculus doesn’t have explicit syntax for functions.

The ability of the SKI calculus to imitate the behavior of functions makes it straight-
forward to translate lambda calculus expressions into SKI expressions. Lambda calcu-
lus variables and calls become SKI calculus symbols and calls, and each lambda calculus
function has its body turned into an SKI calculus “function” with #as_a_function_of:

class LCVariable
 def to_ski
 SKISymbol.new(name)
 end
end

222 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

class LCCall
 def to_ski
 SKICall.new(left.to_ski, right.to_ski)
 end
end

class LCFunction
 def to_ski
 body.to_ski.as_a_function_of(parameter)
 end
end

Let’s check this translation by converting the lambda calculus representation of the
number two (see “Numbers” on page 166) into the SKI calculus:

>> two = LambdaCalculusParser.new.parse('-> p { -> x { p[p[x]] } }').to_ast
=> -> p { -> x { p[p[x]] } }
>> two.to_ski
=> S[S[K[S]][S[K[K]][I]]][S[S[K[S]][S[K[K]][I]]][K[I]]]

Does the SKI calculus expression S[S[K[S]][S[K[K]][I]]][S[S[K[S]][S[K[K]][I]]]
[K[I]]] do the same thing as the lambda calculus expression -> p { -> x
{ p[p[x]] } }? Well, it’s supposed to call its first argument twice on its second argu-
ment, so we can try giving it some arguments to see whether it actually does that, just
like we did in “Semantics” on page 199:

>> inc, zero = SKISymbol.new(:inc), SKISymbol.new(:zero)
=> [inc, zero]
>> expression = SKICall.new(SKICall.new(two.to_ski, inc), zero)
=> S[S[K[S]][S[K[K]][I]]][S[S[K[S]][S[K[K]][I]]][K[I]]][inc][zero]
>> while expression.reducible?
 puts expression
 expression = expression.reduce
 end; puts expression
S[S[K[S]][S[K[K]][I]]][S[S[K[S]][S[K[K]][I]]][K[I]]][inc][zero]
S[K[S]][S[K[K]][I]][inc][S[S[K[S]][S[K[K]][I]]][K[I]][inc]][zero]
K[S][inc][S[K[K]][I][inc]][S[S[K[S]][S[K[K]][I]]][K[I]][inc]][zero]
S[S[K[K]][I][inc]][S[S[K[S]][S[K[K]][I]]][K[I]][inc]][zero]
S[K[K][inc][I[inc]]][S[S[K[S]][S[K[K]][I]]][K[I]][inc]][zero]
S[K[I[inc]]][S[S[K[S]][S[K[K]][I]]][K[I]][inc]][zero]
S[K[inc]][S[S[K[S]][S[K[K]][I]]][K[I]][inc]][zero]
S[K[inc]][S[K[S]][S[K[K]][I]][inc][K[I][inc]]][zero]
S[K[inc]][K[S][inc][S[K[K]][I][inc]][K[I][inc]]][zero]
S[K[inc]][S[S[K[K]][I][inc]][K[I][inc]]][zero]
S[K[inc]][S[K[K][inc][I[inc]]][K[I][inc]]][zero]
S[K[inc]][S[K[I[inc]]][K[I][inc]]][zero]
S[K[inc]][S[K[inc]][K[I][inc]]][zero]
S[K[inc]][S[K[inc]][I]][zero]
K[inc][zero][S[K[inc]][I][zero]]
inc[S[K[inc]][I][zero]]
inc[K[inc][zero][I[zero]]]
inc[inc[I[zero]]]
inc[inc[zero]]
=> nil

SKI Combinator Calculus | 223

www.it-ebooks.info

http://www.it-ebooks.info/

Sure enough, calling the converted expression with symbols named inc and zero has
evaluated to inc[inc[zero]], which is exactly what we wanted. The same translation
works successfully for any other lambda calculus expression, so the SKI combinator
calculus can completely simulate the lambda calculus, and therefore must be universal.

Although the SKI calculus has three combinators, the I combinator is
actually redundant. There are many expressions containing only S and
K that do the same thing as I; for instance, look at the behavior of S[K]
[K]:

>> identity = SKICall.new(SKICall.new(S, K), K)
=> S[K][K]
>> expression = SKICall.new(identity, x)
=> S[K][K][x]
>> while expression.reducible?
 puts expression
 expression = expression.reduce
 end; puts expression
S[K][K][x]
K[x][K[x]]
x
=> nil

So S[K][K] has the same behavior as I, and in fact, that’s true for any
SKI expression of the form S[K][whatever]. The I combinator is syn-
tactic sugar that we can live without; just the two combinators S and K
are enough for universality.

Iota
The Greek letter iota (ɩ) is an extra combinator that can be added to the SKI calculus.
Here is its reduction rule: Reduce ɩ[a] to a[S][K].

Our implementation of the SKI calculus makes it easy to plug in a new combinator:

IOTA = SKICombinator.new('ɩ')

reduce ɩ[a] to a[S][K]
def IOTA.call(a)
 SKICall.new(SKICall.new(a, S), K)
end

def IOTA.callable?(*arguments)
 arguments.length == 1
end

Chris Barker proposed a language called Iota whose programs only use the ɩ combina-
tor. Although it only has one combinator, Iota is a universal language, because any SKI
calculus expression can be converted into it, and we’ve already seen that the SKI cal-
culus is universal.

We can convert an SKI expression to Iota by applying these substitution rules:

224 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://semarch.linguistics.fas.nyu.edu/barker/Iota/
http://www.it-ebooks.info/

• Replace S with ɩ[ɩ[ɩ[ɩ[ɩ]]]].

• Replace K with ɩ[ɩ[ɩ[ɩ]]].

• Replace I with ɩ[ɩ].

It’s easy to implement this conversion:

class SKISymbol
 def to_iota
 self
 end
end

class SKICall
 def to_iota
 SKICall.new(left.to_iota, right.to_iota)
 end
end

def S.to_iota
 SKICall.new(IOTA, SKICall.new(IOTA, SKICall.new(IOTA, SKICall.new(IOTA, IOTA))))
end

def K.to_iota
 SKICall.new(IOTA, SKICall.new(IOTA, SKICall.new(IOTA, IOTA)))
end

def I.to_iota
 SKICall.new(IOTA, IOTA)
end

It’s not at all obvious whether the Iota versions of the S, K, and I combinators are
equivalent to the originals, so let’s investigate by reducing each of them inside the SKI
calculus and observing their behavior. Here’s what happens when we translate S into
Iota and then reduce it:

>> expression = S.to_iota
=> ɩ[ɩ[ɩ[ɩ[ɩ]]]]
>> while expression.reducible?
 puts expression
 expression = expression.reduce
 end; puts expression
ɩ[ɩ[ɩ[ɩ[ɩ]]]]
ɩ[ɩ[ɩ[ɩ[S][K]]]]
ɩ[ɩ[ɩ[S[S][K][K]]]]
ɩ[ɩ[ɩ[S[K][K[K]]]]]
ɩ[ɩ[S[K][K[K]][S][K]]]
ɩ[ɩ[K[S][K[K][S]][K]]]
ɩ[ɩ[K[S][K][K]]]
ɩ[ɩ[S[K]]]
ɩ[S[K][S][K]]
ɩ[K[K][S[K]]]
ɩ[K]
K[S][K]

Iota | 225

www.it-ebooks.info

http://www.it-ebooks.info/

S
=> nil

So yes, ɩ[ɩ[ɩ[ɩ[ɩ]]]] really is equivalent to S. The same thing happens with K:

>> expression = K.to_iota
=> ɩ[ɩ[ɩ[ɩ]]]
>> while expression.reducible?
 puts expression
 expression = expression.reduce
 end; puts expression
ɩ[ɩ[ɩ[ɩ]]]
ɩ[ɩ[ɩ[S][K]]]
ɩ[ɩ[S[S][K][K]]]
ɩ[ɩ[S[K][K[K]]]]
ɩ[S[K][K[K]][S][K]]
ɩ[K[S][K[K][S]][K]]
ɩ[K[S][K][K]]
ɩ[S[K]]
S[K][S][K]
K[K][S[K]]
K
=> nil

Things don’t work quite so neatly for I. The ɩ reduction rule only produces expressions
containing the S and K combinators, so there’s no chance of ending up with a literal I:

>> expression = I.to_iota
=> ɩ[ɩ]
>> while expression.reducible?
 puts expression
 expression = expression.reduce
 end; puts expression
ɩ[ɩ]
ɩ[S][K]
S[S][K][K]
S[K][K[K]]
=> nil

Now, S[K][K[K]] is obviously not syntactically equal to I, but it’s another example of
an expression that uses the S and K combinators to do the same thing as I:

>> identity = SKICall.new(SKICall.new(S, K), SKICall.new(K, K))
=> S[K][K[K]]
>> expression = SKICall.new(identity, x)
=> S[K][K[K]][x]
>> while expression.reducible?
 puts expression
 expression = expression.reduce
 end; puts expression
S[K][K[K]][x]
K[x][K[K][x]]
K[x][K]
x
=> nil

226 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

So the translation into Iota does preserve the individual behavior of all three SKI com-
binators, even though it doesn’t quite preserve their syntax. We can test the overall
effect by converting a familiar lambda calculus expression into Iota via its SKI calculus
representation, then evaluating it to check how it behaves:

>> two
=> -> p { -> x { p[p[x]] } }
>> two.to_ski
=> S[S[K[S]][S[K[K]][I]]][S[S[K[S]][S[K[K]][I]]][K[I]]]
>> two.to_ski.to_iota
=> ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ]]][ɩ[↵
ɩ[ɩ[ɩ]]]]][ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]]]][ɩ[ɩ[ɩ[ɩ[ɩ]]↵
]][ɩ[ɩ[ɩ[ɩ]]][ɩ[ɩ[ɩ[ɩ]]]]][ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ]]][ɩ[ɩ]]]]
>> expression = SKICall.new(SKICall.new(two.to_ski.to_iota, inc), zero)
=> ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ]]][ɩ[↵
ɩ[ɩ[ɩ]]]]][ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]]]][ɩ[ɩ[ɩ[ɩ[ɩ]]↵
]][ɩ[ɩ[ɩ[ɩ]]][ɩ[ɩ[ɩ[ɩ]]]]][ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ]]][ɩ[ɩ]]]][inc][zero]
>> expression = expression.reduce while expression.reducible?
=> nil
>> expression
=> inc[inc[zero]]

Again, inc[inc[zero]] is the result we expected, so the Iota expression ɩ[ɩ[ɩ[ɩ[ɩ]]]]
[ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ]]][ɩ[ɩ[ɩ[ɩ]]]]][ɩ[ɩ]]]]
[ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]]]][ɩ[ɩ[ɩ[ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ]]]
[ɩ[ɩ[ɩ[ɩ]]]]][ɩ[ɩ]]]][ɩ[ɩ[ɩ[ɩ]]][ɩ[ɩ]]]] really is a working translation of -> p { -> x
{ p[p[x]] } } into a language with no variables, no functions, and only one combinator;
and because we can do this translation for any lambda calculus expression, Iota is yet
another universal language.

Tag Systems
A tag system is a model of computation that works like a simplified Turing machine:
instead of moving a head back and forth over a tape, a tag system operates on a string
by repeatedly adding new characters to the end of the string and removing them from
the beginning. In some ways, a tag system’s string is like a Turing machine’s tape, but
the tag system is constrained to only operate on the edges of the string, and it only ever
“moves” in one direction—toward the end.

A tag system’s description has two parts: first, a collection of rules, where each rule
specifies some characters to append to the string when a particular character appears
at the beginning—“when the character a is at the beginning of the string, append the
characters bcd,” for instance; and second, a number, called the deletion number, which
specifies how many characters to delete from the beginning of the string after a rule has
been followed.

Here’s an example tag system:

• When the string begins with a, append the characters bc.

Tag Systems | 227

www.it-ebooks.info

http://www.it-ebooks.info/

• When the string begins with b, append the characters caad.

• When the string begins with c, append the characters ccd.

• After following any of the above rules, delete three characters from the beginning
of the string—in other words, the deletion number is 3.

We can perform a tag system computation by repeatedly following rules and deleting
characters until the first character of the string has no applicable rule, or until the length
of the string is less than the deletion number.6 Let’s try running the example tag system
with the initial string 'aaaaaa':

Current string Applicable rule

aaaaaa When the string begins with a, append the characters bc.

aaabc When the string begins with a, append the characters bc.

bcbc When the string begins with b, append the characters caad.

ccaad When the string begins with c, append the characters ccd.

adccd When the string begins with a, append the characters bc.

cdbc When the string begins with c, append the characters ccd.

cccd When the string begins with c, append the characters ccd.

dccd —

Tag systems only operate directly on strings, but we can get them to perform sophis-
ticated operations on other kinds of values, like numbers, as long as we have a suitable
way to encode those values as strings. One possible way of encoding numbers is this:
represent the number n as the string aa followed by n repetitions of the string bb; for
example, the number 3 is represented as the string aabbbbbb.

Some aspects of this representation might seem redundant—we could
just represent 3 as the string aaa—but using pairs of characters, and
having an explicit marker at the beginning of the string, will be useful
shortly.

Once we’ve chosen an encoding scheme for numbers, we can design tag systems that
perform operations on numbers by manipulating their string representations. Here’s a
system that doubles its input number:

• When the string begins with a, append the characters aa.

• When the string begins with b, append the characters bbbb.

6. This second condition prevents us from ever getting into a situation where we need to delete more
characters than the string contains.

228 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

• After following a rule, delete two characters from the beginning of the string (the
deletion number is 2).

Watch how this tag system behaves when started with the string aabbbb, representing
the number 2:

aabbbb → bbbbaa
 → bbaabbbb
 → aabbbbbbbb (representing the number 4)
 → bbbbbbbbaa
 → bbbbbbaabbbb
 → bbbbaabbbbbbbb
 → bbaabbbbbbbbbbbb
 → aabbbbbbbbbbbbbbbb (the number 8)
 → bbbbbbbbbbbbbbbbaa
 → bbbbbbbbbbbbbbaabbbb
 ⋮

The doubling is clearly happening, but this tag system runs forever—doubling the
number represented by its current string, then doubling it again, then again—which
isn’t really what we had in mind. To design a system that doubles a number just once
and then halts, we need to use different characters to encode the result so that it doesn’t
trigger another round of doubling. We can do this by relaxing our encoding scheme to
allow c and d characters in place of a and b, and then modifying the rules to append
cc and dddd instead of aa and bbbb when creating the representation of the doubled
number.

With those changes, the computation looks like this:

aabbbb → bbbbcc
 → bbccdddd
 → ccdddddddd (the number 4, encoded with c and d instead of a and b)

The modified system stops when it reaches ccdddddddd, because there’s no rule for
strings beginning with c.

In this case, we’re only depending on the character c to stop the com-
putation at the right point, so we could have safely reused b in the en-
coding of the result instead of replacing it with d, but there’s no harm
in using more characters than are strictly needed.

It’s generally clearer to use different sets of characters to encode input
and output values rather than allowing them to overlap; as we’ll see
shortly, this also makes it easier to combine several small tag systems
into a larger one, by arranging for the output encoding of one system to
match up with the input encoding of another.

To simulate a tag system in Ruby, we need an implementation of an individual rule
(TagRule), a collection of rules (TagRulebook), and the tag system itself (TagSystem):

Tag Systems | 229

www.it-ebooks.info

http://www.it-ebooks.info/

class TagRule < Struct.new(:first_character, :append_characters)
 def applies_to?(string)
 string.chars.first == first_character
 end

 def follow(string)
 string + append_characters
 end
end

class TagRulebook < Struct.new(:deletion_number, :rules)
 def next_string(string)
 rule_for(string).follow(string).slice(deletion_number..-1)
 end

 def rule_for(string)
 rules.detect { |r| r.applies_to?(string) }
 end
end

class TagSystem < Struct.new(:current_string, :rulebook)
 def step
 self.current_string = rulebook.next_string(current_string)
 end
end

This implementation allows us to step through a tag system computation one rule at a
time. Let’s try that for the original doubling example, this time getting it to double the
number 3 (aabbbbbb):

>> rulebook = TagRulebook.new(2, [TagRule.new('a', 'aa'), TagRule.new('b', 'bbbb')])
=> #<struct TagRulebook …>
>> system = TagSystem.new('aabbbbbb', rulebook)
=> #<struct TagSystem …>
>> 4.times do
 puts system.current_string
 system.step
 end; puts system.current_string
aabbbbbb
bbbbbbaa
bbbbaabbbb
bbaabbbbbbbb
aabbbbbbbbbbbb
=> nil

Because this tag system runs forever, we have to know in advance how many steps to
execute before the result appears—four steps, in this case—but if we used the modified
version that encodes its result with c and d, we could just let it run until it stops auto-
matically. Let’s add the code to support that:

class TagRulebook
 def applies_to?(string)
 !rule_for(string).nil? && string.length >= deletion_number
 end
end

230 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

class TagSystem
 def run
 while rulebook.applies_to?(current_string)
 puts current_string
 step
 end

 puts current_string
 end
end

Now we can just call TagSystem#run on the halting version of the tag system and let it
naturally stop at the right point:

>> rulebook = TagRulebook.new(2, [TagRule.new('a', 'cc'), TagRule.new('b', 'dddd')])
=> #<struct TagRulebook …>
>> system = TagSystem.new('aabbbbbb', rulebook)
=> #<struct TagSystem …>
>> system.run
aabbbbbb
bbbbbbcc
bbbbccdddd
bbccdddddddd
ccdddddddddddd
=> nil

This implementation of tag systems allows us to explore what else they’re capable of.
With our encoding scheme, it’s easy to design systems that perform other numeric
operations, like this one for halving a number:

>> rulebook = TagRulebook.new(2, [TagRule.new('a', 'cc'), TagRule.new('b', 'd')])
=> #<struct TagRulebook …>
>> system = TagSystem.new('aabbbbbbbbbbbb', rulebook)
=> #<struct TagSystem …>
>> system.run
aabbbbbbbbbbbb
bbbbbbbbbbbbcc
bbbbbbbbbbccd
bbbbbbbbccdd
bbbbbbccddd
bbbbccdddd
bbccddddd
ccdddddd
=> nil

And this one, which increments a number:

>> rulebook = TagRulebook.new(2, [TagRule.new('a', 'ccdd'), TagRule.new('b', 'dd')])
=> #<struct TagRulebook …>
>> system = TagSystem.new('aabbbb', rulebook)
=> #<struct TagSystem …>
>> system.run
aabbbb
bbbbccdd
bbccdddd

Tag Systems | 231

www.it-ebooks.info

http://www.it-ebooks.info/

ccdddddd
=> nil

We can also join two tag systems together, as long as the output encoding of the first
system matches the input encoding of the second. Here’s a single system that combines
the doubling and incrementing rules by using the characters c and d to encode the input
to the incrementing rules and e and f to encode their output:

>> rulebook = TagRulebook.new(2, [
 TagRule.new('a', 'cc'), TagRule.new('b', 'dddd'), # double
 TagRule.new('c', 'eeff'), TagRule.new('d', 'ff') # increment
])
=> #<struct TagRulebook …>
>> system = TagSystem.new('aabbbb', rulebook)
=> #<struct TagSystem …>
>> system.run
aabbbb (the number 2)
bbbbcc
bbccdddd
ccdddddddd (the number 4)
ddddddddeeff
ddddddeeffff
ddddeeffffff
ddeeffffffff
eeffffffffff (the number 5)
=> nil

The doubling rules turn 2 into 4, encoded with the characters c and d.

The incrementing rules turn 4 into 5, this time encoded with e and f.

As well as changing numbers into other numbers, tag systems can check their mathe-
matical properties. Here’s a tag system that tests whether a number is odd or even:

>> rulebook = TagRulebook.new(2, [
 TagRule.new('a', 'cc'), TagRule.new('b', 'd'),
 TagRule.new('c', 'eo'), TagRule.new('d', ''),
 TagRule.new('e', 'e')
])
=> #<struct TagRulebook …>

If its input represents an even number, this system stops at the single-character string
e (which stands for “even”):

>> system = TagSystem.new('aabbbbbbbb', rulebook)
=> #<struct TagSystem …>
>> system.run
aabbbbbbbb (the number 4)
bbbbbbbbcc
bbbbbbccd
bbbbccdd
bbccddd
ccdddd
ddddeo
ddeo
eo

232 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

e
=> nil

The a and b rules halve the input; ccdddd represents the number 2.

The c rule deletes the leading cc pair and appends the characters eo, one of which
will form the final result.

The empty d rule consumes all of the leading dd pairs, leaving only eo.

The e rule replaces eo with just e, and the system halts.

If the input number is odd, the result is the string o (for “odd”):

>> system = TagSystem.new('aabbbbbbbbbb', rulebook)
=> #<struct TagSystem …>
>> system.run
aabbbbbbbbbb (the number 5)
bbbbbbbbbbcc
bbbbbbbbccd
bbbbbbccdd
bbbbccddd
bbccdddd
ccddddd
dddddeo
dddeo
deo
o
=> nil

The number is halved as before, but because it’s an odd number this time, the result
is a string with an odd number of ds. Our encoding scheme for numbers uses only
pairs of characters, so ccddddd doesn’t strictly represent anything, but because it
contains “two and a half” pairs of d characters, it’s reasonable to think of it informally
as the number 2.5.

All the leading dd pairs get deleted, leaving a solitary d before the final eo.

The leftover d is deleted and takes the e with it, leaving just o, and the system halts.

Having a deletion number greater than 1 is essential for making this tag
system work. Because every second character triggers a rule, we can in-
fluence the system’s behavior by arranging for certain characters to ap-
pear (or not appear) in these trigger positions. This technique of making
characters appear in or out of sync with the deletion behavior is the key
to designing a powerful tag system.

These number-manipulating techniques can be used to simulate a Turing machine.
Building a Turing machine simulation on top of something as simple as a tag system
involves a lot of detail, but one way of doing it works (very roughly) like this:

Tag Systems | 233

www.it-ebooks.info

http://www.it-ebooks.info/

1. As the simplest possible example, take a Turing machine whose tape only uses
two characters—we’ll call them 0 and 1, with 0 acting as the blank character.

2. Split the Turing machine’s tape into two pieces: the left part, consisting of the
character underneath the tape head itself and all characters to its left, and the right
part, consisting of all characters to the right of the head.

3. Treat the left part of the tape as a binary number: if the initial tape looks like
0001101(0)0011000, the left part is the binary number 11010, which is 26 in deci-
mal.

4. Treat the right part of the tape as a binary number written backward: the right part
of our example tape is the binary number 1100, or 12 in decimal.

5. Encode those two numbers as a string suitable for use by a tag system. For our
example tape, we could use aa followed by 26 copies of bb, then cc followed by 12
copies of dd.

6. Use simple numerical operations—doubling, halving, incrementing, decrement-
ing, and odd/even checking—to simulate reading from the tape, writing to the
tape, and moving the tape head. For instance, we can move the head right on our
example tape by doubling the number representing the left part and halving the
number representing the right part:7 doubling 26 gives 52, which is 110100 in
binary; half of 12 is 6, which is 110 in binary; so the new tape looks like
011010(0)011000. Reading from the tape means checking whether the number
representing the left part of the tape is even or odd, and writing a 1 or 0 to the tape
means incrementing or decrementing that number.

7. Represent the current state of the simulated Turing machine with the choice of
characters used to encode the left and right tape numbers: perhaps when the ma-
chine is in state 1, we encode the tape with a, b, c, and d characters, but when it
moves into state 2, we use e, f, g, and h instead, and so on.

8. Turn each Turing machine rule into a tag system that rewrites the current string
in the appropriate way. A rule that reads a 0, writes a 1, moves the tape head right
and goes into state 2 could become a tag system that checks that the left tape
number is even, increments it, doubles the left tape number while halving the right
tape number, and produces a final string that is encoded with state 2’s characters.

9. Combine these individual tag systems to make one large system that simulates
every rule of the Turing machine.

7. Doubling a number shifts all the digits in its binary representation one place to the left, and halving it
shifts them all one place to the right.

234 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

For a full explanation of how a tag system simulation of a Turing ma-
chine works, see Matthew Cook’s elegant construction in section 2.1 of
http://www.complex-systems.com/pdf/15-1-1.pdf.

Cook’s simulation is more sophisticated than the one outlined here. It
cleverly uses the “alignment” of the current string to represent the char-
acter beneath the simulated tape head instead of incorporating it into
one of the tape parts, and can easily be extended to simulate a Turing
machine with any number of characters by increasing the tag system’s
deletion number.

The fact that tag systems can simulate any Turing machine means that they too are
universal.

Cyclic Tag Systems
A cyclic tag system is a tag system that has been made even simpler by imposing some
extra constraints:

• A cyclic tag system’s string can contain only two characters, 0 and 1.

• A cyclic tag system rule can only apply when the current string begins with 1, never
0.8

• A cyclic tag system’s deletion number is always 1.

By themselves, these constraints are too severe to support any kind of useful compu-
tation, so cyclic tag systems get an extra feature to compensate: the first rule in a cyclic
tag system’s rulebook is the current rule when execution begins, and after each step of
computation, the next rule in the rulebook becomes current, wrapping back to the first
rule when the end of the rulebook is reached.

This kind of system is called “cyclic” because of the way the current rule cycles repeat-
edly through the rulebook. The use of a current rule, combined with the constraint that
every rule applies to strings beginning with 1, avoids the overhead of having to search
through the rulebook to find an applicable rule at each step of execution; if the first
character’s a 1, then the current rule applies, otherwise, no rule does.

As an example, let’s look at the cyclic tag system with three rules that append the
characters 1, 0010, and 10, respectively. Here’s what happens when it’s started with the
string 11:

8. A cyclic tag system rule doesn’t need to say “when the string begins with 1, append the characters 011,”
because the first part is assumed—just “append the characters 011” is enough.

Cyclic Tag Systems | 235

www.it-ebooks.info

http://www.complex-systems.com/pdf/15-1-1.pdf
http://www.it-ebooks.info/

Current string Current rule Rule applies?

11 append the character 1 yes

 11 append the characters 0010 yes

 10010 append the characters 10 yes

 001010 append the character 1 no

 01010 append the characters 0010 no

 1010 append the characters 10 yes

 01010 append the character 1 no

 1010 append the characters 0010 yes

 0100010 append the characters 10 no

 100010 append the character 1 yes

 000101 append the characters 0010 no

 00101 append the characters 10 no

 0101 append the character 1 no

 101 append the characters 0010 yes

 010010 append the characters 10 no

 10010 append the character 1 yes

 00101 append the characters 0010 no

 ⋮ ⋮ ⋮

Despite the extreme simplicity of this system, we can see a hint of complex behavior:
it’s not obvious what will happen next. With a bit of thought we can convince ourselves
that the system will run forever rather than dwindle to the empty string, because every
rule appends a 1, so as long as the initial string contains a 1, it will never die out en-
tirely.9 But will the current string keep fitfully growing longer, or will it settle into a
repeating pattern of expansion and contraction? Just looking at the rules doesn’t answer
that question; we need to keep running the system to find out what happens.

We already have a Ruby implementation of a conventional tag system, so simulating a
cyclic tag system doesn’t require much extra work. We can implement a
CyclicTagRule simply by subclassing TagRule and hardcoding '1' as its first_charac
ter:

class CyclicTagRule < TagRule
 FIRST_CHARACTER = '1'

 def initialize(append_characters)
 super(FIRST_CHARACTER, append_characters)

9. Unlike a normal tag system, a cyclic tag system keeps going when no rule applies, otherwise it would
never get anywhere. The only way for a cyclic tag system to stop running is for its current string to become
empty; this always happens when the initial string consists entirely of 0 characters, for example.

236 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

 end

 def inspect
 "#<CyclicTagRule #{append_characters.inspect}>"
 end
end

#initialize is the constructor method that gets called automatically
when an instance of a class is created. CyclicTagRule#initialize calls
the constructor from the superclass, TagRule, to set the first_charac
ter and append_characters attributes.

The rulebook for a cyclic tag system works slightly differently, so we’ll build a Cyclic
TagRulebook class from scratch, providing new implementations of #applies_to? and
#next_string:

class CyclicTagRulebook < Struct.new(:rules)
 DELETION_NUMBER = 1

 def initialize(rules)
 super(rules.cycle)
 end

 def applies_to?(string)
 string.length >= DELETION_NUMBER
 end

 def next_string(string)
 follow_next_rule(string).slice(DELETION_NUMBER..-1)
 end

 def follow_next_rule(string)
 rule = rules.next

 if rule.applies_to?(string)
 rule.follow(string)
 else
 string
 end
 end
end

Unlike a vanilla TagRulebook, a CyclicTagRulebook always applies to any nonempty
string, even if the current rule doesn’t.

Array#cycle creates an Enumerator (see “Native Ruby
Streams” on page 194) that cycles around the elements of an array for-
ever:

>> numbers = [1, 2, 3].cycle
=> #<Enumerator: [1, 2, 3]:cycle>
>> numbers.next

Cyclic Tag Systems | 237

www.it-ebooks.info

http://www.it-ebooks.info/

=> 1
>> numbers.next
=> 2
>> numbers.next
=> 3
>> numbers.next
=> 1
>> [:a, :b, :c, :d].cycle.take(10)
=> [:a, :b, :c, :d, :a, :b, :c, :d, :a, :b]

This is exactly the behavior we want for a cyclic tag system’s current
rule, so CyclicTagRulebook#initialize assigns one of these cycling Enu
merators to the rules attribute, and each call to #follow_next_rule uses
rules.next to get the next rule in the cycle.

Now we can create a CyclicTagRulebook full of CyclicTagRules and plug it into a Tag
System to see it working:

>> rulebook = CyclicTagRulebook.new([
 CyclicTagRule.new('1'), CyclicTagRule.new('0010'), CyclicTagRule.new('10')
])
=> #<struct CyclicTagRulebook …>
>> system = TagSystem.new('11', rulebook)
=> #<struct TagSystem …>
>> 16.times do
 puts system.current_string
 system.step
 end; puts system.current_string
11
11
10010
001010
01010
1010
01010
1010
0100010
100010
000101
00101
0101
101
010010
10010
00101
=> nil

That’s the same behavior we saw when we stepped through the execution by hand.
Let’s keep going:

>> 20.times do
 puts system.current_string
 system.step
 end; puts system.current_string
00101
0101

238 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

101
011
11
110
101
010010
10010
00101
0101
101
011
11
110
101
010010
10010
00101
0101
101
=> nil

So it turns out that this system does settle down into repetitive behavior when it’s started
with the string 11: after an initial period of instability, a pattern of nine consecutive
strings emerges (101, 010010, 10010, 00101, …) and repeats itself forever. Of course, if
we change the initial string or any of the rules, the long-term behavior will be different.

Cyclic tag systems are extremely limited—they have inflexible rules, only two charac-
ters, and the lowest possible deletion number—but surprisingly, it’s still possible to
use them to simulate any tag system.

The simulation of a normal tag system by a cyclic tag system works like this:

1. Determine the tag system’s alphabet—the set of characters it uses.

2. Design an encoding scheme that associates each character with a unique string
suitable for use in a cyclic tag system (i.e., containing only 0s and 1s).

3. Convert each of the original system’s rules into a cyclic tag system rule by encoding
the characters it appends.

4. Pad out the cyclic tag system’s rulebook with empty rules to simulate the original
tag system’s deletion number.

5. Encode the original tag system’s input string and use it as input to the cyclic tag
system.

Let’s make those ideas more concrete by implementing them. First we need to be able
to ask a tag system what characters it uses:

class TagRule
 def alphabet
 ([first_character] + append_characters.chars.entries).uniq
 end
end

Cyclic Tag Systems | 239

www.it-ebooks.info

http://www.it-ebooks.info/

class TagRulebook
 def alphabet
 rules.flat_map(&:alphabet).uniq
 end
end

class TagSystem
 def alphabet
 (rulebook.alphabet + current_string.chars.entries).uniq.sort
 end
end

We can test this on the number-incrementing tag system from “Tag Sys-
tems” on page 227. TagSystem#alphabet tells us that this system uses the characters a,
b, c, and d:

>> rulebook = TagRulebook.new(2, [TagRule.new('a', 'ccdd'), TagRule.new('b', 'dd')])
=> #<struct TagRulebook …>
>> system = TagSystem.new('aabbbb', rulebook)
=> #<struct TagSystem …>
>> system.alphabet
=> ["a", "b", "c", "d"]

Next we need a way of encoding each character as a string that the cyclic tag system
can use. There’s a specific encoding scheme that makes the simulation work: each
character is represented as a string of 0s with the same length as the alphabet, with a
single 1 character in a position that reflects that character’s position in the alphabet.10

Our tag system has a four-character alphabet, so each letter gets encoded as a four-
character string with a 1 in a different place:

Tag system character Position in alphabet Encoded representation

a 0 1000

b 1 0100

c 2 0010

d 3 0001

To implement this encoding scheme, we’ll introduce a CyclicTagEncoder that gets con-
structed with a specific alphabet and then asked to encode strings of characters from
that alphabet:

class CyclicTagEncoder < Struct.new(:alphabet)
 def encode_string(string)
 string.chars.map { |character| encode_character(character) }.join
 end

 def encode_character(character)

10. The resulting sequence of 0s and 1s is not meant to represent a binary number. It’s just a string of 0
characters with a 1 character marking a particular position.

240 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

 character_position = alphabet.index(character)
 (0...alphabet.length).map { |n| n == character_position ? '1' : '0' }.join
 end
end

class TagSystem
 def encoder
 CyclicTagEncoder.new(alphabet)
 end
end

Now we can use our tag system’s CyclicTagEncoder to encode any strings made up of
a, b, c, and d:

>> encoder = system.encoder
=> #<struct CyclicTagEncoder alphabet=["a", "b", "c", "d"]>
>> encoder.encode_character('c')
=> "0010"
>> encoder.encode_string('cab')
=> "001010000100"

The encoder gives us a way to convert each tag system rule into a cyclic tag system rule.
We just encode the append_characters of a TagRule and use the resulting string to build
a CyclicTagRule:

class TagRule
 def to_cyclic(encoder)
 CyclicTagRule.new(encoder.encode_string(append_characters))
 end
end

Let’s try that on a single TagRule:

>> rule = system.rulebook.rules.first
=> #<struct TagRule first_character="a", append_characters="ccdd">
>> rule.to_cyclic(encoder)
=> #<CyclicTagRule "0010001000010001">

Alright, so the append_characters have been converted, but now we’ve lost the infor-
mation about which first_character is supposed to trigger the rule—every
CyclicTagRule is triggered by the character 1 regardless of which TagRule it was con-
verted from.

Instead, that information is communicated by the order of the rules in the cyclic tag
system: the first rule is for the first character in the alphabet, the second rule is for the
second character, and so on. Any character without a corresponding rule in the tag
system gets a blank rule in the cyclic tag system rulebook.

Cyclic Tag Systems | 241

www.it-ebooks.info

http://www.it-ebooks.info/

We can implement a TagRulebook#cyclic_rules method to return the converted rules
in the right order:

class TagRulebook
 def cyclic_rules(encoder)
 encoder.alphabet.map { |character| cyclic_rule_for(character, encoder) }
 end

 def cyclic_rule_for(character, encoder)
 rule = rule_for(character)

 if rule.nil?
 CyclicTagRule.new('')
 else
 rule.to_cyclic(encoder)
 end
 end
end

Here’s what #cyclic_rules produces for our tag system:

>> system.rulebook.cyclic_rules(encoder)
=> [
 #<CyclicTagRule "0010001000010001">,
 #<CyclicTagRule "00010001">,
 #<CyclicTagRule "">,
 #<CyclicTagRule "">
]

As expected, the converted a and b rules appear first, followed by two blank rules in
the c and d positions.

This arrangement dovetails with the character encoding scheme to make the whole
simulation work. If the simulated tag system’s input string is the single character b, for
instance, it will appear as 0100 in the input string of the cyclic tag system. Watch what
happens when the system runs with that input:

Current string Current rule Rule applies?

0100 append the characters 0010001000010001 (a rule) no

 100 append the characters 00010001 (b rule) yes

 0000010001 append nothing (c rule) no

 000010001 append nothing (d rule) no

 ⋮ ⋮ ⋮

On the first step of computation, the converted a rule is current, and doesn’t get used
because the current string begins with a 0. But on the second step, the b rule becomes
current just as the leading 0 is deleted from the current string, revealing a leading 1 that
triggers the rule. The next two characters are both 0, so the c and d rules don’t get used
either.

242 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

So, by carefully timing the appearances of the character 1 in the input string to coincide
with the rotating appearances of rules in the cyclic tag system, we can trigger the right
rules at the right times, perfectly simulating the character-matching behavior of con-
ventional tag system rules.

Finally, we need to simulate the deletion number of the original tag system, but that’s
easily done by inserting extra empty rules into the cyclic tag system’s rulebook so that
the right number of characters get deleted after a single encoded character has been
successfully processed. If the original tag system has n characters in its alphabet, then
each character of the original system’s string is represented as n characters in the cyclic
tag system’s string, so we need n blank rules for every additional simulated character
that we want to delete:

class TagRulebook
 def cyclic_padding_rules(encoder)
 Array.new(encoder.alphabet.length, CyclicTagRule.new('')) * (deletion_number - 1)
 end
end

Our tag system has a four-character alphabet and a deletion number of 2, so we need
an extra four empty rules to delete one simulated character in addition to the one that
already gets deleted by the converted rules:

>> system.rulebook.cyclic_padding_rules(encoder)
=> [
 #<CyclicTagRule "">,
 #<CyclicTagRule "">,
 #<CyclicTagRule "">,
 #<CyclicTagRule "">
]

Now we can put everything together to implement an overall #to_cyclic method for a
TagRulebook, then use it in a TagSystem#to_cyclic method that converts both the rule-
book and the current string to yield a complete cyclic tag system:

class TagRulebook
 def to_cyclic(encoder)
 CyclicTagRulebook.new(cyclic_rules(encoder) + cyclic_padding_rules(encoder))
 end
end

class TagSystem
 def to_cyclic
 TagSystem.new(encoder.encode_string(current_string), rulebook.to_cyclic(encoder))
 end
end

Here’s what happens when we convert our number-incrementing tag system and run it:

>> cyclic_system = system.to_cyclic
=> #<struct TagSystem …>
>> cyclic_system.run
100010000100010001000100 (aabbbb)
000100001000100010001000010001000010001

Cyclic Tag Systems | 243

www.it-ebooks.info

http://www.it-ebooks.info/

00100001000100010001000010001000010001
0100001000100010001000010001000010001
100001000100010001000010001000010001 (abbbbccdd)
00001000100010001000010001000010001
0001000100010001000010001000010001
001000100010001000010001000010001
01000100010001000010001000010001 (bbbbccdd)
1000100010001000010001000010001
00010001000100001000100001000100010001
0010001000100001000100001000100010001
010001000100001000100001000100010001 (bbbccdddd)
10001000100001000100001000100010001
0001000100001000100001000100010001
001000100001000100001000100010001
01000100001000100001000100010001 (bbccdddd)
1000100001000100001000100010001
00010000100010000100010001000100010001
0010000100010000100010001000100010001
010000100010000100010001000100010001 (bccdddddd)
10000100010000100010001000100010001
0000100010000100010001000100010001
000100010000100010001000100010001
00100010000100010001000100010001 (ccdddddd)
0100010000100010001000100010001
100010000100010001000100010001
00010000100010001000100010001
⋮
001
01
1

=> nil

The encoded version of the tag system’s a rule kicks in here.

The first full character of the simulated string has been processed, so the following
four steps use blank rules to delete the next simulated character.

After eight steps of the cyclic tag system, one full step of the simulated tag system is
complete.

The encoded b rule is triggered here…

…and again here.

Twenty-four steps into the cyclic tag system computation, and we reach the repre-
sentation of the simulated tag system’s final string, ccdddddd.

The simulated tag system has no rules for strings beginning with c or d, so the cyclic
tag system’s current string keeps getting shorter and shorter…

…until it becomes empty, and the system halts.

244 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

This technique can be used to simulate any tag system—including a tag system that
itself simulates a Turing machine—which means that cyclic tag systems are also uni-
versal.

Conway’s Game of Life
In 1970, John Conway invented a universal system called the Game of Life. The “game”
is played on an infinite two-dimensional grid of square cells, each of which can be
alive or dead. A cell is surrounded by its eight neighbors: the three cells above it, the
cells to its immediate left and right, and the three cells below it.

The Game of Life proceeds in a series of steps like a finite state machine. At every step,
each cell may potentially change from alive to dead, or vice versa, according to rules
that are triggered by the current state of the cell itself and the states of its neighbors.
The rules are simple: a living cell dies if it has fewer than two living neighbors (under-
population) or more than three (overpopulation), and a dead cell comes to life if it has
exactly three living neighbors (reproduction).

Here are six examples11 of how the Game of Life rules affect a cell’s state over the course
of a single step, with living cells shown in black and dead ones in white:

A system like this, consisting of an array of cells and a set of rules for
updating a cell’s state at each step, is called a cellular automaton.

11. Out of a possible 512: nine cells are involved, and each cell can be in one of two states, so there are 2 ×
2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 512 different possibilities.

Conway’s Game of Life | 245

www.it-ebooks.info

http://www.it-ebooks.info/

Like the other systems we’ve seen in this chapter, the Game of Life exhibits surprising
complexity despite the simplicity of its rules. Interesting behavior can arise from specific
patterns of living cells, the best-known of which is the glider, an arrangement of five
living cells that moves itself one square diagonally across the grid every four steps:

Many other significant patterns have been discovered, including shapes that move
around the grid in different ways (spaceships), generate a stream of other shapes
(guns), or even produce complete copies of themselves (replicators).

In 1982, Conway showed how to use a stream of gliders to represent streams of binary
data, as well as how to design logical AND, OR, and NOT gates to perform digital com-
putation by colliding gliders in creative ways. These constructions showed that it was
theoretically possible to simulate a digital computer in the Game of Life, but Conway
stopped short of designing a working machine:

For here on it’s just an engineering problem to construct an arbitrarily large finite (and
very slow!) computer. Our engineer has been given the tools—let him finish the job! […]
The kind of computer we have simulated is technically known as a universal machine
because it can be programmed to perform any desired calculation.

—John Conway, Winning Ways for Your Mathematical Plays

In 2002, Paul Chapman implemented a particular kind of universal computer in Life,
and in 2010 Paul Rendell constructed a universal Turing machine.

246 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.conwaylife.com/wiki/Category:Patterns
http://www.igblan.free-online.co.uk/igblan/ca/
http://rendell-attic.org/gol/utm/
http://www.it-ebooks.info/

Here’s a close-up of one small part of Rendell’s design:

Rule 110
Rule 110 is another cellular automaton, introduced by Stephen Wolfram in 1983. Each
cell can be either alive or dead, just like the cells in Conway’s Game of Life, but rule
110 operates on cells arranged in a one-dimensional row instead of a two-dimensional
grid. That means each cell only has two neighbors—the cells immediately to its left and
right in the row—rather than the eight neighbors that surround each Game of Life cell.

At each step of the rule 110 automaton, the next state of a cell is determined by its own
state and the states of its two neighbors. Unlike the Game of Life, whose rules are
general and apply to many different arrangements of living and dead cells, the rule 110
automaton has a separate rule for each possibility:

Rule 110 | 247

www.it-ebooks.info

http://www.it-ebooks.info/

If we read off the values of the “after” cells from these eight rules, treating
a dead cell as the digit 0 and a living cell as 1, we get the binary number
01101110. Converting from binary produces the decimal number 110,
which is what gives this cellular automaton its name.

Rule 110 is much simpler than the Game of Life, but again, it’s capable of complex
behavior. Here are the first few steps of a rule 110 automaton starting from a single live
cell:

248 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.it-ebooks.info/

This behavior is already not obviously simple—it’s not just generating a solid line of
living cells, for instance—and if we run the same automaton for 500 steps we can see
interesting patterns begin to emerge:

Rule 110 | 249

www.it-ebooks.info

http://www.it-ebooks.info/

Alternatively, running rule 110 from an initial state consisting of a random pattern of
living and dead cells reveals all kinds of shapes moving around and interacting with
each other:

The complexity that emerges from these eight simple rules turns out to be remarkably
powerful: in 2004, Matthew Cook published a proof that rule 110 is in fact universal.
The proof has a lot of detail (see sections 3 and 4 of http://www.complex-systems.com/
pdf/15-1-1.pdf) but, roughly, it introduces several different rule 110 patterns that act
as gliders, then shows how to simulate any cyclic tag system by arranging those gliders
in a particular way.

This means that rule 110 can run a simulation of a cyclic tag system that is running a
simulation of a conventional tag system that is running a simulation of a universal
Turing machine—not an efficient way to achieve universal computation, but still an
impressive technical result for such a simple cellular automaton.

250 | Chapter 7: Universality Is Everywhere

www.it-ebooks.info

http://www.complex-systems.com/pdf/15-1-1.pdf
http://www.complex-systems.com/pdf/15-1-1.pdf
http://www.it-ebooks.info/

Wolfram’s 2,3 Turing Machine
To complete our whirlwind tour of simple universal systems, here’s one that’s even
simpler than rule 110: Wolfram’s 2,3 Turing machine. It gets its name from its two states
and three characters (a, b, and blank), which means it has only six rules:

This Turing machine is unusual in that it doesn’t have an accept state,
so it never halts, but this is mostly a technical detail. We can still get
results out of nonhalting machines by watching for certain behavior—
for example, the appearance of a particular pattern of characters on the
tape—and treating that as an indication that the current tape contains
useful output.

Wolfram’s 2,3 Turing machine doesn’t seem anywhere near powerful enough to sup-
port universal computation, but in 2007, Wolfram Research announced a $25,000 prize
to anyone who could prove it was universal, and later that year, Alex Smith claimed
the prize by producing a successful proof. As with rule 110, the proof hinges on showing
that this machine can simulate any cyclic tag system; again, the proof is very detailed,
but can be seen in full at http://www.wolframscience.com/prizes/tm23/.

Wolfram’s 2,3 Turing Machine | 251

www.it-ebooks.info

http://www.guardian.co.uk/technology/2007/nov/29/research
http://www.guardian.co.uk/technology/2007/nov/29/research
http://www.wolframscience.com/prizes/tm23/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Impossible Programs

The most merciful thing in the world, I think, is the in-
ability of the human mind to correlate all its contents.

—H. P. Lovecraft

In this book, we’ve explored different models of computers and programming lan-
guages, including several kinds of abstract machine. Some of those machines are more
powerful than others, and two varieties in particular come with pretty obvious limita-
tions: finite automata can’t solve problems that involve unrestricted counting, like de-
ciding whether a string of brackets is correctly balanced, and pushdown automata can’t
handle any problem where information needs to be reused in more than one place, like
deciding whether a string contains the same number of a, b, and c characters.

But the most advanced device we’ve seen, the Turing machine, seems to have everything
that we need: it’s got unlimited storage that can be accessed in any order, arbitrary
loops, conditionals, and subroutines. The extremely minimal programming language
from Chapter 6, the lambda calculus, turned out to be surprisingly powerful too: with
a little ingenuity it allows us to represent simple values and complex data structures as
pure code, as well as implement operations that manipulate those representations. And
in Chapter 7, we saw many other simple systems that, like the lambda calculus, have
the same universal power as Turing machines.

How much further can we push this progression of increasingly powerful systems?
Perhaps not indefinitely: our attempts to make Turing machines more powerful by
adding features didn’t get us anywhere, which suggests there may be a hard limit on
computational power. So what are computers and programming languages fundamen-
tally capable of, and is there anything that they can’t do? Are there any impossible
programs?

253

www.it-ebooks.info

http://www.it-ebooks.info/

The Facts of Life
These are pretty deep questions, so before we try to tackle them, let’s take a tour of
some fundamental facts from the world of computation. Some of these facts are obvi-
ous, others less so, but they’re all important prerequisites for thinking about the capa-
bilities and limitations of computing machines.

Universal Systems Can Perform Algorithms
What, generally speaking, can we do with universal systems like Turing machines, the
lambda calculus, and partial recursive functions? If we can properly understand the
capabilities of these systems, then we’ll be able to investigate their limitations.

The practical purpose of a computing machine is to perform algorithms. An algorithm
is a list of instructions describing some process for turning an input value into an output
value, as long as those instructions fulfill certain criteria:

Finiteness
There are a finite number of instructions.

Simplicity
Each instruction is simple enough that it can be performed by a person with a pencil
and paper without using any ingenuity.

Termination
A person following the instructions will finish within a finite number of steps for
any input.

Correctness
A person following the instructions will produce the right answer for any input.

For example, one of the oldest known algorithms is Euclid’s algorithm, which dates
from around 300 BC. It takes two positive integers and returns the largest integer that
will divide them both exactly—their greatest common divisor. Here are its instructions:

1. Give the two numbers the names x and y.

2. Decide which of x or y is the larger number.

3. Subtract the smaller number from the larger. (If x is larger, subtract y from it and
make this the new value of x; vice versa if y is larger.)

4. Repeat steps 2 and 3 until x and y are equal.

5. When x and y become equal, their value is the greatest common divisor of the
original two numbers.

We’re happy to recognize this as an algorithm, because it appears to meet the basic
criteria. It only contains a few instructions, and they all seem simple enough to be
performed with pencil and paper by someone who doesn’t have any special insight into
the overall problem. With a bit of thought, we can also see that it must finish within a

254 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.it-ebooks.info/

finite number of steps for any input: every repetition of step 3 causes one of the two
numbers to get smaller, so they must eventually reach the same value1 and cause the
algorithm to finish. It’s not quite so obvious that it’ll always give the correct answer,
but a few lines of elementary algebra are enough to show that the result must always
be the greatest common divisor of the original numbers.

So Euclid’s algorithm is worthy of its name, but like any algorithm, it’s just a collection
of ideas expressed as human-readable words and symbols. If we want to do something
useful with it—maybe we’d like to explore its mathematical properties, or design a
machine that performs it automatically—we need to translate the algorithm into a
stricter, less ambiguous form that’s suitable for mathematical analysis or mechanical
execution.

We already have several models of computation that we could use for this: we could
try to write down Euclid’s algorithm as a Turing machine rulebook, or a lambda cal-
culus expression, or a partial recursive function definition, but all of those would in-
volve a lot of housekeeping and other uninteresting detail. For the moment, let’s just
translate it into unrestricted Ruby:2

def euclid(x, y)
 until x == y
 if x > y
 x = x - y
 else
 y = y - x
 end
 end

 x
end

This #euclid method contains essentially the same instructions as the natural language
description of Euclid’s algorithm, but this time, they’re written in a way that has a
strictly defined meaning (according to the operational semantics of Ruby) and therefore
can be interpreted by a machine:

>> euclid(18, 12)
=> 6
>> euclid(867, 5309)
=> 1

In this specific case, it’s been easy to take an informal, human-readable description of
an algorithm and turn it into unambiguous instructions for a machine to follow. Having
Euclid’s algorithm in a machine-readable form is very convenient; now we can perform
it quickly, repeatedly, and reliably without having to employ manual labor.

1. The smallest value x and y can reach is 1, so they’ll meet there if all else fails.

2. Ruby already has a built-in version of Euclid’s algorithm, Integer#gcd, but that’s beside the point.

The Facts of Life | 255

www.it-ebooks.info

http://www.it-ebooks.info/

Hopefully it’s clear that we could just as well have implemented this
algorithm with the lambda calculus by using similar techniques to the
ones we saw in “Numeric Operations” on page 174, or as a partial re-
cursive function built from the operations in “Partial Recursive Func-
tions” on page 210, or as a collection of Turing machine rules like the
ones used for simple arithmetic in “Rules” on page 138.

This raises an important question: can any algorithm be turned into instructions suit-
able for execution by a machine? Superficially that seems like a trivial thing to ask—it
was pretty obvious how to turn Euclid’s algorithm into a program, and as programmers,
we have a natural tendency to think of the two things as interchangeable—but there’s
a real difference between the abstract, intuitive idea of an algorithm and the concrete,
logical implementation of that algorithm within a computational system. Could there
ever be an algorithm so large, complex, and unusual that its essence can’t be captured
by an unthinking mechanical process?

Ultimately there can be no rigorous answer, because the question is philosophical rather
than scientific. The instructions of an algorithm must be “simple” and “without in-
genuity” so that it “can be performed by a person,” but those are imprecise ideas about
human intuition and capability, not mathematical assertions of the kind that can be
used to prove or disprove a hypothesis.

We can still collect evidence one way or the other by coming up with lots of algorithms
and seeing whether our computing system of choice—Turing machines, or lambda
calculus, or partial recursive functions, or Ruby—can implement them. Mathemati-
cians and computer scientists have been doing exactly that since the 1930s, and so far,
nobody has managed to devise a reasonable algorithm that can’t be performed by these
systems, so we can be pretty confident about our empirical hunch: it certainly looks as
though a machine can perform any algorithm.

Another strong piece of evidence is the fact that most of these systems were developed
independently as attempts to capture and analyze the informal idea of an algorithm,
and were only later found to be exactly equivalent to each other. Every historical at-
tempt to model the idea of an algorithm has produced a system whose capabilities are
identical to those of a Turing machine, and that’s a pretty good hint that a Turing
machine adequately represents what an algorithm can do.

The idea that any algorithm can be performed by a machine—specifically a determin-
istic Turing machine—is called the Church–Turing thesis, and although it’s just a con-
jecture rather than a proven fact, it has enough evidence in its favor to be generally
accepted as true.

256 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.it-ebooks.info/

“Turing machines can perform any algorithm” is a philosophical claim
about the relationship between the intuitive idea of algorithms and the
formal systems that we use to implement them. What it actually means
is a matter of interpretation: we could see it as a statement about what
can and cannot be computed, or just as a firmer definition of the word
“algorithm.”

Either way, it’s called the “Church–Turing thesis,” not the “Church–
Turing theorem,” because it’s an informal claim rather than a provable
mathematical assertion—it can’t be expressed in purely mathematical
language, so there’s no way to construct a mathematical proof. It’s
widely believed to be true because it matches our intuition about the
nature of computation and the evidence of what algorithms are capable
of, but we still call it a “thesis” to remind ourselves that it has a different
status from provable ideas like Pythagoras’ theorem.

The Church–Turing thesis implies that Turing machines, despite their simplicity, have
all the power required to perform any computation that can in principle be carried out
by a person following simple instructions. Many people go further than this and claim
that, since all attempts to codify algorithms have led to universal systems that are
equivalent in power to Turing machines, it’s just not possible to do any better: any real-
world computer or programming language can only ever do as much as a Turing ma-
chine can do, and no more. Whether it’s ultimately possible to build a machine that’s
more powerful than a Turing machine—that can use exotic laws of physics to perform
tasks beyond what we think of as “algorithms”—is not definitively known, but it’s
definitely true that we don’t currently know how to do it.

Programs Can Stand In for Turing Machines
As we saw in Chapter 5, the Turing machine’s simplicity makes it cumbersome to design
a rulebook for a particular task. To avoid our investigation of computability being
overshadowed by the fiddly details of Turing machine programming, we’ll use Ruby
programs as a substitute, just as we did for Euclid’s algorithm.

This sleight of hand is justified by universality: in principle, we can translate any Ruby
program into an equivalent Turing machine and vice versa, so a Ruby program is no
more or less powerful than a Turing machine, and anything we can discover about the
limitations of Ruby’s capabilities should apply equally to Turing machines.

A sensible objection is that Ruby has lots of practical functionality that Turing machines
don’t. A Ruby program can access the filesystem, send and receive messages across the
network, accept user input, draw graphics on a bitmapped display, and so on, whereas
even the most sophisticated set of Turing machine rules can only ever read and write
characters on a tape. But that isn’t a fundamental problem, because all of this extra
functionality can be simulated with a Turing machine: if necessary, we can designate
certain parts of the tape as representing “the filesystem” or “the network” or “the dis-

The Facts of Life | 257

www.it-ebooks.info

http://www.it-ebooks.info/

play” or whatever, and treat reading and writing to those tape regions as though it was
genuine interaction with the outside world. None of these enhancements changes the
underlying computational power of a Turing machine; they just provide higher-level
interpretations of its activity on the tape.

In practice, we can sidestep the objection completely by restricting ourselves to simple
Ruby programs that avoid any controversial language features. For the rest of this
chapter, we’ll stick to writing programs that read a string from standard input, do some
computation, and then write a string to standard output when they’re finished; the
input string is analogous to the initial contents of a Turing machine’s tape, and the
output string is like the final tape contents.

Code Is Data
Programs live a double life. As well as being instructions to control a particular system,
we can also think of a program as pure data: a tree of expressions, a raw string of
characters, or even a single large number. This duality is usually taken for granted by
us as programmers, but for general-purpose computers it’s vitally important that pro-
grams can be represented as data so that they can be used as input to other programs;
it’s the unification of code and data that makes software possible in the first place.

We’ve already seen programs-as-data in the case of the universal Turing machine,
which expects another Turing machine’s rulebook to be written on its tape as a se-
quence of characters. In fancy homoiconic programming languages like Lisp3 and XSLT,
programs are explicitly written as data structures that the language itself can manipu-
late: every Lisp program is a nested list called an s-expression, and every XSLT stylesheet
is an XML document.

In Ruby, only the interpreter (which, at least in the case of MRI, is not itself written in
Ruby) usually gets to see a structured representation of the program, but the code-as-
data principle still applies. Consider this simple Ruby program:

puts 'hello world'

To an observer who understands the syntax and semantics of Ruby, this is a program
that sends a puts message to the main object with the string 'hello world', which results
in the Kernel#puts method printing hello world to standard output. But on a lower
level, it’s just a sequence of characters, and because characters are represented as bytes,
ultimately that sequence can be viewed as a large number:

>> program = "puts 'hello world'"
=> "puts 'hello world'"
>> bytes_in_binary = program.bytes.map { |byte| byte.to_s(2).rjust(8, '0') }
=> ["01110000", "01110101", "01110100", "01110011", "00100000", "00100111",
 "01101000", "01100101", "01101100", "01101100", "01101111", "00100000",

3. Lisp is really a family of programming languages—including Common Lisp, Scheme, and Clojure—that
share very similar syntax.

258 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.it-ebooks.info/

 "01110111", "01101111", "01110010", "01101100", "01100100", "00100111"]
>> number = bytes_in_binary.join.to_i(2)
=> 9796543849500706521102980495717740021834791

In a sense, puts 'hello world' is Ruby program number
9796543849500706521102980495717740021834791.4 Conversely, if someone tells
us the number of a Ruby program, we can easily turn it back into the program itself
and run it:

>> number = 9796543849500706521102980495717740021834791
=> 9796543849500706521102980495717740021834791
>> bytes_in_binary = number.to_s(2).scan(/.+?(?=.{8}*\z)/)
=> ["1110000", "01110101", "01110100", "01110011", "00100000", "00100111",
 "01101000", "01100101", "01101100", "01101100", "01101111", "00100000",
 "01110111", "01101111", "01110010", "01101100", "01100100", "00100111"]
>> program = bytes_in_binary.map { |string| string.to_i(2).chr }.join
=> "puts 'hello world'"
>> eval program
hello world
=> nil

Of course, this scheme of encoding a program as a large number is what makes it
possible to to store it on disk, send it over the Internet, and feed it to a Ruby interpreter
(which is itself just a large number on disk!) to make a particular computation happen.

Since every Ruby program has a unique number, we can automatically
generate all possible programs: start by generating program number 1,
then generate program number 2, and so on.5 If we did this for long
enough, we’d eventually generate the next hot asynchronous web de-
velopment framework and retire to a life of leisure.

Universal Systems Can Loop Forever
We’ve seen that general-purpose computers are universal: we can design a Turing ma-
chine that is capable of simulating any other Turing machine, or write a program that
can evaluate any other program. Universality is a powerful idea that allows us to use a
single adaptable machine for a variety of tasks rather than many specialized devices,
but it also has an inconvenient consequence: any system that’s powerful enough to be
universal will inevitably allow us to construct computations that loop forever without
halting.

4. It would be more useful to only assign numbers to the syntactically valid Ruby programs, but doing that
is more complicated.

5. Most of those numbers won’t represent syntactically valid Ruby programs, but we can feed
each potential program to the Ruby parser and reject it if it has any syntax errors.

The Facts of Life | 259

www.it-ebooks.info

http://www.it-ebooks.info/

Very Long-Running Computations
“All I wanted to say,” bellowed the computer, “is that my circuits are now irrev-
ocably committed to calculating the answer to the Ultimate Question of Life, the
Universe, and Everything—” he paused and satisfied himself that he now had
everyone’s attention, before continuing more quietly—“but the program will take
me a little while to run.”

Fook glanced impatiently at his watch.

“How long?” he said.

“Seven and a half million years,” said Deep Thought.

—Douglas Adams, The Hitchhiker’s Guide to the Galaxy

If we’re trying to perform an algorithm—a list of instructions whose purpose is to turn
input into output—then looping forever is a bad thing. We want a machine (or pro-
gram) that will run for a limited time and then halt with some output, not just sit there
silently getting warmer. All else being equal, it’d be better to have computers and lan-
guages whose every task was guaranteed to finish after a finite number of steps so that
we didn’t need to worry about whether an answer would eventually emerge.

In some practical applications, though, looping forever is desirable. For example, a web
server like Apache or Nginx wouldn’t be much use if it accepted a single HTTP request,
sent a response and then quit; we want it to run indefinitely, continuing to serve every
incoming request until forcibly stopped. But conceptually, we can separate a single-
threaded web server into two parts: the code for handling a single request, which
should always halt so that a response can be sent, and the infinite loop around the
outside, which repeatedly calls the request handler as each new request comes in. In
this case, looping forever is still a bad thing inside the complex request-handling code,
even though the simple wrapper around it needs to run endlessly.

The real world provides many examples of programs that repeatedly perform halting
computations inside an infinite loop: web servers, GUI applications, operating systems,
and so on. While we generally want algorithmic input-output programs to always halt,
the analogous goal for these long-running systems is to be productive, namely to always
“keep going” and never get stuck in an unresponsive state.

So why must every universal system bring nontermination along for the ride? Isn’t there
some ingenious way to restrict Turing machines so that they’ll always halt, without
compromising their usefulness? How do we know we won’t someday design a pro-
gramming language that’s just as powerful as Ruby but doesn’t have infinite loops in
it? There are all sorts of specific examples of why this can’t be done, but there’s also a
more general argument, so let’s go through it.

Ruby is a universal programming language, so it must be possible to write Ruby code
that evaluates Ruby code. In principle, we can define a method called #evaluate, which
takes the source code of a Ruby program and a string to provide to that program on

260 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.it-ebooks.info/

standard input, and returns the result (i.e., the string sent to standard output) of eval-
uating that program with that input.

The implementation of #evaluate is far too complicated to be contained within this
chapter, but here’s the broadest possible outline of how it would work:

def evaluate(program, input)
 # parse program
 # evaluate program on input while capturing output
 # return output
end

#evaluate is essentially a Ruby interpreter written in Ruby. Although we haven’t given
its implementation, it’s certainly possible to write it: first turn program into a sequence
of tokens and parse them to build a parse tree (see “Parsing with Pushdown Autom-
ata” on page 125), then evaluate that parse tree according to the operational semantics
of Ruby (see “Operational Semantics” on page 20). It’s a large and complex job, but it
can definitely be done; otherwise, Ruby wouldn’t qualify as universal.

For simplicity, we’ll assume that our imaginary implementation of #evaluate is bug-
free and won’t crash while it’s evaluating program—if we’re going to imagine some code,
we may as well imagine that it’s perfect. Of course it might return some result that
indicates that program raised an exception while it was being evaluated, but that’s not
the same as #evaluate itself actually crashing.

Ruby happens to have a built-in Kernel#eval method that can evaluate
a string of Ruby code, but taking advantage of it here would be a bit of
a cheat, not least because (in MRI) it’s implemented in C, not Ruby. It’s
also just unnecessary for the current discussion; we’re using Ruby as a
representative example of any universal programming language, but
many universal languages don’t have a built-in eval.

But hey, since it’s there, it’d be a shame not to use it to make #evalu
ate less imaginary. Here’s a rough attempt, with apologies for cheating:

require 'stringio'

def evaluate(program, input)
 old_stdin, old_stdout = $stdin, $stdout
 $stdin, $stdout = StringIO.new(input), (output = StringIO.new)

 begin
 eval program
 rescue Exception => e
 output.puts(e)
 ensure
 $stdin, $stdout = old_stdin, old_stdout
 end

The Facts of Life | 261

www.it-ebooks.info

http://www.it-ebooks.info/

 output.string
end

This implementation has many practical and philosophical problems
that could all be avoided by writing a pure-Ruby #evaluate. On the other
hand, it’s short enough to include here and works well enough for dem-
onstration purposes:

>> evaluate('print $stdin.read.reverse', 'hello world')
=> "dlrow olleh"

The existence of #evaluate allows us to define another method, #evaluate_on_itself,
which returns the result of evaluating program with its own source as input:

def evaluate_on_itself(program)
 evaluate(program, program)
end

This might sound like a weird thing to do, but it’s totally legitimate; program is just a
string, so we’re perfectly entitled to treat it both as a Ruby program and as input to that
program. Code is data, right?

>> evaluate_on_itself('print $stdin.read.reverse')
=> "esrever.daer.nidts$ tnirp"

Since we know we can implement #evaluate and #evaluate_on_itself in Ruby, we must
therefore be able to write the complete Ruby program does_it_say_no.rb:

def evaluate(program, input)
 # parse program
 # evaluate program on input while capturing output
 # return output
end

def evaluate_on_itself(program)
 evaluate(program, program)
end

program = $stdin.read

if evaluate_on_itself(program) == 'no'
 print 'yes'
else
 print 'no'
end

This program is a straightforward application of existing code: it defines #evaluate and
#evaluate_on_itself, then reads another Ruby program from standard input and
passes it to #evaluate_on_itself to see what that program does when run with itself as
input. If the resulting output is the string 'no', does_it_say_no.rb outputs 'yes', other-
wise, it outputs 'no'. For example:6

6. We’re using Unix shell syntax here. On Windows, it’s necessary to omit the single quotes around the
argument to echo, or to put the text in a file and feed it to ruby with the < input redirection operator.

262 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.it-ebooks.info/

$ echo 'print $stdin.read.reverse' | ruby does_it_say_no.rb
no

That’s the result we expected; as we saw above, when we run print
$stdin.read.reverse with itself as input, we get the output esrever.daer.nidts$
tnirp, which is not equal to no. What about a program that does output no?

$ echo 'if $stdin.read.include?("no") then print "no" end' | ruby does_it_say_no.rb
yes

Again, just as expected.

So here’s the big question: what happens when we run ruby does_it_say_no.rb <
does_it_say_no.rb?7 Bear in mind that does_it_say_no.rb is a real program—one that
we could write out in full if we had enough time and enthusiasm—so it must do
something, but it’s not immediately obvious what that is. Let’s try to work it out by
considering all the possibilities and eliminating the ones that don’t make sense.

First, running this particular program with its own source as input can’t possibly pro-
duce the output yes. By the program’s own logic, the output yes can only be produced
when running does_it_say_no.rb on its own source produces the output no, which con-
tradicts the original premise. So that’s not the answer.

Okay, so maybe it outputs no instead. But again, the structure of the program means
that it can only output no if exactly the same computation doesn’t output no—another
contradiction.

Is it conceivable that it could output some other string, like maybe, or even the empty
string? That would be contradictory too: if evaluate_on_itself(program, program)
doesn’t return no then the program prints no, not something different.

So it can’t output yes or no, it can’t output something else, and it can’t crash unless
#evaluate contains bugs, which we’re assuming it doesn’t. The only remaining possi-
bility is that it doesn’t produce any output, and that can only happen if the program
never finishes: #evaluate must loop forever without returning a result.

In practice it’s almost certain that ruby does_it_say_no.rb <
does_it_say_no.rb will exhaust the finite memory of the host machine,
causing ruby to crash, rather than actually looping forever. This is a
resource constraint imposed from outside the program, though, not a
property of the program itself; in principle, we could keep adding more
memory to the computer as necessary and let the computation run in-
definitely.

7. This is the shell command to run does_it_say_no.rb with its own source code as input.

The Facts of Life | 263

www.it-ebooks.info

http://www.it-ebooks.info/

This might seem like an unnecessarily complicated way of demonstrating that Ruby
lets us write nonhalting programs. After all, while true do end is much a simpler ex-
ample that does the same thing.

But by thinking about the behavior of does_it_say_no.rb, we’ve shown that nonhalting
programs are an inevitable consequence of universality, regardless of the specific fea-
tures of the system. Our argument doesn’t rely on any particular abilities of Ruby other
than its universality, so the same ideas can be applied to Turing machines, or the lambda
calculus, or any other universal system. Whenever we’re working with a language that
is powerful enough to evaluate itself, we know that it must be possible to use its equiv-
alent of #evaluate to construct a program that never halts, without having to know
anything else about the language’s capabilities.

In particular, it’s impossible to remove features (e.g., while loops) from a programming
language in a way that prevents us from writing nonhalting programs while keeping
the language powerful enough to be universal. If removing a particular feature makes
it impossible to write a program that loops forever, it must also have made it impossible
to implement #evaluate.

Languages that have been carefully designed to ensure that their programs must always
halt are called total programming languages, as opposed to the more conventional
partial programming languages whose programs sometimes halt with an answer and
sometimes don’t. Total programming languages are still very powerful and capable of
expressing many useful computations, but one thing they can’t do is interpret them-
selves.

That’s surprising, since the equivalent of #evaluate for a total program-
ming language must by definition always halt, yet it still can’t be im-
plemented in that language—if it could, we’d be able to use the
does_it_say_no.rb technique to make it loop forever.

This gives us our first tantalizing glimpse of an impossible program: we
can’t write an interpreter for a total programming language in itself, even
though there’s a perfectly respectable, guaranteed-to-halt algorithm for
interpreting it. In fact it’s so respectable that we could write it in another,
more sophisticated total programming language, but that new total lan-
guage wouldn’t be able to implement its own interpreter either.

An interesting curiosity, but total languages are designed to have artifi-
cial limits; we were looking for things that no computer or programming
language could do. We’d better keep going.

Programs Can Refer to Themselves
The self-referential trick used by does_it_say_no.rb hinges on our ability to construct a
program that can read its own source code, but perhaps it seems a bit like cheating to
assume that this will always be possible. In our example, the program received its own

264 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.it-ebooks.info/

source as an explicit input, thanks to functionality provided by the surrounding envi-
ronment (i.e., the shell); if that hadn’t been an option, it could also have read the data
directly from disk with File.read(__FILE__), taking advantage of Ruby’s filesystem API
and the special __FILE__ constant that always contains the name of the current file.

But we were supposed to be making a general argument that depended only on the
universality of Ruby, not on the capabilities of the operating system or the File class.
What about compiled languages like Java and C that may not have access to their source
at runtime? What about JavaScript programs that get loaded into memory over a net-
work connection, and may not be stored locally on a filesystem at all? What about self-
contained universal systems like Turing machines and the lambda calculus, where the
notions of “filesystem” and “standard input” don’t exist?

Fortunately, the does_it_say_no.rb argument can withstand this objection, because
having a program read its own source from standard input is just a convenient short-
hand for something that all universal systems can do, again regardless of their envi-
ronment or other features. This is a consequence of a fundamental mathematical result
called Kleene’s second recursion theorem, which guarantees that any program can be
converted into an equivalent one that is able to calculate its own source code. The
recursion theorem provides reassurance that our shorthand was justified: we could
have replaced the line program = $stdin.read with some code to generate the source of
does_it_say_no.rb and assign it to program without having to do any I/O at all.

Let’s see how to do the conversion on a simple Ruby program. Take this one, for ex-
ample:

x = 1
y = 2
puts x + y

We want to transform it into a program that looks something like this…

program = '…'
x = 1
y = 2
puts x + y

…where program is assigned a string containing the source of the complete program.
But what should the value of program be?

A naïve approach is to try to concoct a simple string literal that can be assigned to
program, but that quickly gets us into trouble, because the literal would be part of the
program’s source code and would therefore have to appear somewhere inside itself.
That would require program to begin with the string 'program =' followed by the value
of program, which would be the string 'program =' again followed by the value of
program, and so on forever:

program = %q{program = %q{program = %q{program = %q{program = %q{program = %q{…}}}}}}
x = 1
y = 2
puts x + y

The Facts of Life | 265

www.it-ebooks.info

http://www.it-ebooks.info/

Ruby’s %q syntax allows us to quote noninterpolated strings with a pair
of delimiter characters, in this case curly brackets, instead of single
quotes. The advantage is that the string literal can contain unescaped
instances of the delimiters as long as they’re correctly balanced:

>> puts %q{Curly brackets look like { and }.}
Curly brackets look like { and }.
=> nil
>> puts %q{An unbalanced curly bracket like } is a problem.}
SyntaxError: syntax error, unexpected tIDENTIFIER, expecting end-of-input

Using %q instead of single quotes helps to avoid character-escaping
headaches in strings that contain their own delimiters:

program = 'program = \'program = \\\'program = \\\\\\\'…\\\\\\\'\\\'\''

The way out of this infinitely deep hole is to take advantage of the fact that a value used
by a program doesn’t have to appear literally in its source code; it can also be computed
dynamically from other data. This means we can construct the converted program in
three parts:

A. Assign a string literal to a variable (call it data).

B. Use that string to compute the current program’s source code and assign it to
program.

C. Do whatever other work the program is supposed to do (i.e., the code we originally
started with).

So the structure of the program will be more like this:

data = '…'
program = …
x = 1
y = 2
puts x + y

That sounds plausible as a general strategy, but it’s a bit light on specific details. How
do we know what string to actually assign to data in part A, and how do we use it in
part B to compute program? Here’s one solution:

• In part A, create a string literal that contains the source code of parts B and C, and
assign that string to data. This string won’t need to “contain itself,” because it’s
not the source of the full program, only the section of the program that comes after
part A.

• In part B, first compute a string that contains the source code of part A. We can
do that because part A mostly consists of a big string literal whose value is available
as data, so we just need to prefix data’s value with 'data =' to recreate part A’s
source. Then simply concatenate the result with data to get the source of the entire
program (since data contains the source of parts B and C) and assign it to program.

266 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.it-ebooks.info/

This plan still sounds circular—part A produces the source of part B, and part B pro-
duces the source of part A—but it narrowly avoids an infinite regress by ensuring that
part B just computes the source of part A without having to literally contain it.

We can start making progress by filling in the bits we already know about. We have
most of the source of parts B and C already, so we can partially complete the value of
data:

data = %q{
program = …
x = 1
y = 2
puts x + y
}
program = …
x = 1
y = 2
puts x + y

data needs to contain newline characters. By representing these as actual
newlines inside an uninterpolated string literal, rather than as interpo-
lated \n escape sequences, we are able to include the source of parts B
and C verbatim without any special encoding or escaping.8 This
straightforward copy-and-paste makes the source of part A easier to
compute.

We also know that the source of part A is just the string 'data = %q{…}' with the value
of data filling the gap between the curly braces, so we can partially complete the value
of program too:

data = %q{
program = …
x = 1
y = 2
puts x + y
}
program = "data = %q{#{data}}" + …
x = 1
y = 2
puts x + y

Now all that’s missing from program is the source code of parts B and C, which is exactly
what data contains, so we can append the value of data to program to finish it off:

data = %q{
program = …
x = 1

8. We can only get away with this because parts B and C happen not to contain any difficult
characters like backslashes or unbalanced curly brackets. If they did, we’d have to escape
them somehow and then undo that escaping as part of assembling the value of program.

The Facts of Life | 267

www.it-ebooks.info

http://www.it-ebooks.info/

y = 2
puts x + y
}
program = "data = %q{#{data}}" + data
x = 1
y = 2
puts x + y

Finally, we can go back and fix up the value of data to reflect what part B actually looks
like:

data = %q{
program = "data = %q{#{data}}" + data
x = 1
y = 2
puts x + y
}
program = "data = %q{#{data}}" + data
x = 1
y = 2
puts x + y

And that’s it! This program does the same thing as the original, but now it has an extra
local variable containing its own source code—an admittedly hollow victory, since it
doesn’t actually do anything with that variable. So what if we convert a program that
expects a local variable called program and does something with it? Take the classic
example:

puts program

This is a program that is trying to print its own source code,9 but it’s obviously going
to fail in that form, because program is an undefined variable. If we run it through the
self-referencing transformation we get this result:

data = %q{
program = "data = %q{#{data}}" + data
puts program
}
program = "data = %q{#{data}}" + data
puts program

That’s a bit more interesting. Let’s see what this code does on the console:

>> data = %q{
 program = "data = %q{#{data}}" + data
 puts program
 }
=> "\nprogram = \"data = %q{\#{data}}\" + data\nputs program\n"
>> program = "data = %q{#{data}}" + data
=> "data = %q{\nprogram = \"data = %q{\#{data}}\" + data\nputs program\n}\n↵
program = \"data = %q{\#{data}}\" + data\nputs program\n"
>> puts program
data = %q{

9. Douglas Hofstadter coined the name quine for a program that prints itself.

268 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.it-ebooks.info/

program = "data = %q{#{data}}" + data
puts program
}
program = "data = %q{#{data}}" + data
puts program
=> nil

Sure enough, the line puts program really does print out the source code of the whole
program.

Hopefully it’s clear that this transformation doesn’t depend on any special properties
of the program itself, so it will work for any Ruby program, and the use of $stdin.read or
File.read(__FILE__) to read a program’s own source can therefore always be elimina-
ted.10 It also doesn’t depend on any special properties of Ruby itself—just the ability
to compute new values from old ones, like any other universal system—which implies
that any Turing machine can be adapted to refer to its own encoding, any lambda
calculus expression can be extended to contain a lambda-calculus representation of its
own syntax, and so on.

Decidability
So far we’ve seen that Turing machines have a lot of power and flexibility: they can
execute arbitrary programs encoded as data, perform any algorithm we can think of,
run for an unlimited amount of time, and calculate their own descriptions. And in spite
of their simplicity, these little imaginary machines have turned out to be representative
of universal systems in general.

If they’re so powerful and flexible, is there anything that Turing machines—and there-
fore real-world computers and programming languages—can’t do?

Before we can answer that question we need to make it a bit more precise. What kind
of thing can we ask a Turing machine to do, and how can we tell whether it’s done it?
Do we need to investigate every possible kind of problem, or is it enough to consider
just some of them? Are we looking for problems whose solutions are merely beyond
our current understanding, or problems that we already know we’ll never be able to
solve?

We can narrow the scope of the question by focusing on decision problems. A decision
problem is any question with a yes or no answer, like “is 2 less than 3?” or “does the
regular expression (a(|b))* match the string 'abaab'?” Decision problems are easier to
handle than function problems whose answer is a number or some other non-Boolean
value, like “what is the greatest common divisor of 18 and 12?,” but they’re still inter-
esting enough to be worth investigating.

10. Can you resist the urge to write a Ruby program that can perform this transformation on any Ruby
program? If you use %q{} to quote data’s value, how will you handle backslashes and unbalanced curly
brackets in the original source?

Decidability | 269

www.it-ebooks.info

http://www.it-ebooks.info/

A decision problem is decidable (or computable) if there’s an algorithm that’s guaranteed
to solve it in a finite amount of time for any possible input. The Church–Turing the-
sis claims that every algorithm can be performed by a Turing machine, so for a problem
to be decidable, we have to be able to design a Turing machine that always produces
the correct answer and always halts if we let it run for long enough. It’s easy enough to
interpret a Turing machine’s final configuration as a “yes” or “no” answer: we could
look to see whether it’s written a Y or N character at the current tape location, for
example, or we could ignore the tape contents altogether and just check whether its
final state is an accept (“yes”) or a nonaccept (“no”) state.

All the decision problems we’ve seen in earlier chapters are decidable. Some of them,
like “does this finite automaton accept this string?” and “does this regular expression
match this string?,” are self-evidently decidable because we’ve written Ruby programs
to solve them by simulating finite automata directly. Those programs could be labori-
ously translated into Turing machines given enough time and energy, and because their
execution involves a finite number of steps—each step of a DFA simulation consumes
a character of input, and the input has a finite number of characters—they are guar-
anteed to always halt with a yes-or-no answer, so the original problems qualify as de-
cidable.

Other problems are a bit more subtle. “Does this pushdown automaton accept this
string?” might appear to be undecidable, because we’ve seen that our direct simulation
of a pushdown automaton in Ruby has the potential to loop forever and never produce
an answer. However, there happens to be a way to calculate exactly how many simu-
lation steps a particular pushdown automaton will need in order to accept or reject an
input string of a given length,11 so the problem is decidable after all: we just calculate
the number of steps needed, run the simulation for that many steps, and then check
whether or not the input has been accepted.

So, can we do this every time? Is there always a clever way to sneak around a problem
and find a way to implement a machine, or a program, that is guaranteed to solve it in
a finite amount of time?

Well, no, unfortunately not. There are many decision problems—infinitely many—and
it turns out that a lot of them are undecidable: there is no guaranteed-to-halt algorithm
for solving them. Each of these problems is undecidable not because we just haven’t
found the right algorithm for it yet, but because the problem itself is fundamentally
impossible to solve for some inputs, and we can even prove that no suitable algorithm
will ever be found.

11. Briefly, for the curious: every pushdown automaton has an equivalent context-free grammar and vice
versa; any CFG can be rewritten in Chomsky normal form; and any CFG in that form must take exactly
2n − 1 steps to generate a string of length n. So we can turn the original PDA into a CFG, rewrite the CFG
into Chomsky normal form, and then turn that CFG back into a PDA. The resulting pushdown automaton
recognizes the same language as the original, but now we know exactly how many steps it’ll take to do it.

270 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.it-ebooks.info/

The Halting Problem
A lot of undecidable problems are concerned with the behavior of machines and pro-
grams during their execution. The most famous of these, the halting problem, is the
task of deciding whether the execution of a particular Turing machine with a particular
initial tape will ever halt. Thanks to universality, we can restate the same problem in
more practical terms: given a string containing the source code of a Ruby program, and
another string of data for that program to read from standard input, will running that
program ultimately result in an answer or just an infinite loop?

Building a Halting Checker
It’s not obvious why the halting problem should be considered undecidable. After all,
it’s easy to come up with individual programs for which the question is answerable.
Here’s a program that will definitely halt, regardless of its input string:

input = $stdin.read
puts input.upcase

We’ll assume that $stdin.read always immediately returns a value—
namely, that every program’s standard input is finite and nonblocking
—because we’re interested in the internal behavior of the program, not
its interactions with the operating system.

Conversely, a small addition to the source code produces a program that will clearly
never halt:

input = $stdin.read

while true
 # do nothing
end

puts input.upcase

We can certainly write a halting checker to distinguish between only these two cases.
Just testing whether the program’s source code contains the string while true is
enough:

def halts?(program, input)
 if program.include?('while true')
 false
 else
 true
 end
end

This implementation of #halts? gives the right answers for the two example programs:

The Halting Problem | 271

www.it-ebooks.info

http://www.it-ebooks.info/

>> always = "input = $stdin.read\nputs input.upcase"
=> "input = $stdin.read\nputs input.upcase"
>> halts?(always, 'hello world')
=> true
>> never = "input = $stdin.read\nwhile true\n# do nothing\nend\nputs input.upcase"
=> "input = $stdin.read\nwhile true\n# do nothing\nend\nputs input.upcase"
>> halts?(never, 'hello world')
=> false

But #halts? is likely to be wrong for other programs. For example, there are programs
whose halting behavior depends on the value of their input:

input = $stdin.read

if input.include?('goodbye')
 while true
 # do nothing
 end
else
 puts input.upcase
end

We can always extend our halting checker to cope with specific cases like this, since
we know what to look for:

def halts?(program, input)
 if program.include?('while true')
 if program.include?('input.include?(\'goodbye\')')
 if input.include?('goodbye')
 false
 else
 true
 end
 else
 false
 end
 else
 true
 end
end

Now we have a checker that gives the correct answers for all three programs and any
possible input strings:

>> halts?(always, 'hello world')
=> true
>> halts?(never, 'hello world')
=> false
>> sometimes = "input = $stdin.read\nif input.include?('goodbye')\nwhile true\n↵
do nothing\nend\nelse\nputs input.upcase\nend"
=> "input = $stdin.read\nif input.include?('goodbye')\nwhile true\n# do nothing\n↵
end\nelse\nputs input.upcase\nend"
>> halts?(sometimes, 'hello world')
=> true
>> halts?(sometimes, 'goodbye world')
=> false

272 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.it-ebooks.info/

We could go on like this indefinitely, adding more checks and more special cases to
support an expanding repertoire of example programs, but we’d never get a solution
to the full problem of deciding whether any program will halt. A brute-force imple-
mentation can be made more and more accurate, but it will always have blind spots;
the simple-minded approach of looking for specific patterns of syntax can’t possibly
scale to all programs.

To make #halts? work in general, for any possible program and input, seems like it
would be difficult. If a program contains any loops at all—whether explicit, like
while loops, or implicit, like recursive method calls—then it has the potential to run
forever, and sophisticated analysis of the program’s meaning is required if we want to
predict anything about how it behaves for a given input. As humans, we can see im-
mediately that this program always halts:

input = $stdin.read
output = ''

n = input.length
until n.zero?
 output = output + '*'
 n = n - 1
end

puts output

But why does it always halt? Certainly not for any straightforward syntactic reason. The
explanation is that IO#read always returns a String, and String#length always returns
a nonnegative Integer, and repeatedly calling -(1) on a nonnegative Integer always
eventually produces an object whose #zero? method returns true. This chain of rea-
soning is subtle and highly sensitive to small modifications; if the n = n - 1 statement
inside the loop is changed to n = n - 2, the program will only halt for even-length
inputs. A halting checker that knew all these facts about Ruby and numbers, as well as
how to connect facts together to make accurate decisions about this kind of program,
would need to be large and complex.

The fundamental difficulty is that it’s hard to predict what a program
will do without actually running it. It’s tempting to run the program
with #evaluate to see whether it halts, but that’s no good: if
the program doesn’t halt, #evaluate will run forever and we won’t get
an answer from #halts? no matter how long we wait. Any reliable halt-
ing-detection algorithm must find a way to produce a definitive answer
in a finite amount of time just by inspecting and analyzing the text of
the program, not by simply running it and waiting.

The Halting Problem | 273

www.it-ebooks.info

http://www.it-ebooks.info/

It’ll Never Work
Okay, so our intuition tells us that #halts? would be hard to implement correctly, but
that doesn’t necessarily mean that the halting problem is undecidable. There are plenty
of difficult problems (e.g., writing #evaluate) that turn out to be solvable given enough
effort and ingenuity; if the halting problem is undecidable, that means #halts? is im-
possible to write, not just extremely difficult.

How do we know that a proper implementation of #halts? can’t possibly exist? If it’s
just an engineering problem, why can’t we throw lots of programmers at it and even-
tually come up with a solution?

Too good to be true

Let’s pretend temporarily that the halting problem is decidable. In this imaginary world,
it’s possible to write a full implementation of #halts?, so a call to halts?(program,
input) always comes back with a true or false answer for any program and input, and
that answer always correctly predicts whether program would halt if it was run with
input on standard input. The rough structure of the #halts? method might be some-
thing like this:

def halts?(program, input)
 # parse program
 # analyze program
 # return true if program halts on input, false if not
end

If we can write #halts?, then we can construct does_it_halt.rb, a program that reads
another program as input and prints yes or no depending on whether that program
halts when it reads the empty string:12

def halts?(program, input)
 # parse program
 # analyze program
 # return true if program halts on input, false if not
end

def halts_on_empty?(program)
 halts?(program, '')
end

program = $stdin.read

if halts_on_empty?(program)
 print 'yes'
else

12. The choice of the empty string is unimportant; it’s just an arbitrary fixed input. The plan is to run
does_it_halt.rb on self-contained programs that don’t read anything from standard input, so it doesn’t
matter what input is.

274 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.it-ebooks.info/

 print 'no'
end

Once we have does_it_halt.rb, we can use it to solve very difficult problems. Consider
this famous claim made by Christian Goldbach in 1742:

Every even integer greater than 2 can be written as the sum of two primes.

This is the Goldbach conjecture, and it’s famous because nobody has been able to prove
whether it’s true or false. The evidence suggests that it’s true, because an even number
picked at random can invariably be broken apart into two primes—12 = 5 + 7, 34 = 3
+ 31, 567890 = 7 + 567883 and so forth—and computers have been used to check that
this can be done for all even numbers between four and four quintillion
(4,000,000,000,000,000,000). But there are infinitely many even numbers, so no com-
puter can check them all, and there’s no known proof that every even number must
break apart in this way. There is a possibility, however small, that some very large even
number is not the sum of two primes.

Proving the Goldbach conjecture is one of the holy grails of number theory; in the year
2000, the publisher Faber and Faber offered a million-dollar prize to anyone who could
produce a proof. But wait: we already have the tools to discover whether the conjecture
is true! We just need to write a program that searches for a counterexample:

require 'prime'

def primes_less_than(n)
 Prime.each(n - 1).entries
end

def sum_of_two_primes?(n)
 primes = primes_less_than(n)
 primes.any? { |a| primes.any? { |b| a + b == n } }
end

n = 4

while sum_of_two_primes?(n)
 n = n + 2
end

print n

This establishes a connection between the truth of the Goldbach conjecture and the
halting behavior of a program. If the conjecture is true, this program will never find a
counterexample no matter how high it counts, so it will loop forever; if the conjecture’s
false, n will eventually be assigned the value of an even number that isn’t the sum of
two primes, and the program will halt. So we just have to save it as goldbach.rb and run
ruby does_it_halt.rb < goldbach.rb to find out whether it’s a halting program, and that
will tell us whether the Goldbach conjecture is true. A million dollars is ours!13

Well, obviously this is too good to be true. To write a program that can accurately
predict the behavior of goldbach.rb would require a proficiency in number theory be-

The Halting Problem | 275

www.it-ebooks.info

http://www.it-ebooks.info/

yond our current understanding. Mathematicians have been working for hundreds of
years to try to prove or disprove the Goldbach conjecture; it’s unlikely that a bunch of
avaricious software engineers could construct a Ruby program that can miraculously
solve not only this problem but any unsolved mathematical conjecture that can be
expressed as a looping program.

Fundamentally impossible

So far we’ve seen strong evidence that the halting problem is undecidable, but not
conclusive proof. Our intuition may say it’s unlikely that we can prove or disprove the
Goldbach conjecture just by turning it into a program, but computation can be pretty
counterintuitive at times, so we shouldn’t allow ourselves to be convinced solely by
arguments about how improbable something is. If the halting problem really is unde-
cidable, as opposed to simply very difficult, we should be able to prove it.

Here’s why #halts? can never work. If it did work, we’d be able to construct a new
method #halts_on_itself? that calls #halts? to determine what a program does when
run with its own source code as input:14

def halts_on_itself?(program)
 halts?(program, program)
end

Like #halts?, the #halts_on_itself? method will always finish and return a Boolean
value: true if program halts when run with itself as input, false if it loops forever.

Given working implementations of #halts? and #halts_on_itself?, we can write a
program called do_the_opposite.rb:

def halts?(program, input)
 # parse program
 # analyze program
 # return true if program halts on input, false if not
end

def halts_on_itself?(program)
 halts?(program, program)
end

program = $stdin.read

if halts_on_itself?(program)
 while true
 # do nothing
 end
end

13. Faber’s million-dollar prize expired in 2002, but anyone who produced a proof today would still be in
for some serious fortune and glory on the rock star mathematician circuit.

14. This is reminiscent of #evaluate_on_itself from “Universal Systems Can Loop Forever” on page 259,
with #halts? in place of #evaluate.

276 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.it-ebooks.info/

This code reads program from standard input, finds out whether it would halt if run on
itself, and promptly does the exact opposite: if program would halt, do_the_oppo-
site.rb loops forever; if program would loop forever, do_the_opposite.rb halts.

Now, what does ruby do_the_opposite.rb < do_the_opposite.rb do?15 Just as we saw
earlier with does_it_say_no.rb, this question creates an inescapable contradiction.

#halts_on_itself? must return either true or false when given the source of do_the_op-
posite.rb as an argument. If it returns true to indicate a halting program, then ruby
do_the_opposite.rb < do_the_opposite.rb will loop forever, which means
#halts_on_itself? was wrong about what would happen. On the other hand, if
#halts_on_itself? returns false, that’ll make do_the_opposite.rb immediately halt,
again contradicting #halts_on_itself?’s prediction.

It’s wrong to pick on #halts_on_itself? here—it’s just an innocent one-liner that del-
egates to #halts? and relays its answer. What we’ve really shown is that it’s not possible
for #halts? to return a satisfactory answer when called with do_the_opposite.rb as both
program and input arguments; no matter how hard it works, any result it produces will
automatically be wrong. That means there are only two possible fates for any real im-
plementation of #halts?:

• It sometimes gives the wrong answer, e.g., predicting that do_the_opposite.rb will
loop forever even though it halts (or vice versa).

• It sometimes loops forever and never returns any answer, just like #evaluate does
in ruby does_it_say_no.rb < does_it_say_no.rb.

So a fully correct implementation of #halts? can never exist: there must be inputs for
which it makes either an incorrect prediction or no prediction at all.

Remember the definition of decidability:

A decision problem is decidable if there’s an algorithm that’s guaranteed to solve it in a
finite amount of time for any possible input.

We’ve proved it’s impossible to write a Ruby program that completely solves the halting
problem, and since Ruby programs are equivalent in power to Turing machines, it must
be impossible with a Turing machine too. The Church–Turing thesis says that every
algorithm can be performed by a Turing machine, so if there’s no Turing machine for
solving the halting problem, there’s no algorithm either; in other words, the halting
problem is undecidable.

Other Undecidable Problems
It’s discouraging that there’s an easily defined problem (“does this program halt?”) that
computers can’t reliably solve. However, that specific problem is relatively abstract,

15. Or equivalently: what does #halts_on_itself? return if we call it with do_the_opposite.rb’s source code
as its argument?

Other Undecidable Problems | 277

www.it-ebooks.info

http://www.it-ebooks.info/

and the do_the_opposite.rb program we used to illustrate it is impractical and contrived;
it doesn’t seem likely that we’ll ever want to actually implement #halts?, or write a
program like do_the_opposite.rb, as part of a real-world application. Perhaps we can
disregard undecidability as an academic curiosity and get on with our lives.

Unfortunately it’s not that simple, because the halting problem is not the only unde-
cidable problem. There are plenty of others that we might realistically want to solve in
our day-to-day work of building software, and their undecidability has real conse-
quences for the practical limitations of automated tools and processes.

Let’s look at a toy example. Suppose we’ve been given the job of developing a Ruby
program to print the string 'hello world'. That sounds simple enough, but in our
capacity as inveterate procrastinators16 we’re also going to develop an automated tool
that can reliably decide whether or not a particular program prints hello world when
supplied with a particular input.17 Armed with this tool, we can analyze our final pro-
gram and check that it does what it’s supposed to.

Now, imagine we succeed in developing a method #prints_hello_world? that can cor-
rectly make that decision about any program. Omitting implementation details, the
method has this general form:

def prints_hello_world?(program, input)
 # parse program
 # analyze program
 # return true if program prints "hello world", false if not
end

Once we’ve finished writing our original program, we can use #prints_hello_world? to
verify that it does the right thing; if it does, we’ll check it into source control, email the
boss, and everyone’s happy. But the situation is even better than that, because we can
also use #prints_hello_world? to implement another interesting method:

def halts?(program, input)
 hello_world_program = %Q{
 program = #{program.inspect}
 input = $stdin.read
 evaluate(program, input) # evaluate program, ignoring its output
 print 'hello world'
 }

 prints_hello_world?(hello_world_program, input)
end

16. Surely “responsible software engineering professionals”?

17. Again, that input might be irrelevant if the program doesn’t actually read anything from $stdin, but we’re
including it for the sake of completeness and consistency.

278 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.it-ebooks.info/

The %Q syntax quotes a string in the same way as %q and then performs
interpolation, so #{program.inspect} gets replaced with a Ruby string
literal containing the value of program.

Our new version of #halts? works by constructing a special program, hello_world_pro
gram, which does two main things:

1. Evaluates program with input available on its standard input

2. Prints hello world

hello_world_program is constructed so that its execution has only two possible out-
comes: either evaluate(program, input) will finish successfully, in which case hello
world will be printed, or evaluate(program, input) will loop forever and there’ll be no
output at all.

This special program is fed into #prints_hello_world? to find out which of those two
outcomes will happen. If #prints_hello_world? returns true, that means evaluate(pro
gram, input) will eventually finish and allow hello world to be printed, so #halts?
returns true to indicate that program halts on input. If #prints_hello_world? instead
returns false, that must be because hello_world_program will never reach its final line,
so #halts? returns false to say that evaluate(program, input) loops forever.

Our new implementation of #halts? shows that the halting problem is reducible to the
problem of checking whether a program prints hello world. In other words, any algo-
rithm that computes #prints_hello_world? can be adapted to make an algorithm that
computes #halts?.

We already know that a working #halts? can’t exist, so the obvious conclusion is that
a complete implementation of #prints_hello_world? can’t exist either. And if it’s im-
possible to implement, the Church–Turing thesis says there’s no algorithm for it, so
“does this program print hello world?” is another undecidable problem.

In reality, nobody cares about automatically detecting whether a program prints a par-
ticular string, but the structure of this undecidability proof points to something larger
and more general. We only had to construct a program that exhibits the “prints hello
world” property whenever some other program halts, and that was enough to show
undecidability. What stops us from reusing this argument for any property of program
behavior, including properties that we actually do care about?

Well, nothing does. This is Rice’s theorem: any nontrivial property of program behavior
is undecidable, because the halting problem can always be reduced to the problem of
deciding whether that property is true; if we could invent an algorithm for deciding
that property, we’d be able to use it to build another algorithm that decides the halting
problem, and that’s impossible.

Other Undecidable Problems | 279

www.it-ebooks.info

http://www.it-ebooks.info/

Roughly speaking, a “nontrivial property” is a claim about what a pro-
gram does, not how it does it. For example, Rice’s theorem doesn’t apply
to a purely syntactic property like “does this program’s source code
contain the string 'reverse'?,” because that’s an incidental implemen-
tation detail that can be refactored away without changing the pro-
gram’s externally visible behavior. On the other hand, a semantic prop-
erty like “does this program output the reverse of its input?” is within
the scope of Rice’s theorem and therefore undecidable.

Rice’s theorem tells us there are a huge number of undecidable problems that are con-
cerned with what a program will do when it’s executed.

Depressing Implications
Undecidability is an inconvenient fact of life. The halting problem is disappointing,
because it shows we can’t have everything: we want the unrestricted power of a uni-
versal programming language, but we also want to write programs that produce a result
without getting stuck in an infinite loop, or at least programs whose subroutines halt
as part of some larger long-running task (see “Very Long-Running Computa-
tions” on page 260).

This disappointment is bleakly summarized in a classic paper from 2004:

There is a dichotomy in language design, because of the halting problem. For our pro-
gramming discipline we are forced to choose between

A. Security—a language in which all programs are known to terminate.

B. Universality—a language in which we can write

i. all terminating programs

ii. silly programs which fail to terminate

and, given an arbitrary program we cannot in general say if it is (i) or (ii).

Five decades ago, at the beginning of electronic computing, we chose (B).

—David Turner, Total Functional Programming

Yes, we’d all like to avoid writing silly programs, but that’s just tough luck. There’s no
way to tell whether an arbitrary program is silly, so we can’t completely avoid writing
them without sacrificing universality.18

The implications of Rice’s theorem are depressing too: not only is the question “does
this program halt?” undecidable, but so is “does this program do what I want it to do?”
We live in a universe where there’s no way to build a machine that can accurately predict

18. Total programming languages are a potential solution to this problem, but so far they haven’t taken off,
perhaps because they can be more difficult to understand than conventional languages.

280 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://www.jucs.org/jucs_10_7/total_functional_programming
http://www.it-ebooks.info/

whether a program will print hello world, calculate a particular mathematical function,
or make a particular operating system call, and that’s just the way it is.

That’s frustrating, because it would be really useful to be able to check program prop-
erties mechanically; the reliability of modern software would be improved by a tool
that decides whether a program conforms to its specification or contains any bugs.
Those properties might be mechanically checkable for individual programs, but unless
they’re checkable in general, then we’ll never be able to trust machines to do the job
for us.

For example, say we invent a new software platform and decide to make money by
selling compatible programs from an online shop—an “application superstore,” if you
like—on behalf of our platform’s third-party developers. We want our customers to be
able to shop with confidence, so we decide to only sell programs that meet certain
criteria: they must not crash, they must not call private APIs, and they must not execute
arbitrary code downloaded from the Internet.

When thousands of developers start submitting programs to us, how do we review each
one to see whether it falls within our guidelines? It would save a lot of time and money
if we could use an automated system to check every submission for compliance, but
thanks to undecidability, it’s not possible to build a system that does the job accurately.
We have no choice but to hire a small army of human beings to manually test those
programs by running them, disassembling them, and instrumenting the operating sys-
tem to profile their dynamic behavior.

Manual review is slow, expensive, and error-prone, with the added drawback that each
program can only be run for a short amount of time, providing a limited snapshot of
its dynamic behavior. So even if nobody makes a mistake, occasionally something un-
desirable will slip through the net and we’ll have a load of angry customers on our
hands. Thanks a lot, undecidability.

Beneath all this inconvenience are two fundamental problems. The first is that we don’t
have the power to look into the future and see what will happen when a program is
executed; the only general way to find out what a program does is to run it for real.
While some programs are simple enough to have behavior that’s straightforwardly
predictable, a universal language will always permit programs whose behavior can’t be
predicted just by analyzing their source code.19

The second problem is that, when we do decide to run a program, there’s no reliable
way to know how long it will take to finish. The only general solution is to run it and
wait, but since we know that programs in a universal language can loop forever without
halting, there will always be some programs for which no finite amount of waiting is
long enough.

19. Stephen Wolfram coined the name computational irreducibility for the idea that a program’s behavior
can’t be predicted without running it.

Depressing Implications | 281

www.it-ebooks.info

http://mathworld.wolfram.com/ComputationalIrreducibility.html
http://www.it-ebooks.info/

Why Does This Happen?
In this chapter, we’ve seen that all universal systems are powerful enough to refer to
themselves. Programs operate on numbers, numbers can represent strings, and strings
are how the instructions of a program are written down, so programs are perfectly
capable of operating on their own source code.

This capacity for self-reference makes it impossible to write a program that can reliably
predict program behavior. Once a particular behavior-checking program has been
written, we are always able to construct a larger program that defeats it: the new pro-
gram incorporates the checker as a subroutine, checks its own source code, and then
immediately does the exact opposite of whatever the checker said it would do. These
self-contradictory programs are curiosities rather than something we’d ever write in
practice, but they’re just a symptom, not the cause, of the underlying problem: in gen-
eral, program behavior is too powerful to be accurately predicted.

Human language has similar power and similar problems. “This sen-
tence is a lie” (the liar paradox) is an English sentence that can’t be true
or false. But the liar paradox depends on the special self-referential word
“this”; as we saw in “Programs Can Refer to Them-
selves” on page 264, any computer program can be made self-referential
by construction, without requiring any special language features.

When it comes down to it, there are two basic reasons why the behavior of programs
is so hard to predict:

1. Any system with enough power to be self-referential can’t correctly answer every
question about itself.20 We will always be able to construct a program like
do_the_opposite.rb whose behavior can’t be predicted by the system. To avoid this
problem, we need to step outside the self-referential system and use a different,
more powerful system to answer questions about it.

2. But in the case of universal programming languages, there is no more powerful
system for us to upgrade to. The Church–Turing thesis tells us that any usable
algorithm we invent for making predictions about the behavior of programs can
itself be performed by a program, so we’re stuck with the capabilities of universal
systems.

20. This is roughly the content of Gödel’s first incompleteness theorem.

282 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems
http://www.it-ebooks.info/

Coping with Uncomputability
The whole point of writing a program is to get a computer to do something useful. As
programmers, how are we supposed to cope with a world where checking that a pro-
gram works properly is an unsolvable problem?

Denial is a tempting response: Ignore the whole issue. It would be nice if we could auto-
matically verify program behavior, but we can’t, so let’s just hope for the best and never
try to check that a program does its job correctly.

But that would be an overreaction, because the situation isn’t as bad as it sounds. Rice’s
theorem doesn’t mean that program analysis is impossible, just that we can’t write a
nontrivial analyzer that will always halt and produce the right answer. As we saw in
“Building a Halting Checker” on page 271, there’s nothing to stop us from writing a
tool that gives the right answer for some programs, as long as we can tolerate the fact
that there will always be other programs for which it either gives the wrong answer or
loops forever without returning anything.

Here are some practical ways of analyzing and predicting program behavior, in spite of
undecidability:

• Ask undecidable questions, but give up if an answer can’t be found. For example,
to check whether a program prints a particular string, we can run it and wait; if it
doesn’t print that string within a particular period of time, say 10 seconds, we just
terminate the program and assume it’s no good. We might accidentally throw out
a program that produces the expected output after 11 seconds, but in many cases
that’s an acceptable risk, especially since slow programs can be undesirable in their
own right.

• Ask several small questions whose answers, when taken together, provide empir-
ical evidence for the answer to a larger question. When performing automated
acceptance testing, we’re usually not able to check that a program does the right
thing for every possible input, but we can try running it for a limited number of
example inputs to see what happens. Each test run gives us information about how
the program behaves in that specific case, and we can use that information to
become more confident of how it’s likely to behave in general. This leaves open
the possibility that there are other untested inputs that cause wildly different be-
havior, but we can live with that as long as our test cases do a good job of repre-
senting most kinds of realistic input.

Another example of this approach is the use of unit tests to verify the behavior of
small pieces of a program individually rather than trying to verify the program as
a whole. A well-isolated unit test concentrates on checking the properties of a
simple unit of code, and makes assumptions about other parts of the program by
representing them with test doubles (i.e., stubs and mocks). Individual unit tests
that exercise small pieces of well-understood code can be simple and fast, mini-
mizing the danger that any one test will run forever or give a misleading answer.

Coping with Uncomputability | 283

www.it-ebooks.info

http://www.it-ebooks.info/

By unit testing all the program’s pieces in this way, we can set up a chain of as-
sumptions and implications that resembles a mathematical proof: “if piece A
works, then piece B works, and if piece B works, then piece C works.” Deciding
whether all of these assumptions are justified is the responsibility of human rea-
soning rather than automated verification, although integration and acceptance
testing can improve our confidence that the entire system does what it’s supposed
to do.

• Ask decidable questions by being conservative where necessary. The above sug-
gestions involve actually running parts of a program to see what happens, which
always introduces the risk of hitting an infinite loop, but there are useful questions
that can be answered just by inspecting a program’s source code statically. The
most obvious example is “does this program contain any syntax errors?,” but we
can answer more interesting questions if we’re prepared to accept safe approxi-
mations in cases where the real answer is undecidable.

A common analysis is to look through a program’s source to see if it contains dead
code that computes values that are never used, or unreachable code that never gets
evaluated. We can’t always tell whether code is truly dead or unreachable, in which
case we have to be conservative and assume it isn’t, but there are cases where it’s
obvious: in some languages, we know that an assignment to a local variable that’s
never mentioned again is definitely dead, and that a statement that immediately
follows a return is definitely unreachable.21 An optimizing compiler like GCC uses
these techniques to identify and eliminate unnecessary code, making programs
smaller and faster without affecting their behavior.

• Approximate a program by converting it into something simpler, then ask decid-
able questions about the approximation. This important idea is the subject of the
next chapter.

21. The Java language specification requires the compiler to reject any program that contains unreachable
code. See http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.21 for a lengthy explanation
of how a Java compiler is meant to decide which parts of a program are potentially reachable without
running any of it.

284 | Chapter 8: Impossible Programs

www.it-ebooks.info

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.21
http://www.it-ebooks.info/

CHAPTER 9

Programming in Toyland

Programming is about using syntax to communicate ideas to a machine. When we write
a program, we have an idea of what we want the machine to do when it executes that
program, and knowing the semantics of our programming language gives us some
confidence that the machine is going to understand what each small piece of the pro-
gram means.

But a complex computer program is greater than the sum of its individual statements
and expressions. Once we’ve plugged together many small parts to make a larger whole,
it would be useful to be able to check whether the overall program actually does what
we originally wanted it to do. We might want to know that it always returns certain
results, for example, or that running it will have certain side effects on the filesystem
or network, or just that it doesn’t contain obvious bugs that will make it crash on
unexpected inputs.

In fact, there are all sorts of properties that we might want our programs to have, and
it would be really convenient if we could just check the syntax of a particular program
to see whether or not it has those properties, but we know from Rice’s theorem that
predicting a program’s behavior by looking at its source code can’t always give us the
right answer. Of course, the most direct way to find out what a program will do is just
to run it, and sometimes that’s okay—a lot of software testing is done by running
programs on known inputs and checking the actual outputs against the expected ones
—but there are a few reasons why running code might not be an acceptable way of
investigating it either.

For one thing, any useful program is likely to deal with information that won’t be known
until run time: interactive input from the user, files passed in as arguments, data read
from the network, that sort of thing. We can certainly try running a program with
dummy inputs to get some sense of what it does, but that just tells us about the pro-
gram’s behavior for those inputs; what happens when the real inputs are different?
Running a program on all possible combinations of inputs is often impractical or im-
possible, and trying the program once with a specific set of inputs, however realistic
they are, doesn’t necessarily tell us very much about how it will behave in general.

285

www.it-ebooks.info

http://www.it-ebooks.info/

Another problem, which we explored in “Universal Systems Can Loop For-
ever” on page 259, is that programs written in sufficiently powerful1 languages are
perfectly capable of running forever without ever producing a result. This makes it
impossible to reliably investigate arbitrary programs by running them, because it’s
sometimes impossible to tell in advance whether a program is going to run indefinitely
(see “The Halting Problem” on page 271), so any automatic checker that tried to run
a candidate program would be at risk of never coming back with an answer.

And lastly, even in the case of a program that does have all its input data available in
advance and that will, for whatever reason, always eventually terminate instead of
looping forever, it might just be expensive or inconvenient to run that program to see
what happens. It could take a long time to finish, or have irreversible side effects—
sending emails, transferring money, launching missiles—which are undesirable for
testing purposes.

All these reasons make it useful to be able to discover information about a program
without actually running it. One way of doing this is to use abstract interpretation, an
analysis technique in which we execute a simplified version of the program and use the
results to deduce properties of the original.

Abstract Interpretation
Abstract interpretation gives us a way of approaching a problem that’s somehow too
difficult to handle, perhaps because it’s too large, too complex, or has too many un-
knowns to be tackled directly. The main idea of abstract interpretation is to use an
abstraction, a model of the real problem that discards enough detail to make it man-
ageable—perhaps by making it smaller, simpler, or by eliminating unknowns—but
that also retains enough detail to make its solution relevant to the original problem.

To make this vague idea more concrete, let’s look at a simple application of abstract
interpretation.

Route Planning
Suppose you’re a tourist in an unfamiliar country and want to plan a road trip to another
town. How will you decide which route to take? A direct solution is to jump into your
rental car and drive in whichever direction seems the most promising. Depending on
how lucky you are, and on how much help the foreign road signs give you, this brute-
force exploration of an unknown road network might eventually get you to your des-
tination. But it’s an expensive strategy, and it’s likely that you’ll just get more and more
lost until you give up completely.

1. “Sufficiently powerful” means “universal” here. See “Universal Systems Can Loop
Forever” on page 259 for more.

286 | Chapter 9: Programming in Toyland

www.it-ebooks.info

http://www.it-ebooks.info/

Using a map to plan your trip is a much more sensible idea. A printed road atlas is an
abstraction that sacrifices a lot of the detail of the physical road network. It doesn’t tell
you what the traffic is like, which roads are currently closed, where individual buildings
are, or anything at all about the third dimension; it is, crucially, much smaller and flatter
than the real thing. But a map does retain the most important information required for
journey planning: the relative positions of all the towns, which roads lead to each town,
and how those roads are connected to each other.

Despite all of this missing detail, an accurate map is useful, because the route you plan
with it is likely to be valid in reality, not just in the abstract world of the map. A car-
tographer has done the expensive work of creating a model of reality, giving you the
opportunity to perform a computation on that model by looking at a simplified repre-
sentation of the road network and planning your route on it. You can then transfer the
result of that computation back into the real world when you actually get in your car
and drive to your destination, allowing cheap decisions made in the abstract world of
the map to prevent you from having to make expensive decisions on the physical roads.

The approximations used by a map make navigational computations much easier
without fatally compromising the fidelity of their results. There are plenty of circum-
stances in which decisions made with a map might turn out to be wrong—there is no
guarantee that a map has told you absolutely everything you need to know about your
journey—but planning your route in advance lets you rule out particular kinds of mis-
takes and makes the whole problem of getting from one place to another much more
manageable.

Abstraction: Multiplying Signs
Planning a route with a printed map is a real application of abstract interpretation, but
it’s also very informal. For a more formal example, we can look at the multiplication
of numbers; although it’s still only a toy example, multiplication gives us a chance to
start writing code to investigate these ideas.

Pretend for a moment that multiplying two numbers is a difficult or expensive opera-
tion, and that we’re interested in finding out some information about the result of a
multiplication without having to actually perform it. Specifically: what is the sign of
the result? Is it a negative number, zero, or a positive number?

The notionally expensive way of finding out is to compute in the concrete world, using
the standard interpretation of multiplication: multiply the numbers for real, look at the
resulting number, and decide whether that result is negative, zero, or positive. In Ruby,
for example:

>> 6 * -9
=> -54

-54 is negative, so we’ve learned that the product of 6 and -9 is a negative number. Job
done.

Abstract Interpretation | 287

www.it-ebooks.info

http://www.it-ebooks.info/

However, it’s also possible to discover the same information by computing in an ab-
stract world, using an abstract interpretation of multiplication. Just as a map uses lines
on a flat page to represent roads in the real world, we can use abstract values to represent
numbers; we can plan a route on a map instead of finding our way by trial and error
on real roads, and we can define an abstract multiplication operation on abstract values
instead of using concrete multiplication on concrete numbers.

To do this, we need to design abstract values that make the calculation simpler while
still retaining enough information to be a useful answer. We can take advantage of the
fact that the absolute values2 of two multiplied numbers don’t make any difference to
the sign of the result:

>> (6 * -9) < 0
=> true
>> (1000 * -5) < 0
=> true
>> (1 * -1) < 0
=> true

As young children, we’re taught that it’s only the signs of the arguments that matter:
the product of two positive numbers, or two negative numbers, is always a positive
number; the product of one positive and one negative number is always negative; and
the product of zero with any other number is always zero.

So let’s use these different kinds of number—“negative,” “zero,” and “positive”—as
our abstract values. We can do this in Ruby by defining a Sign class and creating three
instances of it:

class Sign < Struct.new(:name)
 NEGATIVE, ZERO, POSITIVE = [:negative, :zero, :positive].map { |name| new(name) }

 def inspect
 "#<Sign #{name}>"
 end
end

This gives us Ruby objects that we can use as our abstract values: Sign::NEGATIVE rep-
resents “any negative number,” Sign::ZERO represents “the number zero,” and
Sign::POSITIVE represents “any positive number.” These three Sign objects make up
the tiny abstract world where we’ll perform abstract calculations, while our concrete
world consists of the virtually unlimited supply of Ruby integers.3

We can define abstract multiplication for Sign values by implementing just the sign-
related aspect of concrete multiplication:

class Sign
 def *(other_sign)

2. A number’s absolute value is what we get when we take the sign away. The absolute value of −10, for
example, is 10.

3. Ruby’s Bignum objects can represent integers of any size, limited only by available memory.

288 | Chapter 9: Programming in Toyland

www.it-ebooks.info

http://www.it-ebooks.info/

 if [self, other_sign].include?(ZERO)
 ZERO
 elsif self == other_sign
 POSITIVE
 else
 NEGATIVE
 end
 end
end

Instances of Sign can now be “multiplied” together just like numbers, and our imple-
mentation of Sign#* produces answers that are consistent with multiplication of actual
numbers:

>> Sign::POSITIVE * Sign::POSITIVE
=> #<Sign positive>
>> Sign::NEGATIVE * Sign::ZERO
=> #<Sign zero>
>> Sign::POSITIVE * Sign::NEGATIVE
=> #<Sign negative>

For example, the last line above asks the question: what do we get when we multiply
any positive number by any negative number? The answer comes back: a negative
number. This is still a kind of multiplication, but it’s much simpler than the kind we’re
used to, and it only works on “numbers” that have had almost all of their identifying
information removed. If we’re still imagining that real multiplication is expensive, this
seems like a cut-down version of multiplication that could be considered cheap.

Armed with our abstract world of numbers and an abstract interpretation of multipli-
cation for those numbers, we can tackle the original problem in a different way. Rather
than multiplying two numbers directly to find out the sign of their result, we can convert
the numbers into their abstract counterparts and multiply those instead. First we need
a way to convert concrete numbers into abstract ones:

class Numeric
 def sign
 if self < 0
 Sign::NEGATIVE
 elsif zero?
 Sign::ZERO
 else
 Sign::POSITIVE
 end
 end
end

Now we can convert two numbers and do the multiplication in the abstract world:

>> 6.sign
=> #<Sign positive>
>> -9.sign
=> #<Sign negative>
>> 6.sign * -9.sign
=> #<Sign negative>

Abstract Interpretation | 289

www.it-ebooks.info

http://www.it-ebooks.info/

Again we’ve calculated that 6 * -9 produces a negative number, but this time we’ve
done it without any multiplication of actual numbers. Stepping up into the abstract
world gives us an alternative way of performing the computation, and crucially, the
abstract result can be translated back down into the concrete world so we can make
sense of it, although we can only get an approximate concrete answer because of the
detail we sacrificed in making the abstraction. In this case, the abstract result Sign::NEG
ATIVE tells us that any of the concrete numbers -1, -2, -3, etc., might be the answer to
6 * -9, but that the answer is definitely not 0 or any positive number like 1 or 500.

Note that, because Ruby values are objects—data structures that carry their operations
with them—we can use the same Ruby expression to perform either a concrete or an
abstract computation depending on whether we provide concrete (Fixnum) or abstract
(Sign) objects as arguments. Take a #calculate method that multiplies three numbers
in a particular way:

def calculate(x, y, z)
 (x * y) * (x * z)
end

If we call #calculate with Fixnum objects, the calculation will be done by Fixnum#* and
we’ll get a concrete Fixnum result. If we call it with Sign instances instead, the Sign#*
operation will be used and produce a Sign result.

>> calculate(3, -5, 0)
=> 0
>> calculate(Sign::POSITIVE, Sign::NEGATIVE, Sign::ZERO)
=> #<Sign zero>

This gives us a limited opportunity to perform abstract interpretation within real Ruby
programs by replacing concrete arguments with their abstract counterparts and run-
ning the rest of the code without modification.

This technique is reminiscent of the way that test doubles (e.g., stubs and
mocks) are used in automated unit testing. Test doubles are special
placeholder objects that get injected into code as a way to control and
verify its behavior. They’re useful in any situation where using more
realistic objects as test data would be too inconvenient or expensive.

Safety and Approximation: Adding Signs
So far we’ve seen that a computation in the abstract world will produce less precise
results than its concrete counterpart, because an abstraction throws away detail: a route
we plan on a map will tell us which way to turn but not which lane to drive in, and a
multiplication between two Sign objects will tell us which side of zero the answer lies
on but not its actual value.

A lot of the time, it’s fine for a result to be imprecise, but for an abstraction to be useful,
it’s important that this imprecision is safe. Safety means that the abstraction always

290 | Chapter 9: Programming in Toyland

www.it-ebooks.info

http://www.it-ebooks.info/

tells the truth: the result of an abstract computation must agree with the result of its
concrete counterpart. If not, the abstraction is giving us unreliable information and is
probably worse than useless.

Our Sign abstraction is safe because converting numbers into Signs and multiplying
them together always gives us the same result as calculating with the numbers them-
selves and just converting the final result into a Sign:

>> (6 * -9).sign == (6.sign * -9.sign)
=> true
>> (100 * 0).sign == (100.sign * 0.sign)
=> true
>> calculate(1, -2, -3).sign == calculate(1.sign, -2.sign, -3.sign)
=> true

In this respect, our Sign abstraction is actually quite precise. It retains exactly the right
amount of information and preserves it perfectly throughout abstract computations.
The safety issue becomes more significant when the abstraction doesn’t match up quite
so perfectly with the computations we want to perform, as we can see by experimenting
with abstract addition.

There are some rules about how the signs of two numbers can determine the sign of the
number we get when we add them together, but they don’t work for all possible com-
binations of signs. We know that the sum of two positive numbers must be positive,
and that the sum of a negative number and zero must be negative, but what about when
we add a negative and a positive number? In that case, the sign of the result depends
on the relationship between the two numbers’ absolute values: if the positive number
has a larger absolute value than the negative number, we’ll get a positive answer (−20
+ 30 = 10), if the negative number’s absolute value is larger, then we’ll get a negative
answer (−30 + 20 = −10), and if they are exactly equal, we’ll get zero. But of course the
absolute value of each number is precisely the information that our abstraction has
discarded, so we can’t make this sort of decision in the abstract world.

This is a problem for our abstraction because it’s too abstract to be able to compute
addition accurately in every situation. How do we handle this? We could botch the
definition of abstract addition just to get it to return some result—return Sign::ZERO,
say, whenever we don’t know what the right answer is—but that would be unsafe,
because it would mean the abstract computation was giving an answer that might ac-
tively disagree with the one we’d get by doing the concrete computation instead.

The solution is to expand the abstraction to accommodate this uncertainty. Just as we
have Sign values that mean “any positive number” and “any negative number,” we can
introduce a new one that simply means “any number.” This is really the only honest
answer that we can give when we’re asked a question that we don’t have enough detail
to answer: the result could be negative, zero, or positive, no guarantees either way. Let’s
call this new value Sign::UNKNOWN:

Abstract Interpretation | 291

www.it-ebooks.info

http://www.it-ebooks.info/

class Sign
 UNKNOWN = new(:unknown)
end

This gives us what we need to implement abstract addition safely. The rules for calcu-
lating the sign of the sum of two numbers x and y are:

• If x and y have the same sign (both positive, both negative, or both zero), then that’s
also the sign of their sum.

• If x is zero, their sum has the same sign as y, and vice versa.

• Otherwise, the sign of their sum is unknown.

We can turn that into an implementation of Sign#+ easily enough:

class Sign
 def +(other_sign)
 if self == other_sign || other_sign == ZERO
 self
 elsif self == ZERO
 other_sign
 else
 UNKNOWN
 end
 end
end

This gives us the behavior we want:

>> Sign::POSITIVE + Sign::POSITIVE
=> #<Sign positive>
>> Sign::NEGATIVE + Sign::ZERO
=> #<Sign negative>
>> Sign::NEGATIVE + Sign::POSITIVE
=> #<Sign unknown>

In fact, this implementation happens to do the right thing when the sign of one of the
inputs is unknown:

>> Sign::POSITIVE + Sign::UNKNOWN
=> #<Sign unknown>
>> Sign::UNKNOWN + Sign::ZERO
=> #<Sign unknown>
>> Sign::POSITIVE + Sign::NEGATIVE + Sign::NEGATIVE
=> #<Sign unknown>

We do need to go back and fix up our implementation of Sign#*, though, so that it
handles Sign::UNKNOWN correctly:

class Sign
 def *(other_sign)
 if [self, other_sign].include?(ZERO)
 ZERO
 elsif [self, other_sign].include?(UNKNOWN)
 UNKNOWN
 elsif self == other_sign
 POSITIVE

292 | Chapter 9: Programming in Toyland

www.it-ebooks.info

http://www.it-ebooks.info/

 else
 NEGATIVE
 end
 end
end

This gives us two abstract operations to play around with. Notice that Sign::UNKNOWN
isn’t totally contagious; even an unknown number multiplied by zero is still zero, so
any uncertainty that creeps in partway through a computation may get swallowed up
by the time it finishes:

>> (Sign::POSITIVE + Sign::NEGATIVE) * Sign::ZERO + Sign::POSITIVE
=> #<Sign positive>

We also need to adjust our idea of correctness to deal with the imprecision introduced
by Sign::UNKNOWN. Because our abstraction sometimes doesn’t have enough information
to give a precise answer, it’s no longer true that the abstract and concrete versions of a
computation always give exactly matching results:

>> (10 + 3).sign == (10.sign + 3.sign)
=> true
>> (-5 + 0).sign == (-5.sign + 0.sign)
=> true
>> (6 + -9).sign == (6.sign + -9.sign)
=> false
>> (6 + -9).sign
=> #<Sign negative>
>> 6.sign + -9.sign
=> #<Sign unknown>

So what’s going on here? Is our abstraction still safe? Well, yes, because in the cases
where it loses precision and returns Sign::UNKNOWN, the abstract computation is still
telling us something true: “the result is a negative number, zero, or a positive number.”
It’s not as useful as the answer we can get by doing the concrete computation, but it’s
not wrong, and it’s as good as we’re going to get without adding more information to
our abstract values and making abstract computations more complex.

We can express this in code by having a better way of comparing Signs than #==, which
is now too unforgiving for the safety check. What we want to know is: does the result
of the concrete computation fall within the result predicted by the abstract one? If the
abstract computation says that a few different results are possible, does the concrete
computation actually produce one of those results, or something else entirely?

Let’s define an operation on Signs that can tell us whether two abstract values relate to
each other in this way. Since what we’re testing is whether one Sign value “fits inside”
another, let’s make it the #<= method:

class Sign
 def <=(other_sign)
 self == other_sign || other_sign == UNKNOWN
 end
end

Abstract Interpretation | 293

www.it-ebooks.info

http://www.it-ebooks.info/

This gives us the test we want:

>> Sign::POSITIVE <= Sign::POSITIVE
=> true
>> Sign::POSITIVE <= Sign::UNKNOWN
=> true
>> Sign::POSITIVE <= Sign::NEGATIVE
=> false

Now we can check for safety by seeing whether each concrete computation’s result falls
within the abstract computation’s prediction:

>> (6 * -9).sign <= (6.sign * -9.sign)
=> true
>> (-5 + 0).sign <= (-5.sign + 0.sign)
=> true
>> (6 + -9).sign <= (6.sign + -9.sign)
=> true

This safety property holds for any computation involving addition and multiplication,
because we’ve designed an abstraction that falls back to a safe approximation when it
can’t give a precise answer.

Incidentally, having access to this abstraction lets us do simple analysis of Ruby code
that adds and multiplies numbers. As an example, here’s a method that sums the
squares of its arguments:

def sum_of_squares(x, y)
 (x * x) + (y * y)
end

If we want to automatically analyze this method to learn something about how it be-
haves, we have a choice: we can treat it as a black box and run it for all possible argu-
ments, which would take forever, or we can inspect its source code and try to use
mathematical reasoning to deduce some of its properties, which is complicated. (And,
in the general case, doomed to failure because of Rice’s theorem.) Abstract interpreta-
tion gives us the third option of calling the method with abstract values to see what
outputs are produced by an abstract version of the computation, and it’s practical to
do this for all possible inputs, because there are only a small number of potential com-
binations of abstract values.

Each of the arguments x and y can be a negative, zero, or positive number, so let’s see
what the possible outputs can be:

>> inputs = Sign::NEGATIVE, Sign::ZERO, Sign::POSITIVE
=> [#<Sign negative>, #<Sign zero>, #<Sign positive>]
>> outputs = inputs.product(inputs).map { |x, y| sum_of_squares(x, y) }
=> [
 #<Sign positive>, #<Sign positive>, #<Sign positive>,
 #<Sign positive>, #<Sign zero>, #<Sign positive>,
 #<Sign positive>, #<Sign positive>, #<Sign positive>
]
>> outputs.uniq
=> [#<Sign positive>, #<Sign zero>]

294 | Chapter 9: Programming in Toyland

www.it-ebooks.info

http://www.it-ebooks.info/

Without having done any clever analysis, this tells us that #sum_of_squares can only
produce zero or positive numbers, never negative numbers—a fairly boring property
that’s obvious to an educated human reading the source code, but not something that
would be immediately evident to a machine. Of course, this kind of trick only works
for very simple code, but despite being a toy, it shows how abstraction can make a
difficult problem more tractable.

Static Semantics
So far we’ve seen toy examples of how to discover approximate information about
computations without actually performing them. We could learn more by doing those
computations for real, but approximate information is better than nothing, and for
some applications (like route planning), it might be all we really need.

In the multiplication and addition examples, we were able to turn a small program into
a simpler, more abstract version just by feeding it abstract values as input instead of
concrete numbers, but we can only get so far with this technique if we want to inves-
tigate larger and more elaborate programs. It’s easy to create values that supply their
own implementations of multiplication and addition, but Ruby doesn’t allow values
to control their own behavior more generally—when they’re used in an if statement,
for example—because it has hardcoded rules4 about how particular pieces of syntax
should work. Besides, we still have the problem that it’s not feasible in general to learn
about programs by running them and waiting for their output, because some programs
loop forever without returning a result.

Another downside of the multiplication and addition examples is that they’re not very
interesting: nobody cares about whether their program returns positive or negative
numbers. In practice, the interesting questions are ones like “will my program crash
when I run it?” and “can my program be transformed to make it more efficient?”

We can answer more interesting questions about programs by considering their static
semantics. In Chapter 2, we looked at the dynamic semantics of programming languages,
a way of specifying the meaning of code when it’s executed; a language’s static seman-
tics tells us about properties of programs that we can investigate without executing
them. The classic example of static semantics is a type system: a collection of rules that
can be used to analyze a program and check that it doesn’t contain certain kinds of
bug. In “Correctness” on page 41, we considered SIMPLE programs like «x = true; x =
x + 1», which are syntactically valid but cause a problem for the dynamic semantics
when they’re executed. A type system can anticipate these mistakes ahead of time,
allowing some bad programs to be automatically rejected before anyone tries to run
them.

4. Unlike, say, Smalltalk.

Static Semantics | 295

www.it-ebooks.info

http://www.it-ebooks.info/

Abstract interpretation gives us a way of thinking about the static semantics of a pro-
gram. Programs are meant to be run, so our standard interpretation of a program’s
meaning is the one given by its dynamic semantics: «x = 1 + 2; y = x * 3» is a program
that manipulates numbers by doing arithmetic on them and storing them somewhere
in memory. But if we have an alternative, more abstract semantics for the language, we
can “execute” the same program according to different rules, and get more abstract
results that give us partial information about what will happen when the program is
interpreted normally.

Implementation
Let’s make these ideas concrete by building a type system for the SIMPLE language from
Chapter 2. Superficially, this will look like a big-step operational semantics from “Big-
Step Semantics” on page 42: we’ll implement a method on each of the classes repre-
senting the syntax of SIMPLE programs (Number, Add, and so on), and calling the method
will return a final result. In the dynamic semantics, that method is called #evaluate,
and its result is either a fully evaluated SIMPLE value or an environment associating names
with SIMPLE values, depending on whether we evaluate an expression or a statement:

>> expression = Add.new(Variable.new(:x), Number.new(1))
=> «x + 1»
>> expression.evaluate({ x: Number.new(2) })
=> «3»
>> statement = Assign.new(:y, Number.new(3))
=> «y = 3»
>> statement.evaluate({ x: Number.new(1) })
=> {:x=>«1», :y=>«3»}

For our static semantics, we’ll implement a different method that does less work and
returns a more abstract result. Instead of concrete values and environments, our ab-
stract values will be types. A type represents many possible values: a SIMPLE expression
can evaluate to a number or a Boolean, so for expressions, our types will be “any num-
ber” and “any Boolean.” These types are similar to the Sign values we saw earlier,
especially Sign::UNKNOWN, which really does mean “any number.” As with Sign, we can
introduce types by defining a class called Type and creating some instances:

class Type < Struct.new(:name)
 NUMBER, BOOLEAN = [:number, :boolean].map { |name| new(name) }

 def inspect
 "#<Type #{name}>"
 end
end

Our new method will return a type, so let’s call it #type. It’s supposed to answer a
question: when this SIMPLE syntax is evaluated, what type of value will it return? This
is very easy to implement for SIMPLE’s Number and Boolean syntax classes, because num-
bers and Booleans evaluate to themselves, so we know exactly what type of value we’ll
get:

296 | Chapter 9: Programming in Toyland

www.it-ebooks.info

http://www.it-ebooks.info/

class Number
 def type
 Type::NUMBER
 end
end

class Boolean
 def type
 Type::BOOLEAN
 end
end

For operations like Add, Multiply, and LessThan, it’s slightly more complicated. We
know that evaluating Add returns a number, for example, but we also know that eval-
uation will only succeed if both arguments to Add also evaluate to a number, otherwise
the SIMPLE interpreter will fail with an error:

>> Add.new(Number.new(1), Number.new(2)).evaluate({})
=> «3»
>> Add.new(Number.new(1), Boolean.new(true)).evaluate({})
TypeError: true can't be coerced into Fixnum

How can we find out whether an argument will evaluate to a number? That’s what its
type tells us. So for Add, the rule is something like: if the type of both arguments is
Type::NUMBER, the type of the overall result is Type::NUMBER; otherwise, the result is no
type at all, because the evaluation of any expression that tries to add nonnumeric values
will fail before it can return anything. For simplicity, we’ll let the #type method return
nil to indicate this failure, although in other circumstances, we might have chosen to
raise an exception or return some special error value instead (Type::ERROR, for instance)
if that made the overall implementation more convenient.

The code for Add looks like this:

class Add
 def type
 if left.type == Type::NUMBER && right.type == Type::NUMBER
 Type::NUMBER
 end
 end
end

The implementation of Multiply#type is identical, and LessThan#type is very similar,
except that it returns Type::BOOLEAN instead of Type::NUMBER:

class LessThan
 def type
 if left.type == Type::NUMBER && right.type == Type::NUMBER
 Type::BOOLEAN
 end
 end
end

Static Semantics | 297

www.it-ebooks.info

http://www.it-ebooks.info/

On the console, we can see that this is enough to distinguish between expressions that
will evaluate successfully and those that won’t, even though the syntax of SIMPLE allows
both:

>> Add.new(Number.new(1), Number.new(2)).type
=> #<Type number>
>> Add.new(Number.new(1), Boolean.new(true)).type
=> nil
>> LessThan.new(Number.new(1), Number.new(2)).type
=> #<Type boolean>
>> LessThan.new(Number.new(1), Boolean.new(true)).type
=> nil

We’re assuming that the abstract syntax tree is at least syntactically
valid. The actual values stored at the leaves of the tree are ignored by
the static semantics, so #type might incorrectly predict the evaluation
behavior of a badly formed expression:

>> bad_expression = Add.new(Number.new(true), Number.new(1))
=> «true + 1»
>> bad_expression.type

=> #<Type number>
>> bad_expression.evaluate({})

NoMethodError: undefined method `+' for true:TrueClass

The high-level structure of this AST looks correct (an Add containing
two Numbers), but the first Number object is malformed, because its
value attribute is true instead of a Fixnum.

The static semantics assumes that adding two Numbers together will
always produce another Number, so #type says that evaluation will
succeed…

…but if we actually evaluate the expression, we get an exception
when Ruby tries to add 1 to true.

Badly formed expressions should never be produced by a SIMPLE parser,
so this is unlikely to be a problem in practice.

This is a more general version of the earlier trick with addition, multiplication, and
Sign. Even though we’re not doing any actual addition or comparison of numbers, the
static semantics gives us an alternative way of “executing” the program that still returns
a useful result.

Instead of interpreting the expression «1 + 2» as a program about values, we’re throwing
away some detail and interpreting it as a program about types, and the static semantics
provides the alternative interpretations of «1», «2», and «+», which let us run this pro-
gram-about-types to see what its result is. That result is less specific—more abstract—
than the one we’d get by running the program normally according to the dynamic
semantics, but it’s nonetheless a useful result, because we have a way of translating it
into something meaningful in the concrete world: Type::NUMBER means “calling #eval

298 | Chapter 9: Programming in Toyland

www.it-ebooks.info

http://www.it-ebooks.info/

uate on this expression will return a Number,” and nil means “calling #evaluate may
cause an error.”

We almost have the complete static semantics of SIMPLE expressions now, but we ha-
ven’t looked at variables. What should Variable#type return? It depends what value
the variable contains: in a program like «x = 5; y = x + 1» the variable y has the type
Type::NUMBER, but in «x = 5; y = x < 1» it has the type Type::BOOLEAN. How can we
handle this?

We saw in “Small-Step Semantics” on page 21 that the dynamic semantics of Vari
able uses an environment hash to map variable names onto their values, and the static
semantics needs something similar: a mapping from variable names onto types. We
could call this a “type environment,” but let’s use the name type context to avoid getting
the two kinds of environment mixed up. If we pass a type context into Variable#type,
all it has to do is look up that variable in the context:

class Variable
 def type(context)
 context[name]
 end
end

Where does this type context come from? For the moment, we’ll just
assume that it gets provided somehow, by some external mechanism,
whenever we need it. For example, perhaps each SIMPLE program has an
accompanying header file that declares the types of all the variables that
will be used; this file would have no effect when the program was run,
but could be used to automatically check it against the static semantics
during development.

Now that #type expects a context argument, we need to go back and revise the other
implementations of #type to accept a type context:

class Number
 def type(context)
 Type::NUMBER
 end
end

class Boolean
 def type(context)
 Type::BOOLEAN
 end
end

class Add
 def type(context)
 if left.type(context) == Type::NUMBER && right.type(context) == Type::NUMBER
 Type::NUMBER
 end
 end

Static Semantics | 299

www.it-ebooks.info

http://www.it-ebooks.info/

end

class LessThan
 def type(context)
 if left.type(context) == Type::NUMBER && right.type(context) == Type::NUMBER
 Type::BOOLEAN
 end
 end
end

This lets us ask for the type of expressions that involve variables, as long as we provide
a context that gives them the right types:

>> expression = Add.new(Variable.new(:x), Variable.new(:y))
=> «x + y»
>> expression.type({})
=> nil
>> expression.type({ x: Type::NUMBER, y: Type::NUMBER })
=> #<Type number>
>> expression.type({ x: Type::NUMBER, y: Type::BOOLEAN })
=> nil

That gives us implementations of #type for all forms of expression syntax, so what
about statements? Evaluating a SIMPLE statement returns an environment, not a value,
so how do we express that in the static semantics?

The easiest way to handle statements is to treat them as a kind of inert expression:
assume that they don’t return a value (which is true) and ignore the effect they have on
the environment. We can come up with a new type that means “doesn’t return a value”
and associate that type with any statement as long as all its subparts have the right
types. Let’s give this new type the name Type::VOID:

class Type
 VOID = new(:void)
end

Implementations of #type for DoNothing and Sequence are easy. Evaluation of DoNoth
ing will always succeed, and evaluation of Sequence will succeed as long as the state-
ments it’s connecting don’t have anything wrong with them:

class DoNothing
 def type(context)
 Type::VOID
 end
end

class Sequence
 def type(context)
 if first.type(context) == Type::VOID && second.type(context) == Type::VOID
 Type::VOID
 end
 end
end

300 | Chapter 9: Programming in Toyland

www.it-ebooks.info

http://www.it-ebooks.info/

If and While are slightly more discerning. They both contain an expression that acts as
a condition, and for the program to work properly, the condition has to evaluate to a
Boolean:

class If
 def type(context)
 if condition.type(context) == Type::BOOLEAN &&
 consequence.type(context) == Type::VOID &&
 alternative.type(context) == Type::VOID
 Type::VOID
 end
 end
end

class While
 def type(context)
 if condition.type(context) == Type::BOOLEAN && body.type(context) == Type::VOID
 Type::VOID
 end
 end
end

This lets us distinguish between a statement that will go wrong during evaluation and
one that won’t:

>> If.new(
 LessThan.new(Number.new(1), Number.new(2)), DoNothing.new, DoNothing.new
).type({})
=> #<Type void>
>> If.new(
 Add.new(Number.new(1), Number.new(2)), DoNothing.new, DoNothing.new
).type({})
=> nil
>> While.new(Variable.new(:x), DoNothing.new).type({ x: Type::BOOLEAN })
=> #<Type void>
>> While.new(Variable.new(:x), DoNothing.new).type({ x: Type::NUMBER })
=> nil

Type::VOID and nil have different meanings here. When #type returns
Type::VOID, that means “this code is fine but intentionally returns no
value”; nil means “this code contains a mistake.”

The only method left to implement is Assign#type. We know it should return
Type::VOID, but under what circumstances? How do we decide if an assignment is well-
behaved or not? We’ll want to check that the expression on the righthand side of the
assignment is sensible according to the static semantics, but do we care what type it is?

These questions lead us to make some design decisions about what should be consid-
ered valid SIMPLE programs. For example, is «x = 1; y = 2; x = x < y» okay? It’s
certainly fine according to the dynamic semantics—nothing bad happens when it’s
executed—but we might (or might not!) be uncomfortable with allowing programs

Static Semantics | 301

www.it-ebooks.info

http://www.it-ebooks.info/

where the variables change from holding one type of value to another during execution.
That kind of flexibility might be valuable to some programmers, but for others, it could
act as a source of accidental errors.

From the perspective of someone designing the static semantics, it’s also more difficult
to handle a language where variables can change their types. At the moment, we’re
assuming that the type context arrives from some external source and remains un-
changed throughout the program, but we could opt for a more sophisticated system
where the context is empty at the beginning of the program and gradually builds up as
variables are declared or assigned, in the same way that the dynamic semantics grad-
ually builds up the value environment as the program executes. But this gets compli-
cated: if statements could modify the type context, then we’d need the #type method
to return both a type and a context, in the same way that the dynamic semantics’
#reduce method returns a reduced program and an environment, so that an earlier
statement can pass an updated context to a later one. We’d also have to deal with
situations like «if (b) { x = 1 } else { y = 2 }» where different execution paths
produce different type contexts, as well as ones like «if (b) { x = 1 } else { x =
true }» where those different contexts actively contradict each other.5

Fundamentally, there is a tension between the restrictiveness of a type system and the
expressiveness of the programs we can write within it. A restrictive type system can be
good, because it provides strong guarantees that rule out lots of possible errors, but it’s
bad when it prevents us from writing the programs we want to write. A good type
system finds an acceptable compromise between restrictiveness and expressiveness,
ruling out enough problems to be worthwhile without getting in the way, while being
simple enough for programmers to understand.

We’ll resolve this tension by sticking with the uncomplicated idea of a type context
that’s provided by something outside the program itself and doesn’t get updated by
individual statements. This does rule out certain kinds of program, and definitely avoids
the problem of how and where this type context originates, but it keeps the static
semantics simple and gives us a rule we can easily work with.

For assignment statements, then, let’s say that the type of the expression should match
the type of the variable to which its value is being assigned:

class Assign
 def type(context)
 if context[name] == expression.type(context)
 Type::VOID
 end
 end
end

5. An easy solution would be to say that the type system rejects a statement unless all of its execution paths
produce the same context.

302 | Chapter 9: Programming in Toyland

www.it-ebooks.info

http://www.it-ebooks.info/

This rule is good enough for all programs where we can decide the type of each variable
upfront and have it stay the same, which is a tolerable constraint. For example, we can
check the While loop whose dynamic semantics we implemented in Chapter 2:

>> statement =
 While.new(
 LessThan.new(Variable.new(:x), Number.new(5)),
 Assign.new(:x, Add.new(Variable.new(:x), Number.new(3)))
)
=> «while (x < 5) { x = x + 3 }»
>> statement.type({})
=> nil
>> statement.type({ x: Type::NUMBER })
=> #<Type void>
>> statement.type({ x: Type::BOOLEAN })
=> nil

Benefits and Limitations
The type system we’ve built can prevent basic errors. By running a toy version of a
program according to these static semantics, we can find out what types of value can
appear at each point in the original program, and check that these types match up
correctly with what the dynamic semantics is going to try to do when we run it. The
simplicity of this toy interpretation means that we get only limited information about
what might happen when the program is evaluated, but it also means that we can do
our checking easily and without complications. For example, we can check a program
that runs forever:

>> statement =
 Sequence.new(
 Assign.new(:x, Number.new(0)),
 While.new(
 Boolean.new(true),
 Assign.new(:x, Add.new(Variable.new(:x), Number.new(1)))
)
)
=> «x = 0; while (true) { x = x + 1 }»
>> statement.type({ x: Type::NUMBER })
=> #<Type void>
>> statement.evaluate({})
SystemStackError: stack level too deep

That program is definitely stupid, but it doesn’t contain any type errors: the loop con-
dition is a Boolean, and the variable x is consistently used to store a number. Of course,
the type system isn’t clever enough to tell us whether a program is doing what we meant
it to do, or even doing anything useful at all, only whether its parts match up in the
right way. And because it needs to be safe, just like our Sign abstraction, it will some-
times give us an overly pessimistic answer about whether a program contains any errors.
We can see this if we extend the above program with an extra statement:

Static Semantics | 303

www.it-ebooks.info

http://www.it-ebooks.info/

>> statement = Sequence.new(statement, Assign.new(:x, Boolean.new(true)))
=> «x = 0; while (true) { x = x + 1 }; x = true»
>> statement.type({ x: Type::NUMBER })
=> nil

The #type method returns nil to indicate an error because there’s a statement that
assigns a Boolean value to x, but there’s no way this could actually cause a problem at
runtime, because this statement will never get executed. Our type system isn’t clever
enough to spot this, but it gives us a safe answer, “this program might go wrong,” which
is overly cautious but not incorrect. Something in the program tries to assign a Boolean
value to a numeric variable, so part of it has the potential to go wrong, but for other
reasons it never actually will.

It’s not just infinite loops that cause problems. The dynamic semantics has no problem
with a program like this:

>> statement =
 Sequence.new(
 If.new(
 Variable.new(:b),
 Assign.new(:x, Number.new(6)),
 Assign.new(:x, Boolean.new(true))
),
 Sequence.new(
 If.new(
 Variable.new(:b),
 Assign.new(:y, Variable.new(:x)),
 Assign.new(:y, Number.new(1))
),
 Assign.new(:z, Add.new(Variable.new(:y), Number.new(1)))
)
)
=> «if (b) { x = 6 } else { x = true }; if (b) { y = x } else { y = 1 }; z = y + 1»
>> statement.evaluate({ b: Boolean.new(true) })
=> {:b=>«true», :x=>«6», :y=>«6», :z=>«7»}
>> statement.evaluate({ b: Boolean.new(false) })
=> {:b=>«false», :x=>«true», :y=>«1», :z=>«2»}

The variable x is used to store a number or a Boolean depending on whether b is true
or false, which is never a problem during evaluation, because the program consistently
uses either one or the other; there’s no possible execution path where x is treated as
both a number and a Boolean. But the abstract values used by the static semantics don’t
have enough detail to be able to show that this is okay,6 so the safe approximation is
to always say “this program might go wrong”:

>> statement.type({})
=> nil
>> context = { b: Type::BOOLEAN, y: Type::NUMBER, z: Type::NUMBER }
=> {:b=>#<Type boolean>, :y=>#<Type number>, :z=>#<Type number>}

6. In this case, the detail is that the type of x depends upon the value of b. Our types don’t contain any
information about the specific values of variables, and they can’t express dependencies between types
and values.

304 | Chapter 9: Programming in Toyland

www.it-ebooks.info

http://www.it-ebooks.info/

>> statement.type(context)
=> nil
>> statement.type(context.merge({ x: Type::NUMBER }))
=> nil
>> statement.type(context.merge({ x: Type::BOOLEAN }))
=> nil

This is a static type system, designed for checking the program before
it’s run; in a statically typed language, each variable has an associated
type. Ruby’s dynamic type system works differently: variables don’t have
types, and the types of values are only checked when they’re actually
used during the execution of a program. This allows Ruby to handle
values of different types being assigned to the same variable, at the cost
of not being able to detect typing bugs before the program is executed.

This system is focused on programs going wrong in a specific way: the dynamic se-
mantics of each piece of syntax has certain expectations about what types of values it
will be handling, and the type system checks those expectations to make sure that a
number won’t show up where a Boolean is expected and vice versa. But there are other
ways for a program to go wrong, and this static semantics doesn’t check for them. For
example, the type system pays no attention to whether a variable has actually been
given a value before it’s used, so any program containing uninitialized variables will
pass the type checker and still fail during evaluation:

>> statement = Assign.new(:x, Add.new(Variable.new(:x), Number.new(1)))
=> «x = x + 1»
>> statement.type({ x: Type::NUMBER })
=> #<Type void>
>> statement.evaluate({})
NoMethodError: undefined method `value' for nil:NilClass

Any information we get from the type system has to be taken with a pinch of salt, and
we have to pay attention to its limitations when deciding how much faith to put in it.
A successful execution of a program’s static semantics doesn’t mean “this program will
definitely work,” only “this program definitely won’t fail in a particular way.” It would
be great to have an automated system that can tell us that a program is free of any
conceivable kind of bug or error, but as we saw in Chapter 8, the universe just isn’t that
convenient.

Applications
This chapter has sketched the basic idea of abstract interpretation—using cheap ap-
proximations to learn about the behavior of expensive computations—and showed a
simple type system as an example of how approximations can be useful for analyzing
programs.

Applications | 305

www.it-ebooks.info

http://www.it-ebooks.info/

Our discussion of abstract interpretation was very informal. Formally, abstract inter-
pretation is a mathematical technique where different semantics for the same language
are connected together by functions that convert collections of concrete values into
abstract ones and vice versa, allowing the results and properties of abstract programs
to be understood in terms of concrete ones.

A notable industrial application of this technique is the Astrée static analyzer, which
uses abstract interpretation to automatically prove that a C program is free of runtime
errors like division by zero, out-of-bounds array indexing, and integer overflow. Astrée
has been used to verify the flight control software of Airbus A340 and A380 airplanes,
as well as the automatic docking software for the Jules Verne ATV-001 mission that
transported supplies to the International Space Station. Abstract interpretation respects
Rice’s theorem by providing safe approximations rather than guaranteed answers, so
Astrée has the potential to report a possible runtime error where none actually exists
(a false alarm); in practice, its abstractions were precise enough to avoid any false alarms
when verifying the A340 software.

Programs written in the SIMPLE language can only manipulate rudimentary values—
numbers and Booleans—so the types seen in this chapter are very basic. Real program-
ming languages handle a wider variety of possible values, so real static type systems are
more sophisticated. For example, statically typed functional programming languages
like ML and Haskell have values that are functions (like Ruby’s procs), so their type
systems support function types with meanings like “a function that takes two numeric
arguments and returns a Boolean,” allowing the type checker to verify that the argu-
ments used in a function call match up with that function’s definition.

Type systems can carry other information too: Java has a type and effect system that
tracks not only the types of methods’ arguments and return values but also which
checked exceptions can be thrown by the body of the method (throwing an exception
is an effect), which is used to ensure that all possible exceptions are either handled or
explicitly propagated.

306 | Chapter 9: Programming in Toyland

www.it-ebooks.info

http://www.astree.ens.fr/
http://www.it-ebooks.info/

Afterword

Well, that’s the end of our journey through the theory of computation. We’ve designed
languages and machines with various capabilities, teased computation out of unusual
systems, and crashed headlong into the theoretical limits of computer programming.

Aside from exploring specific machines and techniques, we’ve seen some more general
ideas along the way:

• Anyone can design and implement a programming language. The basic ideas of
syntax and semantics are simple, and tools like Treetop can take care of the unin-
teresting details.

• Every computer program is a mathematical object. Syntactically a program is just
a large number; semantically it can represent a mathematical function, or a hier-
archical structure which can be manipulated by formal reduction rules. This means
that many techniques and results from mathematics, like Kleene’s recursion the-
orem or Gödel’s incompleteness theorem, can equally be applied to programs.

• Computation, which we initially described as just “what a computer does,” has
turned out to be something of a force of nature. It’s tempting to think of compu-
tation as a sophisticated human invention that can only be performed by specially-
designed systems with many complicated parts, but it also shows up in systems
that don’t seem complex enough to support it. So computation isn’t a sterile, ar-
tificial process that only happens inside a microprocessor, but rather a pervasive
phenomenon that crops up in many different places and in many different ways.

• Computation is not all-or-nothing. Different machines have different amounts of
computational power, giving us a continuum of usefulness: DFAs and NFAs have
limited capabilities, DPDAs are more powerful, NPDAs more powerful still, and
Turing machines are the most powerful we know of.

• Encodings and levels of abstraction are essential to harnessing the power of com-
putation. Computers are machines for maintaining a tower of abstractions, begin-
ning at the very low level of semiconductor physics and rising to the much higher
level of multitouch graphical user interfaces. To make computation useful, we need

307

www.it-ebooks.info

http://www.it-ebooks.info/

to be able to encode complex ideas from the real world in a simpler form that
machines can manipulate, and then be able to decode the results back into a mean-
ingful high-level representation.

• There are limits to what computation can do. We don’t know how to build a
computer that is fundamentally more capable than a Turing machine, but there
are well-defined problems that a Turing machine can’t solve, and a lot of those
problems involve discovering information about the programs we write. We can
cope with these limitations by learning to make use of vague or incomplete answers
to questions about our programs’ behavior.

These ideas may not immediately change the way you work, but I hope they’ve satisfied
some of your curiosity, and that they’ll help you to enjoy the time you spend making
computation happen in the universe.

308 | Afterword

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols
* operator, 9, 83
. (dot), 3, 5
: (colon), 2
=> prompt, 1
>> prompt, 1
[] (square brackets), 3, 4
{ } (curly brackets), 3, 9

A
absolute value, 288
abstract interpretation

about, 286
adding signs, 290–295
applications, 305
multiplying signs, 287–290
route planning, 286

abstract machines, 20
abstract syntax tree (AST)

about, 19
building by hand, 23
reduction relation, 22

accept states, 65, 74, 90
Adams, Douglas, 260
algorithms, 254–257
Analytical Engine, 57
applications

abstract interpretation, 305
big-step semantics, 47
denotational semantics, 54
small-step semantics, 42

arguments
blocks of code and, 10
messages and, 5

passing to methods, 31
procs and, 163
variable number of, 9

Array class
#<< method, 58
about, 10
#push method, 185

assignment statements, 33
assignments

local variables and, 7
parallel, 8, 9

AST (abstract syntax tree)
about, 19
building by hand, 23
reduction relation, 22

Astrée static analyzer, 306
axiomatic semantics, 57

B
Babbage, Charles, 57
balanced brackets example, 105–108
big-step semantics

about, 42
applications, 47
comparing styles, 54
expressions, 43–44
statements, 45–47

Bignum object, 288
binary representation, 157
blocks of code

about, 9
arguments and, 10

Booleans in FizzBuzz example, 169–172
Brzozowski’s algorithm, 102

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

309

www.it-ebooks.info

http://www.it-ebooks.info/

C
call stacks, 47, 108
case expression, 4, 26
CFG (context-free grammar), 270
Chapman, Paul, 246
Chomsky normal form, 270
Church encoding, 167
Church numerals, 167
Church, Alonzo, 167
Church–Turing thesis, 256, 270
classes

constants and, 13
inheritance and, 6
instances and, 6, 23
methods and, 6, 7, 12

colon (:), 2
combinators (SKI combinator calculus), 216–

227
comma-separated values, 3
compilers, denotational semantics and, 55
computational irreducibility, 281
computing machines

about, 63
abstract, 20
computing power, 105–108, 133, 148–154
deterministic finite automata, 63–69
deterministic pushdown automaton, 108–

118
equivalence, 94–102
general-purpose, 154–158, 259
nondeterministic finite automata, 69–79
nondeterministic pushdown automaton,

118–125
nondeterministic Turing machines, 147
parsing with PDA, 125–132
regular expressions, 79–94
virtual, 29

computing power (see power (computing))
concatenating

regular expressions, 85
strings, 52, 83

conditional statements
about, 36
Booleans and, 169–172

constants
about, 13
classes and, 13
defining, 13
lambda calculus and, 162

removing, 13
context-free grammar (CFG), 270
control flow in Ruby, 4
converting

NFA to DFA, 94–102
NFA to regular expressions, 107

Conway, John, 245–247
Cook, Matthew, 234
correctness, small-step semantics, 41
curly brackets { }, 3, 9
current object, 5
cyclic tag systems, 235–245

D
data structures

comma-separated values, 3
hashes, 3
pairs, 173
range of values, 3
square brackets for, 3

decision problems, 269–270
def keyword, 5
denotational semantics

about, 48
applications, 54
comparing styles, 54
compilers and, 55
expressions, 49–52
statements, 52–53

determinism
deterministic finite automata, 66
deterministic pushdown automaton, 111
deterministic Turing machines, 141

deterministic finite automata (see DFA)
deterministic pushdown automaton (see

DPDA)
deterministic Turing machines (see DTM)
DFA (deterministic finite automata)

about, 63
converting from NFA, 94–102
determinism, 66
input, 64
mimization, 102
output, 64–66
processor, 65
rules, 64
simulation, 66
states, 63
storage, 65

310 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

Turing machines and, 155
domain theory, 56
dot (.), 3, 5
DPDA (deterministic pushdown automaton)

about, 109
determinism, 111
rules, 110
simulation, 112–118
storage, 108

DTM (deterministic Turing machines)
about, 135
determinism, 141
rules, 138
storage, 136–137

dynamic semantics, 41, 295

E
encoding

about, 156
Church, 167

Enumerable module
about, 10
#detect method, 67, 194
#first method, 194
#flat_map method, 11
#inject method, 183
#map method, 194
#select method, 194
#take method, 194

Enumerator class, 194
Enumerator::Lazy class, 194
equality method (#==), 12
equality, extensional, 164
Euclid’s algorithm, 254–257
expressions

about, 23
big-step semantics, 43–44
denotational semantics, 49–52
reducing, 202–204, 216
regular, 79–94
replacing variables in, 199–200
SKI combinator calculus and, 215
small-step semantics, 23–32

extensional equality, 164
external memory (see TM)

F
Faber and Faber publisher, 275

finite automata
deterministic, 63–69
nondeterministic, 69–79
regular expressions, 79–94
structural overview, 64

finite state machines (see DFA)
fixed-point semantics (see denotational

semantics)
FizzBuzz program

about, 165
avoiding arbitrary recursion, 195–196
implementing Booleans, 169–172
implementing lambda calculus, 197–205
implementing lists, 180–184
implementing numbers, 166–169
implementing numeric operations, 174–

180
implementing pairs, 173
implementing predicates, 172
implementing strings, 184
infinite streams, 192–193
problem, 165
solution, 186–191

formal semantics
about, 18, 55
finding meaning, 56
formality, 55

free moves feature, 76–79
function calls, 201

G
Game of Life, 245–247
GCC compiler, 284
general-purpose machines

about, 154–156
encoding, 156
simulation, 157
universality of, 259

generalized nondeterministic finite automaton
(GNFA), 107

Ghory, Imran, 165
GNFA (generalized nondeterministic finite

automaton), 107
Gödel’s first incompleteness theorem, 282
Goldbach conjecture, 275
Goldbach, Christian, 275
greatest common divisor, 254
guillemets, 24

Index | 311

www.it-ebooks.info

http://www.it-ebooks.info/

H
halting problem, 271–277
Hash class

about, 10
#merge method, 34

hashes, 3
Hofstadter, Douglas, 268

I
if expression, 4, 36
inference rules

formal semantics in practice, 56
Simple example, 22

infinite loops, 116, 178, 259–264
infinite streams, 192–193
inheritance, 6
input

deterministic finite automata, 64
nondeterministic finite automata, 71

inspecting objects, 8
instances

classes and, 6, 23
methods and, 6
virtual machines, 29

Integer#gcd method, 255
Interactive Ruby Shell (IRB), 1
interpreters, operational semantics and, 48, 56
IRB (Interactive Ruby Shell), 1
ISO/IEC 30170 standard, 18

K
Kernel module

#eval method, 50
#puts method, 258

key-value pairs, 3

L
lambda calculus

about, 162
avoiding arbitrary recursion, 195–196
constants and, 162
FizzBuzz problem, 164
FizzBuzz solution, 186–191
impersonating, 162
implementing, 197–205
implementing Booleans, 169–172
implementing lists, 180–184

implementing numbers, 166–169
implementing numeric operations, 174–

180
implementing pairs, 173
implementing predicates, 172
implementing strings, 184
infinite streams, 192–193
parsing, 204–205
procs and, 163–164
semantics, 199–204
SKI combinator calculus and, 215–227
syntax, 197–199
Turing machines and, 207–210

Lee, Bruce, 17
lexical analysis

about, 125
parsing with PDA, 126–127

Lisp programming languages, 258
lists

in FizzBuzz example, 180–184
infinite streams, 192–193

local variables, 7
lookahead technique, 132
looping constructs

big-step semantics, 45, 54
denotational semantics, 53, 54
infinite loops, 116, 178, 259–264
small-step semantics, 39, 54

Lovecraft, H. P., 253

M
machines (see computing machines)
main object, 6
mathematical semantics (see denotational

semantics)
Matz’s Ruby Interpreter (MRI), 18, 47
meaning

finding, 56
meaning of, 18

&:message shorthand, 11
messages

arguments and, 5
components of, 5
methods and, 5
objects and, 5
Ruby shorthand, 11

metalanguage, 21, 28
methods

classes and, 6, 7, 12

312 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

defining, 5
inheritance and, 6
instances and, 6
messages and, 5
modules and, 7, 12
objects and, 5
passing arguments to, 31
private, 14
return constraints, 35
variadic, 9

ML programming language, 48
modules

constants and, 13
methods and, 7, 12

modulo operator, 174
monkey patching, 12
MRI (Matz’s Ruby Interpreter), 18, 47
mruby project, 18

N
natural semantics (see big-step semantics)
nested strings, 107
nesting levels in balanced brackets example,

105–108
NFA (nondeterministic finite automata)

about, 69
balanced bracket example, 106–108
converting to DFA, 94–102
converting to regular expressions, 107
free moves feature, 76–79
input, 71
nondeterminism, 70–76
regular expressions and, 83–91
rules, 70
simulation, 72
states, 71, 84
storage, 73

nondeterminism, 70–76
nondeterministic finite automata (see NFA)
nondeterministic pushdown automaton (see

NPDA)
nondeterministic Turing machines, 147
nonequivalence, NPDA and, 125
NPDA (nondeterministic pushdown

automaton)
about, 118–122
nonequivalence, 125
palindrome recognition example, 120–122
simulation, 122–124

numbers
absolute values, 288
in FizzBuzz example, 166–169

numeric operations in FizzBuzz example, 174–
180

O
Object object

#inspect method, 8
new method, 5
send method, 14
#to_s method, 8

objects
current object, 5
inspecting, 8
messages and, 5
methods and, 5
string interpolation, 8
values and, 5

OCaml programming language, 42, 48
operational semantics

about, 20
big-step semantics, 42–48, 54
interpreters and, 48, 56
Simple programming language example, 25
small-step semantics, 21–42, 54

operator precedence, 24
output, deterministic finite automata, 64–66

P
pairs in FizzBuzz example, 173
palindrome recognition example, 120–122
parallel assignment, 8, 9
parsers and parsing process

about, 19, 125
implementing, 58–62
lambda calculus, 204–205
lexical analysis, 126–127
lookahead technique, 132
regular expressions, 92–94
syntactic analysis, 128–132
syntax and, 19

parsing expression grammar (PEG), 58
partial programming languages, 264
partial recursive functions, 210–215
PDA (pushdown automaton)

about, 109
deterministic, 108–118

Index | 313

www.it-ebooks.info

http://www.it-ebooks.info/

nondeterministic, 118–125
parsing with, 125–132

PEG (parsing expression grammar), 58
PLT Redex programming language, 42
power (computing)

about, 105–108, 133
deterministic pushdown automata, 108–

118
nondeterministic pushdown automata,

118–125
parsing with PDA, 125–132
Turing machines, 148–154

predicates in FizzBuzz example, 172
primitive recursive functions, 213
printing

procs and, 165
strings, 8

private methods, 14
procs, 163

(see also FizzBuzz program)
about, 3, 163
arguments and, 163
calling, 4
extensional equality, 164
implementing numbers, 166–169
lambda calculus and, 163
printing and, 165
reducing, 42
syntax for, 164

programming languages
about, 17
abstract machines and, 20
denotational semantics, 48–55
dynamic semantics, 41, 295
essentials for specifying, 18
formal semantics, 55–58
meaning of, 18
metalanguage and, 28
operational semantics, 20–48
parsing with PDA, 125
partial, 264
semantics of, 18
syntax of, 18, 19
total, 264, 280

programs
about, 17, 19
abstract machines and, 20
denotational semantics, 48–55
formal semantics, 55–58

meaning of, 18
operational semantics, 20–48
parser, 19, 58–62
predicting behavior of, 283, 285
self-referential, 264–269, 282
standing in for Turing machines, 257
sufficiently powerful, 286
syntax and, 20
unreachable code, 284

pushdown automaton (see PDA)
#puts method, 8

Q
quine, 268
quotation marks, 8

R
Range class, 10
range of values, 3
recursive code

avoiding arbitrary recursion, 195–196
infinite loops, 178
partial recursive functions, 210–215
stack overflow, 47

reduction contexts, 47
reduction relation, 22
reduction semantics, 47
reductions, small-step

about, 21
applications, 42
expressions, 23–32
statements, 33–41

Regexp class, 108
regular expressions

about, 79
concatenating, 85
converting NFA to, 107
nested strings and, 107
parsing, 92–94
semantics, 83–91
syntax, 80–83

regular languages, 71
relational semantics (see big-step semantics)
remove_constant message, 13
Rendell, Paul, 246
Rice’s theorem

about, 279
abstract interpretation and, 294, 306

314 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

implications of, 280
predicting program behavior, 285

Ruby programming language
blocks of code, 9
classes and modules, 6
control flow, 4
defining constants, 13
Enumerable module, 10
inspecting objects, 8
Interactive Ruby Shell, 1
local variables and assignment, 7
monkey patching, 12
objects and methods, 5
printing strings, 8
specification by implementation, 18
string interpolation, 8
Struct class, 11
value types supported, 2–4
variadic methods, 9

rule 110, 247
rulebooks

cyclic tag system and, 235
deterministic finite automata, 66
deterministic pushdown automata, 113
deterministic Turing machines, 144
nondeterministic finite automata, 70
Turing machines, 151, 155

rules
deterministic finite automata, 64
deterministic pushdown automaton, 110
deterministic Turing machines, 138
nondeterministic finite automata, 70
rulebooks and, 66

S
s-expressions, 258
Sagan, Carl, 161
Scheme programming language, 42
self-referential programs, 264–269, 282
semantics

about, 18
axiomatic, 57
comparing styles, 54
denotational, 48–55
dynamic, 41, 295
formal, 18, 55–58
lambda calculus, 199–204
operational, 20–48, 25, 54
reduction, 47

regular expressions, 83–91
static, 41, 295–305

sequence statements
big-step semantics, 45
small-step semantics, 38

Set class
#& method, 74
#+ method, 74
about, 74
#subset? method, 74

Simple programming language example
about, 21, 161
big-step semantics, 42–48
denotational semantics, 48–55
implementing parsers, 58–62
small-step semantics, 21–42

simulation
deterministic finite automata, 66
deterministic pushdown automaton, 112–

118
general-purpose machines, 157
nondeterministic finite automata, 72
nondeterministic pushdown automaton,

122–124
Turing machines, 157
universal Turing machines, 157

SKI combinator calculus, 215–227
small-step semantics

about, 21
applications, 42
comparing styles, 54
correctness, 41
expressions, 23–32
statements, 33–41

Smalltalk programming language, 5
Smith, Alex, 251
square brackets [], 3, 4
stack overflow, 47
start state, 64, 71
statements

about, 33
assignment, 33
big-step semantics, 45–47
conditional, 36, 169–172
denotational semantics, 52–53
do-nothing, 33
sequence, 38, 45
small-step semantics, 33–41

states

Index | 315

www.it-ebooks.info

http://www.it-ebooks.info/

accept, 65, 74, 90
balanced brackets example, 106
deterministic finite automata, 63
Game of Life and, 245
implementing, 84
nondeterministic finite automata, 71, 84
start, 64, 71
Turing machines, 149

static semantics
about, 41, 295
benefits and limitations, 303–305
implementing, 296–303

storage
deterministic finite automata, 65
deterministic pushdown automaton, 108
deterministic Turing machines, 136–137
multidimensional tape, 154
multiple tapes, 153
nondeterministic finite automata, 73
Turing machines, 148–151

streams
infinite, 192–193
native Ruby, 194

strings
concatenating, 52, 83
FizzBuzz example, 184
interpolating, 8
nested, 107
printing, 8

Struct class
about, 11
#inspect method, 24
new method, 11
#to_s method, 24

structural operational semantics (see small-step
semantics)

subroutines, 151
super keyword, 7
superclasses, 7
symbols

about, 2, 79
hashes and, 3
key-value pairs and, 3
SKI combinator calculus and, 216–227

syntactic analysis
about, 126
parsing with PDA, 128–132

syntax
about, 18, 19

lambda calculus, 197–199
parsers and, 19
procs, 164
programs and, 20
regular expressions, 80–83

T
tag systems

about, 227–235
cyclic, 235–245

tail call optimisation, 47
tape storage

multidimensional tape, 154
multiple tapes, 153

TM (Turing machines), 156
(see also UTM)
about, 161
decidability, 269–270
deterministic, 135–147
deterministic finite automata and, 155
encoding, 156
external memory and, 135
Game of Life, 245–247
halting problem, 271–277
lambda calculus and, 207–210
maximum power, 148–154
multidimensional tape, 154
multiple tapes, 153
nondeterministic, 147
partial recursive functions and, 210–215
programs standing in for, 257
rule 110, 247
simulation, 157
SKI combinator calculus and, 215–227
storage, 148–151
subroutines, 151
tag systems and, 227–245
Wolfram’s 2,3 Turing machine, 251

total programming languages, 264, 280
transition functions, 79
transition semantics (see small-step semantics)
transitions, 79
Treetop language, 58, 92–94
Turing machines (see TM)
Turing, Alan, 135, 136, 138
Turner, David, 280

316 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

U
unary representation, 157
undecidable problems

about, 270
halting problem, 271–277
implications of, 280–281
toy example, 277–280

universal Turing machines (see UTM)
unreachable code, 284
untyped lambda calculus (see lambda calculus)
UTM (universal Turing machines)

about, 155, 207
code is data, 258
decidability, 269–270
encoding, 156
infinite looping, 259–264
lambda calculus and, 207–210
performing algorithms, 254–257
programs standing in for, 257
simulation, 157

V
values

about, 2, 21
absolute, 288
assigning to local variables, 7
basic data, 2
comma-separated, 3
data structures, 3
objects and, 5
procs, 3
range of, 3

variables
constants as, 13
local, 7
parallel assignment, 8
replacing in expressions, 199–200

variadic methods, 9
virtual machines, 29

W
W3C, 48
Wadler, Philip, 55
while expression, 4
Wolfram, Stephen, 247–251, 281
Wolfram’s 2,3 Turing machine, 251

X
XML documents, 258
XQuery specification, 48
XSLT document-transformation language, 55,

258

Y
Y combinator, 179
yield keyword, 9

Z
Z combinator, 180

Index | 317

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Tom Stuart is a computer scientist and programmer, and the founder of Codon, a
digital product consultancy in London. He works as a consultant, mentor, and trainer,
helping companies to improve the quality and clarity of their approach to creating
software products, usually on the Web. He has lectured on optimizing compilers at the
University of Cambridge, co-organizes the Ruby Manor conference, and is a member
of the London Ruby User Group.

Colophon
The animal on the cover of Understanding Computation is the bear paw clam (Hippopus
hippopus). The bear paw clam, also known as the horse's hoof clam because of its shape
and the strawberry clam for its reddish color, is part of the giant clam subfamily Tri-
dacnidae, which in turn is part of the family Cardiidae. The bear paw clam mostly lives
in reefs in the Indo-Pacific area.

The bear paw clam has two identical and symmetrical hinged sections. It also has deep
ridges and a distinctive red-white color pattern. It feeds on plankton in the surrounding
area by staying in one location and filtering surrounding water using its siphons.

The cover image is from a loose plate, source unknown. The cover font is Adobe ITC
Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	Preface
	Who Should Read This Book?
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Just Enough Ruby
	Interactive Ruby Shell
	Values
	Basic Data
	Data Structures
	Procs

	Control Flow
	Objects and Methods
	Classes and Modules
	Miscellaneous Features
	Local Variables and Assignment
	String Interpolation
	Inspecting Objects
	Printing Strings
	Variadic Methods
	Blocks
	Enumerable
	Struct
	Monkey Patching
	Defining Constants
	Removing Constants

	Part I. Programs and Machines
	Chapter 2. The Meaning of Programs
	The Meaning of “Meaning”
	Syntax
	Operational Semantics
	Small-Step Semantics
	Expressions
	Statements
	Correctness
	Applications

	Big-Step Semantics
	Expressions
	Statements
	Applications

	Denotational Semantics
	Expressions
	Statements
	Applications

	Formal Semantics in Practice
	Formality
	Finding Meaning
	Alternatives

	Implementing Parsers

	Chapter 3. The Simplest Computers
	Deterministic Finite Automata
	States, Rules, and Input
	Output
	Determinism
	Simulation

	Nondeterministic Finite Automata
	Nondeterminism
	Free Moves

	Regular Expressions
	Syntax
	Semantics
	Parsing

	Equivalence

	Chapter 4. Just Add Power
	Deterministic Pushdown Automata
	Storage
	Rules
	Determinism
	Simulation

	Nondeterministic Pushdown Automata
	Simulation
	Nonequivalence

	Parsing with Pushdown Automata
	Lexical Analysis
	Syntactic Analysis
	Practicalities

	How Much Power?

	Chapter 5. The Ultimate Machine
	Deterministic Turing Machines
	Storage
	Rules
	Determinism
	Simulation

	Nondeterministic Turing Machines
	Maximum Power
	Internal Storage
	Subroutines
	Multiple Tapes
	Multidimensional Tape

	General-Purpose Machines
	Encoding
	Simulation

	Part II. Computation and Computability
	Chapter 6. Programming with Nothing
	Impersonating the Lambda Calculus
	Working with Procs
	Plumbing
	Arguments
	Equality
	Syntax

	The Problem
	Numbers
	Booleans
	Predicates
	Pairs
	Numeric Operations
	Lists
	Strings
	The Solution
	Advanced Programming Techniques
	Infinite streams
	Avoiding arbitrary recursion

	Implementing the Lambda Calculus
	Syntax
	Semantics
	Replacing variables
	Calling functions
	Reducing expressions

	Parsing

	Chapter 7. Universality Is Everywhere
	Lambda Calculus
	Partial Recursive Functions
	SKI Combinator Calculus
	Iota
	Tag Systems
	Cyclic Tag Systems
	Conway’s Game of Life
	Rule 110
	Wolfram’s 2,3 Turing Machine

	Chapter 8. Impossible Programs
	The Facts of Life
	Universal Systems Can Perform Algorithms
	Programs Can Stand In for Turing Machines
	Code Is Data
	Universal Systems Can Loop Forever
	Programs Can Refer to Themselves

	Decidability
	The Halting Problem
	Building a Halting Checker
	It’ll Never Work
	Too good to be true
	Fundamentally impossible

	Other Undecidable Problems
	Depressing Implications
	Why Does This Happen?
	Coping with Uncomputability

	Chapter 9. Programming in Toyland
	Abstract Interpretation
	Route Planning
	Abstraction: Multiplying Signs
	Safety and Approximation: Adding Signs

	Static Semantics
	Implementation
	Benefits and Limitations

	Applications

	Afterword
	Index

